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Abstract: Molecular diagnosis of lung cancer is a constantly evolving field thanks to major advances
in precision oncology. The wide range of actionable molecular alterations in non-squamous non-
small cell lung carcinoma (NS-NSCLC) and the multiplicity of mechanisms of resistance to treatment
resulted in the need for repeated testing to establish an accurate molecular diagnosis, as well as to track
disease evolution over time. While assessing the increasing complexity of the molecular composition
of tumors at baseline, as well as over time, has become increasingly challenging, the emergence and
implementation of next-generation sequencing (NGS) testing has extensively facilitated molecular
profiling in NS-NSCLC. In this review, we discuss recent developments in the molecular profiling of
NS-NSCLC and how NGS addresses current needs, as well as how it can be implemented to address
future challenges in the management of NS-NSCLC.

Keywords: next-generation sequencing; predictive biomarker; non-small cell lung carcinoma; preci-
sion oncology

1. Introduction

Lung cancer is the leading cause of cancer-related death, as well as the third most
frequent cancer in Europe with an increasing incidence [1]. Non-small cell lung can-
cer (NSCLC) is the most frequent lung cancer, with two predominant histologies, non-
squamous (NS) and squamous cell carcinoma (SCC). Smoking remains the leading risk
factor for non-small cell lung cancer, though cases related to low or no smoking burden
are increasingly clinically relevant [2,3]. Importantly, while targetable alterations are more
commonly found in patients with lower smoking burden, targetable molecular alterations
must be assessed independently of smoking status for any patient with NS-NSCLC, as these
alterations are found in ~50% of cases in non-smokers and up to 20% of cases occurring in
former or current-smoking patients [4].

Personalized medicine revolutionized NS-NSCLC in 2004, with the discovery that
specific mutations in the epidermal growth factor receptor (EGFR) sensitized tumors to a
targeted treatment with the tyrosine kinase inhibitors (TKI) erlotinib and gefitinib [5–7].
Following approvals in a later treatment setting, the first-line administration of EGFR
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TKIs became standard in 2009 with the approval of gefitinib [8], in patients with NS-
NSCLC harboring an EGFR deletion 19 or L858R substitution, followed by the approval of
erlotinib [9] and afatinib [5].

Despite durable responses with the administration of EGFR-TKIs, resistance systemati-
cally occurs, and the occurrence of the EGFR T790M resistance mutation has been described
as a major driver of resistance [10]. This led to the development and approval of third-
generation EGFR TKIs like osimertinib, which are currently recommended for first-line use
in patients with EGFR mutant NS-NSCLC with exon 19 deletion or L858R mutation [11].
However, resistance remains a major challenge in this setting, with increasingly complex
and diverse resistance mechanisms [12]. As an example, C797S mutations, which confer
resistance to osimertinib treatment, are currently being targeted with the development of
fourth-generation TKIs [13,14].

Independently of EGFR, multiple additional drivers have been defined in NS-NSCLC,
and many drugs have been approved in the last few years that directly target those alter-
ations. Anaplastic lymphoma kinase (ALK) and ROS-1 proto-oncogene rearrangement,
BRAF proto-oncogene mutation, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
(KRAS) mutations, neurotrophic tyrosine receptor kinase (NTRK) fusion, MET proto-
oncogene mutation or amplification, RET proto-oncogene mutation or fusion, Neuregulin 1
(NRG1) fusion, and Human Epidermal Growth Factor Receptor-2 (HER-2) mutation are all
described in NS-NSCLC, with corresponding drugs investigated or approved.

Those developments reshape the classification of lung cancer based on molecular clas-
sification and enabled an increasingly complex personalized approach in thoracic oncology,
which improved the overall survival but also the quality of life of these patients [15].

Consequently, tumor genetic testing has become standard of care for metastatic and
locally advanced NS-NSCLC [4]. Indeed, the Food and Drug Administration (FDA) and the
European Medical Agency (EMA) promote the principles of precision medicine and claim
that a specific and approved companion biomarker is mandatory for the safe administration
of a targeted drug [16]. EGFR, ALK, KRAS, and ROS1 testing are mandatory at initial
diagnosis, while BRAF mutations, MET exon 14 mutations, RET fusion, and NTRK fusion
testing are optional at initial diagnosis and mandatory before second-line therapy, and
other MET mutations, HER2 mutations, and NRG1 fusions should be tested before second-
line treatment [17]. For example, second-line trastuzumab–deruxtecan demonstrated
clinical benefit in metastatic HER2-positive patients, with a recent FDA approval for this
indication highlighting the constantly evolving need for biomarker testing [18]. In addition,
EGFR-mutation testing for pII and pIII stage NS-NSCLC patients is anticipated to become
mandatory based on the results of the ADAURA study positioning the use of osimertinib
as adjuvant therapy in this population [19].

After an initial response, drug resistance and disease progression occur in most cases,
and therefore companion biomarkers must not only identify a therapeutic target at di-
agnosis, but also the techniques must be repeated, as therapeutic resistance mechanisms
should be investigated during disease progression. Several methods are used to identify
these molecular alterations, by analyzing protein expression levels using immunohisto-
chemistry (IHC), by assessing mutations in tumor DNA, and by assessing the fusion of
certain genes of interest (i.e., ALK, ROS1, NTRK, RET) using IHC and notably fluorescence
in situ hybridization (FISH) [15]. A reference method for the study of mutations in tumor
DNA was historically Sanger sequencing, described in 1977, which has been superseded
by the routine use of real-time PCR (qPCR) [20]. A still commonly used strategy is based
on sequential exclusion testing looking for mutations that are mutually exclusive with
others or using hotspot screening to search for exploitable molecular alterations. In contrast,
next-generation sequencing (NGS) allows for broad molecular profiling and allows for the
simultaneous detection of both common targetable and rare mutations at the tumor DNA
level and are able to identify translocations at the RNA level [20].

Practically, EGFR including the T790M mutation, BRAF and KRAS mutations, are
commonly analyzed by qPCR; ALK rearrangement can be analyzed either by IHC or
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fluorescence in situ hybridization (FISH); ROS1 rearrangements relies on IHC and has to be
confirmed by FISH analysis, and more recently DNA and RNA NGS are used for a larger
panel of molecular alterations including MET exon 14; RET; NTRK1,2,3; and NRG1 [17]. In
addition to MET exon 14 skipping assessment by NGS, the evaluation of the MET gene
copy number (amplification) by FISH (gold-standard) or NGS should be an integral part
of the diagnostic work-up, due to its clinical relevance [21]. Indeed, MET amplifications
may occur de novo or as a mechanism of resistance to EGFR TKIs, but clinical trials
have demonstrated that this could be targeted using capmatinib [22] or tepotinib [23] as
second-line therapy [24].

2. Approved Companion Tests (Figure 1)
2.1. EGFR

The EGFR gene codes for a membrane receptor with tyrosine kinase activity belonging
to the HER family [25]. The activation of EGFR is dependent on ligand binding to the
extracellular domain resulting in a conformational change of the receptor allowing its hetero
or homo-dimerization [26], leading to the phosphorylation of the tyrosine kinase domain.
This activation allows various downstream signaling pathways of cell proliferation. The
two main types of EGFR mutations are represented by in-frame exon 19 deletions, which are
the most frequent, and L858R exon 21 substitution [27], and are targetable by first (erlotinib,
gefitinib)-, second (afatinib, dacomitinib)-, and third (osimertinib)-generation TKIs now
approved for first-line treatment in the European Union [28]. Afatinib is additionally
approved for treating NSCLC with G719X, S768I, and L861Q mutations.
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qPCR is the most routinely used tool to detect deletion 19, exon 20 mutations, exon
21 L858R substitution, and T790M mutation and allows for a particularly rapid result [29].
However, some allele-specific PCR kits are likely to miss some rare EGFR mutations
like exon 18 alterations (E709X, E709A, E709G, E709K, E709V, delE709-T710insD, G719X,
G719S, G719A, G719C, and G719D), exon 19 in-frame insertions, exon 20 alterations
(A763_Y764insFQEA insertion, S768I), and exon 21 mutation L861Q [30–32].
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In order to use EGFR TKI, diagnosis by qPCR based on the Cobas® or Therascreen®

assay is approved for the detection of EGFR mutations and used routinely, but only Cobas
is approved for the use of osimertinib in patients with EGFR-mutated non-small cell lung
cancer (NSCLC) with T790M mutations, and only Therascreen® assay is approved for the
use of dacomitinib. Of note, Therascreen® assay is approved for using afatinib in L861Q,
G719X and S768I mutations.

Next-generation sequencing (NGS), either using tissue or circulating tumor DNA
(ctDNA) [33] based on the FoundationOne CDX assay (Foundation Medicine, Cambridge,
MA, USA)® and FoundationOne Liquid CDX® assay for ctDNA EGFR-mutations assess-
ment and Guardant 360 (Guardant Health, Redwood City, CA, USA)®, are approved for the
use of TKIs targeting exon 19 deletions and L858R exon 21 substitution (gefitinib, erlotinib,
afatinib, osimertinib). Other approved tests are the ONCO/Reveal Dx Lung & Colon
Cancer Assay (O/RDx-LCCA) (Pillar Biosciences, Inc., Natick, MA, USA)® for gefitinib,
erlotinib, afatinib, and dacomitinib and the Oncomine Dx Target Test (ThermoFisher Scien-
tific, Waltham, MA, USA)® for gefitinib, but also the promising new drugs amivantanab
and mobocertinib, initially developed to target EGFR exon 20 insertion at second-line
treatment and now investigated in other mutations as well [34]. Amivantamab is stud-
ied in the CHRYSALIS Phase I Study [35], with or without association with lazertinib in
the CHRYSALIS-2 Phase Ib/II Study [36], and in association with different regiments of
chemotherapy in the PAPILLON Phase III Study [37]; while mobocertinib has been stud-
ied [38] for targeting Exon 20 EGFR insertions, amivantamab recently obtained approval
by the FDA and EMA, while mobocertinib was approved by the FDA.

2.2. ALK

The ALK gene is located on chromosome 2 and codes for a receptor tyrosine kinase and
was first identified in anaplastic large cell lymphoma [39]. Although many variants have
been described with varying frequencies, the rearrangement of the ALK gene with EML4
(Echinoderm microtubule associated protein like 4) is the most common mechanism and
occurs due to a rearrangement on the same chromosome [40,41]. This rearrangement leads
to the expression of a chimeric protein, with the constitutive activation of ALK leading to
cell proliferation [40], and can be targeted by the ALK TKIs crizotinib and ceritinib or more
recently alectinib, brigatinib, and lorlatinib [42].

The first studies evaluating ALK rearrangement were based on FISH; however, IHC is
increasingly used. Nevertheless, confirmation is recommended using FISH (if available) to
confirm the gene fusion event in case of a positive IHC [43].

ALK antibodies include ALK1, 5A4, D5F3, and SP8 with better diagnostic performance
in terms of sensitivity and specificity for 5A4 (Novocastra®) and D5F3 (Ventana®) [44,45],
resulting in their approval as companion diagnostics for the Ventana ALK (D5F3) CDx®

IHC Assay. FoundationOne CDx and FoundationOne Liquid (Foundation Medicine, Cam-
bridge, MA, USA)® are approved [46] for administrating ALK TKIs. NGS from RNA as
an alternative to DNA-based sequencing has also been investigated and implemented [47]
and may be critical for the comprehensive detection of ALK gene-specific fusion partners.

2.3. ROS1

ROS1 is a tyrosine kinase receptor of the insulin receptor family that activates the
MAPK signaling pathway through the phosphorylation of RAS. Its hyperactivation leads
to cell growth and proliferation [48], and this receptor can be successfully targeted by
crizotinib and entrectinib [49].

There are four approaches described to detect ROS1 rearrangements: IHC, FISH, qPCR,
and next-generation sequencing (NGS) [50,51]. IHC can be used as screening tool and needs
confirmation by another method, either FISH, qPCR, or NGS [50–53]. Nevertheless, due to
the low frequency of this alteration, ROS1 rearrangements are not always routinely tested at
baseline when NGS is not used and thus are assessed only after eliminating an alternative
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molecular alteration. Consequently, samples may have been exhausted by previous tests,
exposing the risk of insufficient material, particularly for IHC or FISH techniques [54].

Consequently, two NGS companion tests are approved, either Oncomine Dx Target Test
(ThermoFisher Scientific, Waltham, MA, USA)® [55] or FoundationOne CDx (Foundation
Medicine, Cambridge, MA, USA)® [56].

2.4. BRAF

The BRAF gene encodes an intra-cytoplasmic serine/threonine kinase. BRAF muta-
tions, mostly non-V600E, account for 1–4% of NS-NSCLC [57] and lead to the activation of
the MAPK pathway downstream of EGFR and RAS, and this kinase can be targeted by the
combination of the BRAF inhibitor dabrafenib and the MEK inhibitor trametimib [58,59].

The use of IHC is a promising approach; however, the antibody available for BRAF
(VE1) [60] limits the detection to only exon 15 V600E mutations, while other alterations can
be found [61–63].

Oncomine Dx Target Test (ThermoFisher Scientific, Waltham, MA, USA)® and Foun-
dationOne CDx (Foundation Medicine, Cambridge, MA, USA)® are approved NGS com-
panion tests for using dabrafenib–trametinib.

2.5. KRAS

The RAS protein is located downstream of the EGFR signaling cascade and can
also interact with other EGFR downstream pathways (MAPK, PI3K-AKT-mTOR), thus
bypassing its activation. This protein has an important role in cell growth, differentiation,
and apoptosis control and is active when bound to GTP. KRAS is the most commonly
mutated oncogene in NSCLC, and this mutation is associated with a poor prognosis [64],
with the G12C being the most frequent (40–50% of KRAS mutations), followed by G12V
(19% of KRAS mutations) [65,66]. These mutations are particularly observed in the lung
adenocarcinoma (25 to 40%) of patients with high smoking exposure. While long considered
to be undruggable, recently the approval of sotorasib revolutionized the targeting of
KRAS mutant NSCLC, with adagrasib as another G12C targeting TKI expected to receive
FDA approval following promising results from the phase II Krystal-1 trial as well [67].
Furthermore, there are many additional drugs targeting other non-G12C mutants currently
under development [68].

The two companion tests approved are the Therascreen KRAS RGQ PCR Kit (Qiagen,
Manchester, Ltd., UK)® qPCR test and the ctDNA Guardant360 CDx (Guardant Health,
Inc., Redwood City, CA, USA)® NGS test for using sotorasib [69].

2.6. MET

The MET gene is located on chromosome 7 and codes for a receptor with tyrosine
kinase activity whose ligand is hepatocyte growth factor. This gene is involved in the
carcinogenesis of NSCLC, with several mechanisms leading to its activation by gene
amplification in 4% of cases, activating the mutation and deletions of exon 14 and the
overexpression of hepatocyte growth factor [70]. The occurrence of MET amplification
increases to ~20% in 3rd TKI resistant EGFR-mutated NSCLC, constituting an important
mechanism of resistance [70]. Presently, MET exon 14 skipping can successfully be targeted
using tepotinib [71] and capmatinib [22].

FoundationOne CDx (Foundation Medicine, Cambridge, MA, USA)® and Founda-
tionOne Liquid CDx® are two approved NGS companion tests for this alteration for using
capmatinib, but there is currently no companion test specifically approved for using tepotinib.

However, an exclusive MET determination based on NGS cannot completely replace
an assessment of MET gene amplification status based on FISH [21], which allows the
precise assessment of amplification level normalized to the level of concomitant polysomy,
although neither MET amplification test is approved.
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2.7. RET

The RET gene translates into a proto-oncogene transmembrane receptor tyrosine
kinase, leading to the activation of downstream signaling pathways such as RAS, MAPK,
and PI3K-AKT-mTOR. The juxtaposition of the C-terminal region of the RET protein
with the N-terminal portion of another protein by fusion, of which KIF5B is the most
common fusion partner [72], leads to its self-sustained constitutive activation [73] and can
be successfully targeted using pralsetinib [74] or selpercatinib [75].

The only approved companion test is the Oncomine Dx Target Test (ThermoFisher
Scientific, Waltham, MA, USA)® NGS test for using pralsetinib, whereas selpercatinib does
not yet ahve a companion diagnostic test to date.

2.8. NTRK

The NTRK 1, 2, and 3 genes allow the production of three proteins, TRKA, TRKB
and TRKC, which affect cell differentiation, survival and proliferation, and migration.
The NTRK fusion protein results from a DNA fragment insertion into another part of the
genome. This fusion protein has emerged as a target, with approved treatments by the
EMA and the FDA for larotrectinib [76] and entrectinib [77], by accelerated approval for all
adult solid tumors harboring an NTRK fusion.

The only approved companion test is FoundationOne CDx (Foundation Medicine,
Cambridge, MA, USA)® NGS companion test, for using larotrectinib or entrectinib [78].

3. From Multiple Companion Biomarkers to NGS?

Many companion tests exist for NS-NSCLC therapeutic targets, though not all are
being approved. However, the initiation of a targeted therapy is feasible even if the test
used is not the native companion test, as shown in [79] where the switching of PCR assays
for common EGFR-activating mutations did not affect the outcome.

Considering that most oncogenic driver mutations that can be targeted are mutually
exclusive, sequential testing, in which each gene is tested in a stepwise approach, has long
been the standard procedure in the molecular pathology of NSCLC [52].

However, this approach is increasingly challenged by the development of novel
therapies, dramatically broadening the number of genes to be tested [80]. In NSCLC, where
tissue is often limited, all available specimens will be exhausted before tissue testing is
complete. Furthermore, this approach often leads to incomplete biomarker testing, limiting
the possibility of initiating adequate treatment [81,82].

Additionally, many tests do not cover all relevant regions in the respective genes and
thus often miss out on the detection of certain mutations. For example, there are several
studies currently investigating the treatment of Exon 20 mutations in both EGFR and HER2,
with multiple drugs currently being investigated in this setting [83]. Most qPCR tests
only have limited coverage in those regions, thus limiting the detection of mutations and,
consequently, the initiation of targeted treatments in this setting [84,85].

A recent study investigating the structural implications of a broad range of EGFR
mutations highlighted that many EGFR mutations result in comparable structural changes
and comparable sensitivity to certain TKI drug classes [31]. Since many of these mutations
cannot be investigated with qPCR, the implementation of NGS is critical in the clinical
setting.

Indeed, the use of NGS as a primary test has dramatically increased during past
years [86], though additional efforts are critical to implementing NGS widely as a principal
testing method at baseline in NSCLC. This approach is not only suitable for primary tumor
tissue but is routinely used in the transbronchial needle aspiration of lymph node [87],
plasma [88], and pleural effusions [89] and could also be used from bronchoalveolar lavage
fluid [90] and is also suitable for cerebrospinal fluid [91]. Besides, there are promising data
for the screening of residual disease of EGFR mutant NSCLC in saliva [92] and urine [93].

The rationale to extend the use of NGS for NSCLC molecular diagnostic is also high-
lighted by ESCAT (ESMO Scale for Clinical Actionability of Molecular Targets). This
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collaborative tool aims to classify the molecular alterations that can be found in tumor
tissue [94] or in ctDNA [95] into six tiers, depending on the clinical significance of the molec-
ular alterations, in order to harmonize practices. Briefly, tier I corresponds to alterations
that are known to be targetable; tier II corresponds to alterations that are non-targetable
according to current recommendations but are promising in clinical trials; tier III corre-
sponds to alterations that are targetable in another tumor type or for similar targets; tier IV
corresponds to alterations for which preclinical models are promising; tier V corresponds
to alterations that could be co-targeted, and tier X corresponds to alterations with no evi-
dence of clinical significance. Importantly, studies have provided evidence that the ESCAT
classification of genomic alterations is implementable in clinical practice [96,97].

In the past, especially increased costs and longer turn-around times have disfavored
NGS over sequential testing utilizing IHC/FISH or qPCR. Comparisons on the cost efficacy
of NGS are challenging due to a rapidly changing field and due to the fact that the assess-
ment of genetic tests has traditionally been regulated mostly at the national level in the
EU [98], leading to a certain heterogeneity of the pathology workflow between countries
and institutions. In France, for example, regional molecular genetics centers have been
created to allow performing selected molecular tests free of charge for all cancer patients in
their region, with financial support assisting in the implementation of NGS [15]. Issues sur-
rounding the systematic implementation of NGS at the European level are discussed in [99],
highlighting difficulties linked to the governance of collaboration between private and
public institutions, to the adaptation of the necessary and often complex infrastructure, to
the standardization of sequencing panels which might include in-house developed assays,
to the often diverse training of personnel, and to the financial cost of the tests. Importantly,
cost effectiveness was investigated in multiple studies, and NGS has been considered cost-
effective in NSCLC when multiple genes require parallel assessment [100–102]. However,
there are still ongoing debates on the most cost-effective use of NGS. For example, while
performing NGS at initial diagnosis as well as at disease progression under treatment is
technically feasible and routinely performed, reimbursement for NGS in France is limited
to one single test. Multiple testing is thus often covered by research funding or results
in additional out-of-pocket costs for the patients. Similar regulations may exist in other
countries as well, and consequently reimbursement regulations need adaptions in order to
allow a scientifically driven and effective biomarker-driven treatment in NSCLC.

Two approaches can be currently considered for NGS [103]. The “bespoke testing”
approach, initiated “on-demand” by the clinician, is essentially aimed at advanced-stage
patients in order to initiate a targeted therapy. However, this approach might delay
treatment duration or might restrict the testing to certain population, due to delay in the
request for testing and the tissue exhaustion due to multiple requests at different times. By
contrast, the “reflex testing” approach is triggered by a pathologist based on a histological
diagnosis, with the advantage of managing currently available tissue more efficiently,
with an early result, which, however, leads to increased testing requirements and requires
additional resources and infrastructure.

In addition to tissue-based testing approaches, liquid biopsies using circulating tumor
DNA (ctDNA) are also critical for clinical recommendations and are thus recommended
by the IASLC [104]. However, the importance of liquid biopsies compared to tissue
have been reviewed extensively, and the following paragraph should only give a brief
overview [105–108]. Importantly, liquid biopsies can help to adjust treatment decisions
under active treatment through the detection of resistance mechanisms but can also re-
place tissue-based testing when specimen have been exhausted or are too limited [109], a
situation in which the validation of NGS assays designated for low DNA input is crucial.
It can further help as a prognostic tool through the determination of minimal residual
disease (MRD) [107]. Consequently, it is critical to further ensure that liquid biopsies
are implemented in NSCLC and become standard when tissue biopsies are absent or not
possible.
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Turn-around times is another challenge, since the quick reporting of results is critical
to ensuring the administration of an appropriate treatment. Delayed reporting often leads
to the initiation of untargeted approaches with dismal outcomes [110] and should thus be
avoided. Nevertheless, turn-around time for NGS has been reduced and is comparable
to sequential approaches [86]. Importantly, novel technologies dramatically reduced turn-
around times to ~24 h [111]. While novel technologies constantly reduce turn-around times
in NGS, qPCR, especially highly automated assays, still offer significantly faster results,
and it was demonstrated that a combination of ultra-fast qPCR for EGFR combined with
subsequent NGS can be implemented, allowing both quick reports on common oncogenes
and broad testing in a timely and cost-effective manner [112]. The type of NGS test is
also of particular concern, with assays commonly relying on either amplicon-based [113]
or hybrid-capture-based tests [114]. While both principles allow reproducible tests, the
optimal solution is also dependent on the size of the panel used, with NGS panels commonly
spanning a few (~10) to hundreds or thousands of genes, which can also be achieved with
in-house solutions [111,115]. However, for larger panels with eg > 500 genes, validation
is critical, and an outsourced approach might be more relevant, especially when demand
is low. Access to clinical trials and needed research might be critical to determining the
optimal size, as only few gene targets are actually associated with an approved therapy and
consequently, larger panels might be more suitable in academic centers but unnecessary for
routine clinical care [116].

Limitations to NGS still exist, and, in particular, the detection of gene fusion events
using NGS lacks sensitivity compared to IHC/FISH methods, which often warrants the
additional use of those methods in patients with high prevalence of those alterations [114].
Moreover, the detection of amplifications still poses challenges in NGS compared to FISH
analysis [21]. Consequently, further development to refine sensitivities in these setting is
critical but should not prohibit the use of NGS.

4. Conclusions

In the era of precision medicine, NGS appears fundamental to offer the most ap-
propriate personalized therapy for NS-NSCLC patients and is poised to substitute for
sequential testing using individual or low multiplexing gene tests. Indeed, research leading
to new targeted therapies is increasing very quickly and the new international guidelines
recommends the use of NGS in order to test all of the actionable alterations simultaneously,
including established but also emerging targets.
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Kapelenska-Pregowska, J.; Kováč, P.; et al. Legislation of direct-to-consumer genetic testing in Europe: A fragmented regulatory
landscape. J. Community Genet. 2018, 9, 117–132. [CrossRef]

99. Horgan, D.; Curigliano, G.; Rieß, O.; Hofman, P.; Büttner, R.; Conte, P.; Cufer, T.; Gallagher, W.M.; Georges, N.; Kerr, K.; et al.
Identifying the Steps Required to Effectively Implement Next-Generation Sequencing in Oncology at a National Level in Europe.
J. Pers. Med. 2022, 12, 72. [CrossRef]

100. Steuten, L.; Goulart, B.; Meropol, N.J.; Pritchard, D.; Ramsey, S.D. Cost Effectiveness of Multigene Panel Sequencing for Patients
With Advanced Non–Small-Cell Lung Cancer. JCO Clin. Cancer Inform. 2019, 3, 1–10. [CrossRef]

101. Schluckebier, L.; Caetano, R.; Garay, O.U.; Montenegro, G.T.; Custodio, M.; Aran, V.; Gil Ferreira, C. Cost-effectiveness analysis
comparing companion diagnostic tests for EGFR, ALK, and ROS1 versus next-generation sequencing (NGS) in advanced
adenocarcinoma lung cancer patients. BMC Cancer 2020, 20, 875. [CrossRef]

102. Pennell, N.A.; Mutebi, A.; Zhou, Z.-Y.; Ricculli, M.L.; Tang, W.; Wang, H.; Guerin, A.; Arnhart, T.; Dalal, A.; Sasane, M.; et al.
Economic Impact of Next-Generation Sequencing Versus Single-Gene Testing to Detect Genomic Alterations in Metastatic
Non–Small-Cell Lung Cancer Using a Decision Analytic Model. JCO Precis. Oncol. 2019, 3, 1–9. [CrossRef] [PubMed]

103. Thunnissen, E.; Weynand, B.; Udovicic-Gagula, D.; Brcic, L.; Szolkowska, M.; Hofman, P.; Smojver-Ježek, S.; Anttila, S.; Calabrese,
F.; Kern, I.; et al. Lung cancer biomarker testing: Perspective from Europe. Transl. Lung Cancer Res. 2020, 9, 887–897. [CrossRef]
[PubMed]

104. Rolfo, C.; Mack, P.; Scagliotti, G.V.; Aggarwal, C.; Arcila, M.E.; Barlesi, F.; Bivona, T.; Diehn, M.; Dive, C.; Dziadziuszko, R.; et al.
Liquid Biopsy for Advanced NSCLC: A Consensus Statement From the International Association for the Study of Lung Cancer. J.
Thorac. Oncol. 2021, 16, 1647–1662. [CrossRef] [PubMed]

105. Rijavec, E.; Coco, S.; Genova, C.; Rossi, G.; Longo, L.; Grossi, F. Liquid biopsy in non-small cell lung cancer: Highlights and
challenges. Cancers 2020, 12, 17. [CrossRef] [PubMed]

106. Li, W.; Liu, J.-B.; Hou, L.K.; Yu, F.; Zhang, J.; Wu, W.; Tang, X.M.; Sun, F.; Lu, H.M.; Deng, J.; et al. Liquid biopsy in lung cancer:
Significance in diagnostics, prediction, and treatment monitoring. Mol. Cancer 2022, 21, 25. [CrossRef]

107. Bonanno, L.; Dal Maso, A.; Pavan, A.; Zulato, E.; Calvetti, L.; Pasello, G.; Guarneri, V.; Conte, P.F.; Indraccolo, S. Liquid biopsy
and non-small cell lung cancer: Are we looking at the tip of the iceberg? Br. J. Cancer 2022, 127, 383–393. [CrossRef]

108. Guibert, N.; Pradines, A.; Mazieres, J.; Favre, G. Current and future applications of liquid biopsy in nonsmall cell lung cancer
from early to advanced stages. Eur. Respir. Rev. 2020, 29, 190052. [CrossRef]

109. Choudhury, Y.; Tan, M.H.; Shi, J.L.; Tee, A.; Ngeow, K.C.; Poh, J.; Goh, R.R.; Mong, J. Complementing Tissue Testing With Plasma
Mutation Profiling Improves Therapeutic Decision-Making for Patients With Lung Cancer. Front. Med. 2022, 9, 758464. [CrossRef]

110. Mileham, K.F.; Schenkel, C.; Bruinooge, S.S.; Freeman-Daily, J.; Basu Roy, U.; Moore, A.; Smith, R.A.; Garrett-Mayer, E.; Rosenthal,
L.; Garon, E.B.; et al. Defining comprehensive biomarker-related testing and treatment practices for advanced non-small-cell lung
cancer: Results of a survey of U.S. oncologists. Cancer Med. 2022, 11, 530–538. [CrossRef]

111. Ilié, M.; Hofman, V.; Bontoux, C.; Heeke, S.; Lespinet-Fabre, V.; Bordone, O.; Lassalle, S.; Lalvée, S.; Tanga, V.; Allegra, M.; et al.
Setting Up an Ultra-Fast Next-Generation Sequencing Approach as Reflex Testing at Diagnosis of Non-Squamous Non-Small Cell
Lung Cancer; Experience of a Single Center (LPCE, Nice, France). Cancers 2022, 14, 2258. [CrossRef] [PubMed]

112. Momeni-Boroujeni, A.; Salazar, P.; Zheng, T.; Mensah, N.; Rijo, I.; Dogan, S.; Yao, J.Y.; Moung, C.; Vanderbilt, C.; Benhamida, J.;
et al. Rapid EGFR Mutation Detection Using the Idylla Platform: Single-Institution Experience of 1200 Cases Analyzed by an
In-House Developed Pipeline and Comparison with Concurrent Next-Generation Sequencing Results. J. Mol. Diagn. 2021, 23,
310–322. [CrossRef] [PubMed]

http://doi.org/10.3390/cancers13133342
http://www.ncbi.nlm.nih.gov/pubmed/34283064
http://doi.org/10.1016/j.jtho.2016.05.035
http://www.ncbi.nlm.nih.gov/pubmed/27468937
http://doi.org/10.1093/annonc/mdy263
http://doi.org/10.1016/j.annonc.2022.05.520
http://doi.org/10.1016/j.annonc.2020.08.1323
http://doi.org/10.1158/1078-0432.CCR-21-2384
http://doi.org/10.1007/s12687-017-0344-2
http://doi.org/10.3390/jpm12010072
http://doi.org/10.1200/CCI.19.00002
http://doi.org/10.1186/s12885-020-07240-2
http://doi.org/10.1200/PO.18.00356
http://www.ncbi.nlm.nih.gov/pubmed/35100695
http://doi.org/10.21037/tlcr.2020.04.07
http://www.ncbi.nlm.nih.gov/pubmed/32676354
http://doi.org/10.1016/j.jtho.2021.06.017
http://www.ncbi.nlm.nih.gov/pubmed/34246791
http://doi.org/10.3390/cancers12010017
http://www.ncbi.nlm.nih.gov/pubmed/31861557
http://doi.org/10.1186/s12943-022-01505-z
http://doi.org/10.1038/s41416-022-01777-8
http://doi.org/10.1183/16000617.0052-2019
http://doi.org/10.3389/fmed.2022.758464
http://doi.org/10.1002/cam4.4459
http://doi.org/10.3390/cancers14092258
http://www.ncbi.nlm.nih.gov/pubmed/35565387
http://doi.org/10.1016/j.jmoldx.2020.11.009
http://www.ncbi.nlm.nih.gov/pubmed/33346146


J. Pers. Med. 2022, 12, 1684 14 of 14

113. Thompson, J.C.; Yee, S.S.; Troxel, A.B.; Savitch, S.L.; Fan, R.; Balli, D.; Lieberman, D.B.; Morrissette, J.D.; Evans, T.L.; Bauml, J.; et al.
Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of
cell-free circulating tumor DNA. Clin. Cancer Res. 2016, 22, 5772–5782. [CrossRef] [PubMed]

114. Cohen, D.; Hondelink, L.M.; Solleveld-Westerink, N.; Uljee, S.M.; Ruano, D.; Cleton-Jansen, A.M.; von der Thüsen, J.H.; Ramai,
S.R.S.; Postmus, P.E.; Graadt van Roggen, J.F.; et al. Optimizing Mutation and Fusion Detection in NSCLC by Sequential DNA
and RNA Sequencing. J. Thorac. Oncol. 2020, 15, 1000–1014. [CrossRef] [PubMed]

115. Nong, L.; Zhang, Z.; Xiong, Y.; Zheng, Y.; Li, X.; Li, D.; He, Q.; Li, T. Comparison of next-generation sequencing and immuno-
histochemistry analysis for targeted therapy-related genomic status in lung cancer patients. J. Thorac. Dis. 2019, 11, 4992–5003.
[CrossRef]

116. Durães, C.; Gomes, C.P.; Costa, J.L. Demystifying the Discussion of Sequencing Panel Size in Oncology Genetic Testing. Eur. Med.
J. 2022, 7, 68–77.

http://doi.org/10.1158/1078-0432.CCR-16-1231
http://www.ncbi.nlm.nih.gov/pubmed/27601595
http://doi.org/10.1016/j.jtho.2020.01.019
http://www.ncbi.nlm.nih.gov/pubmed/32014610
http://doi.org/10.21037/jtd.2019.12.25

	Introduction 
	Approved Companion Tests (Figure 1) 
	EGFR 
	ALK 
	ROS1 
	BRAF 
	KRAS 
	MET 
	RET 
	NTRK 

	From Multiple Companion Biomarkers to NGS? 
	Conclusions 
	References

