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Abstract: Atrial fibrillation (AF) is largely underdiagnosed. Previous studies using deep neural
networks with large datasets have shown that screening AF with a 12-lead electrocardiogram (ECG)
during sinus rhythm (SR) is possible. However, the poor availability of these trained models and
the small size of the retrievable datasets limit its reproducibility. This study proposes an approach
to generate explainable features for detecting AF during SR with limited data. We collected 94,224
12-lead ECGs from 64,196 patients from Taipei Medical University Hospital. We selected ECGs
during SR from 213 patients before AF diagnosis and randomly selected 247 age-matched participants
without AF records as the controls. We developed a signal-processing technique, MA-UPEMD, to
isolate P waves, and quantified the spatial and temporal features using principal component analysis
and inter-lead relationships. By combining these features, the machine learning models yielded AUC
of 0.64. We showed that, even with this limited dataset, the P wave, representing atrial electrical
activity, is depicted by our proposed approach. The extracted features performed better than the
bandpass filter-extracted P waves and deep neural network model. We provided a physiologically
explainable and reproducible approach for classifying patients with AF during SR.

Keywords: atrial fibrillation; cardiovascular disease diagnosis; inter-lead dispersion; empirical mode
decomposition; signal processing; machine learning; spike; impulse noise; physiological time series

1. Introduction

Atrial fibrillation (AF) is the most common arrhythmia with an estimated prevalence
of 1–4% in the general population [1]. Adults with AF have a 5-fold greater risk for stroke,
1.5-fold greater risk for all-cause mortality, increased risk of development and mortality
from heart failure, and a higher risk for dementia [2–4]. Independent of other associated

J. Pers. Med. 2022, 12, 1608. https://doi.org/10.3390/jpm12101608 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm12101608
https://doi.org/10.3390/jpm12101608
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0002-6847-3272
https://orcid.org/0000-0002-3541-5834
https://orcid.org/0000-0001-6261-8509
https://orcid.org/0000-0003-2630-4945
https://doi.org/10.3390/jpm12101608
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm12101608?type=check_update&version=2


J. Pers. Med. 2022, 12, 1608 2 of 17

cardiovascular conditions, the quality of life of patients with AF is impaired [5]. The
diagnosis of AF requires an electrocardiogram (ECG) to document the typical AF rhythm.
For potential patients with AF symptoms, general procedures in hospitals usually involve
an ECG Holter device that would be brought back home and used to record for >24 h [6,7].
The recent development of wearable devices with dry electrodes that enable patients to
start recording only when symptoms occur [8,9] is another solution. However, some
patients with AF go undiagnosed owing to the asymptomatic (‘silent AF’) and paroxysmal
occurrence of AF [10]. Identifying and determining potential AF in patients during sinus
rhythm (SR) in regular 12-lead ECG examinations is crucial and beneficial for further
systematic screening.

There has been increasing evidence showing structural changes that occur in the atrium
before AF development [11], and these structural changes may be reflected on the 12-lead
ECG. Indeed, developing an artificial intelligence (AI) to either classify paroxysmal AF in
SR or predict the risk of AF before its occurrence is reportedly possible [12–15]. However,
these AI models are deep learning (DL)-based and trained on unpublished, large patient
databases, and the trained model is not publicly accessible, limiting its reproducibility and
clinical application. Additionally, the critical features contributing to AF risk are not clearly
identified using the AI model. Even though a recent study [14] used salient mapping to
highlight the most sensitive area in the ECG waveform that contributes the most to the
prediction, the results highlighted the entire P wave (and part of the ST-segment), which
does not provide further information regarding spatial and structural abnormalities from
the informative 12-lead signal.

In this study, we propose a feature-based machine learning (ML) model that provides
explainable results and can be trained on an achievable database size. The major challenge
in identifying AF features is the non-prominent P waves on ECGs. Therefore, we developed
a method to isolate P waves from ECG and formulated P wave-related features that are free
from interference from QRS complexes. We then trained a ML model with these features
using a database containing approximately 230 untreated patients with pre-diagnostic
symptoms. We hypothesized that (1) without any drug interference, abnormalities occur in
the 12-lead ECG signal within 90 days before AF diagnosis, (2) with a limited number of
available data recordings, feature-based ML models exhibit better performance than DL
models, and (3) in feature-based ML models, preprocessing of an ECG signal is a crucial
step in deriving reliable features for better ML performance.

2. Materials and Methods
2.1. Subject Selection

We included all digitally available standard 10 s 12-lead ECG recordings from the
Taipei Medical University Hospital between 29 January 2015 and 7 March 2020. A total
of 94,224 digital ECG recordings from 64,196 patients were collected and de-identified.
All ECGs were recorded in the supine position at a sampling rate of 500 Hz. Trained
cardiologists labeled all recordings. The Taipei Medical University Hospital Review Board
waived the requirement for informed consent.

To select the recordings that will be used to identify the characteristics of potential AF
during SR, we identified patients who had at least one AF rhythm in these ECG recordings.
Many patients underwent multiple recordings during the study period. To maintain the
time dependence of the AF instance, we defined a collection window of 90-days prior to the
first AF incident. We considered only ECG recordings marked as SR, and 287 recordings
from 213 patients were selected according to these criteria. The last ECG recorded for each
patient was included in the analysis (Figure 1).
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Figure 1. Patient selection for the AF and control groups.

Subjects in the control group were selected based on the following criteria: (1) each
patient had at least two normal sinus ECG measurements; the interval between the first
and second ECG was 2–6 months, (2) all ECG recordings from the same patient were SR,
(3) patients had no ICD (International Classification of Diseases) 10 code of AF in their
electronic medical record, and (4) subjects aged 50 years and older. A total of 6605 subjects
met these criteria. To avoid the effect of age on ECG features, we used stratified sampling
to ensure a similar age distribution between the AF and control groups. We set up age
groups using a 10-year age bin. Within each age bin, we randomly sampled control subjects
twice in the number of the AF group. This results in 580 participants in the control group.
After the patient list was determined, the first ECG recording for each patient was chosen
for analysis. However, we found that many of the ECGs contained strong artifacts that
may affect the results and thus removed these ECGs. Finally, the total number of available
ECGs was 247. The average age was 75.6 years (standard deviation (SD) = 12.7) in our AF
group and 76.7 years (SD = 10.3) in our control group.

2.2. ECG Signal Processing

The scheme used in this study comprised signal processing, feature extraction, and
statistical analysis. A complete flowchart of this study is shown in Figure 2. The details of
each step are provided below. Signal processing and feature extraction were performed
using MATLAB (v2021b) with previously developed scripts for MA-EMD (minimum-
arclength uniform phase empirical mode decomposition) [16] and fast EMD [17].

2.2.1. Noise Filtering

The ECGs were resampled at 500 Hz. First, we filtered the baseline wonder using
discrete wavelet decomposition. The ECG was decomposed with a Symlet 10 wavelet at
level 8. The eighth approximate coefficient was set to zero to remove the low-frequency
component. The filtered signal was then reconstructed using inverse wavelet transform.
Subsequently, a high-pass filter with a cut-off frequency of 32 Hz was applied. Some of
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the devices encountered artifacts in the first or last 0.5 s; these artifacts were removed.
Therefore, the length of the ECG recordings available for analysis ranged from 6.6 to 10.9 s.

Figure 2. Flowchart of ECG processing and feature extraction in this study.

2.2.2. ECG Delineation

To identify critical points on the ECG for later extraction of the P wave and other
morphological ECG features, we used an open-source QRS detector and waveform limit
locator, ECGPUWAVE [18], which has excellent performance for P wave and QRS detection.
The Q-, R-, and S-waves and the onset and offset of the P waves were identified for
further processing.

2.2.3. P Wave Extraction Using Minimum-Arclength Uniform Phase Empirical Mode
Decomposition (MA-UPEMD)

The P wave of an ECG reflects electrical activity originating from the atrium. Thus, in
this study, we aimed to extract features from P waves. However, when applying feature
extraction analysis, the results are easily influenced by the QRS and T waves, which
dominate the ECG in amplitude and time, respectively. Therefore, we propose a novel
algorithm to isolate P waves from the ECG such that the extracted feature is dependent only
on the P wave. We introduced the MA-UPEMD algorithm, which can separate impulse-like
noises (spikes) in a signal at a precise time and frequency range. Here, we propose a
two-step algorithm. The first step involves removal of the QRS wave, which has a wide
frequency spectrum and is spatially close to the P wave. In the second step, the P wave is
further separated from the T wave using a similar technique.

MA-UPEMD is a modification of our previously developed MAMA-EMD (minimum-
arclength masking EMD) [16] that replaces the masking method in EMD (empirical mode
decomposition) [19] with uniform-phase method [20]. In brief, EMD is an adaptive, non-
linear, data-driven filter that decomposes a time series into several frequency-limited
components called intrinsic mode functions, and in this algorithm, extrema are used to
generate the mean of the upper/lower envelope depicting the low-frequency components
in the signal; therefore, the extrema distribution determines the frequency response of
the filter [21,22]. UP-EMD (uniform-phase EMD) improves spatial homogeneity of the
frequency response by adding a set of sinusoidal signals (masking signals) of the same
amplitude and frequency, but with phases uniformly distributed within 2π at each of the
realizations; it has been shown to resolve mode splitting and residual noise [20]. Figure 3a
shows an ECG signal, the sinusoid signal of one of the phases, and a summation of these
two signals. However, an impulse-like spike (such as a QRS wave) has a wide frequency
spectrum. The UP-EMD filters only the high-frequency component of the spike. Thus, we
further introduce the minimum arclength criterion on the spike, which allows a spatial-
specific filtering effect. With this minimum arclength criterion, a replacement is found for
the extrema on the spike by minimizing the arclength of the envelope during the envelope
depicting procedure (Figure 3b). In this manner, an impulse-like spike can be isolated from
the signal.
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We briefly describe the abovementioned steps in Figure 3. We took the averaged beat
of each lead by aligning the beats with their R-peak positions (Figure 3a). Each patient then
had a 1 s by 12-lead ECG wave matrix. MA-UPEMD was then performed on the averaged
beat of each lead. The first MA-UPEMD was applied to remove the QRS wave from the
ECG (Figure 3a,b); the sinusoids in UP-EMD were 30 Hz in frequency, the amplitude was
0.04, and the number of phases was four. The minimum arclength criterion was applied to
the QRS points (Figure 3b). After performing MA-UPEMD, we derived a QRS-free ECG
signal (Figure 3c) with P and T waves. The remaining P and T waves still encountered
serious baseline drifts. Since we aimed to preserve the intact waveform of the P wave, we
did not use Fourier-based linear filters and instead performed another MA-UPEMD. In this
case, the P wave was the target for the minimum arclength criterion, and the frequency of
the added sinusoid was 10 Hz, with an amplitude of 0.02 and four realizations. As a result,
we isolated the P wave of the averaged beat for each of the 12 leads (Figure 3d,e).

2.2.4. P Wave Extraction Using Bandpass Filter

To further demonstrate the superiority of our proposed method of P wave extraction,
we used a conventional bandpass filter to extract P waves. After the same process of noise
filtering, R-peak detection was implemented for beat alignment. The signal was filtered
using a 4th-order Butterworth bandpass filter with a frequency range of 0.5–8 Hz, which
was considered to be the frequency band of the P wave. After filtering, we aligned the beats
using the original R-peak position and averaged all the beats in the same channel. The
entire process of the bandpass filter method is shown in Figure 4. After P wave extraction
using a bandpass filter, the same feature extraction was performed, and the ML models
were trained separately on the features derived from the bandpass filter to compare the
differences in performance.

2.3. Feature Extraction
2.3.1. ECG Morphology Features

Conventional ECG morphological features were calculated from the ECG critical
points detected using ECGPUWAVE [18]. Owing to collinearity, we chose the leads with
the largest R amplitude among the limb and chest leads, and the morphological features
were extracted on the averaged beat of the two chosen leads. The positions of the ECG
critical points include the peak, onset, and offset of the P wave; onset and offset of the QRS
complex; Q, R, and S waves; and the peak, onset, and offset of the T wave. The four types
of ECG morphological features are defined below:

1. Wave amplitude: the amplitudes of the P, Q, S, and T waves were defined by their peaks.
2. P duration: we calculated the duration of the P wave as the time between onset

and offset.
3. Intervals: traditionally, ECG features are calculated and include the duration between

P-onset and R-onset (PR interval), that between Q onset and J point (QRS duration),
and that between Q onset and T offset (QT interval).

4. ST-voltage: the height of the ECG segment between the J point and T onset, which
is usually used for the diagnosis of myocardial infarction, was used. The average
voltage between the two points was calculated (STvol_R).

2.3.2. P Wave Projection by Principal Component Analysis (PCA)

To analyze the depolarization route of the atrium, we projected the 12-lead ECG
onto a three-dimensional (3D) vector space spanned by the principal component (PC) of
the ECG (Figure 5). This transformation can project the depolarization route better than
traditional vectorcardiogram transforms because each participant has a unique P wave
axis. This projection method has been used on the QRS complex to distinguish patients
with arrhythmogenic right ventricular cardiomyopathy [23]. Here, we applied the same
technique to the P wave-extracted ECG. We constructed the P wave matrix (Xnx8) using
eight of the 12 leads (I, II, V1, V2, V3, V4, V5, and V6) with n observations (n = 500 points,
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1 s), and decomposed the correlation matrix (XTX) using PCA. The first three PCs—PC1,
PC2, and PC3—account for 99% of the total variance and are representative of the route
and variation of the P-loop. The weights of PC1, PC2, and PC3 (the eigenvalues) were
included as a P wave feature from PCA (i.e., PC1w, PC2w, and PC3w).

2.3.3. P-Loop Descriptors

Subsequently, the previously developed QRS-loop descriptors were applied to the
P-loop. First, we took the Fourier transforms of PC1, PC2, and PC3, and calculated the ratio
between the total power in these two frequency bands—20–50 Hz and 1–20 Hz (r2050_PC1,
r2050_PC2, and r2050_PC3). Second, we calculated the area and length of the P-loop on the
two-dimensional plane expanded by PC1 and PC2 (Figure 6). The minimum rectangle that
encompasses the P-loop was divided into N cells (N = 4900 in this study) of equal size. The
P-loop area (LoopArea) was defined as the percentage of cells inside the P-loop. This area
represents the regularity of the loop and is reduced when convex and concave components
exist in the loop. The P-loop length (LoopLength) was calculated as the total number of
cells passing through the route. An increase in the P-loop length indicates the dispersion or
inhomogeneity of the route. We also calculated the length-to-area ratio, which represents
the roughness of the P trajectory.

2.3.4. Inter-Lead P Wave Dispersion

We also measured the dissimilarity of the P-loop between patients with potential AF
and normal individuals by analyzing inter-lead relationships. This was previously used in
the QRS loop and was named the inter-lead QRS dispersion [23]. In this study, we applied
the same concept to the P wave method. In the new 3D vector space of PCA, each lead
was mapped to a vector in the new orthogonal axes constructed by the first three PCs. We
calculated the angles between each pair of the reconstructed vectors (Figure 7). A smaller
angle indicated spatially closer vectors and vice versa. The differences in angles between
the AF and normal groups represent a change in the inter-lead relationship, which indicates
a shape distortion in the P-loop.

2.4. Classification of Patients with AF
2.4.1. ML Model in AF Prediction

To understand the predictability of these features, we performed classifications using
ML models, including support-vector machine (SVM), random forest, perception, and
extreme gradient boosting (XGBoost). We combined all 56 features (Table 1), including one
P wave feature, (P wave duration); 18 morphological features (amplitudes of the P, Q, R,
S, and T waves for the chest and limb leads; PR, QRS, QT, and ST intervals for the chest
and limb leads); P loop area, length, and area/length ratio (three features); the weights of
the first three PCs of the P loop (three features); inter-lead P wave dispersion for each pair
of the 12 leads (28 features); and total power in the 20–50 Hz frequency band in the three
PCs (three features). Furthermore, features with >90% of the data missing were dropped
before the model training. Dropped features include the amplitude of Q and S waves for
limb leads, amplitude of P, Q, and S waves, and PR interval for chest leads (six features).
The final feature space contained 50 features. All missing values were imputed using the
median of the features in the training data, and all features were z-score normalized.

Since P waves are considered the most important feature in clinical diagnosis for
atrium-related diseases, we also performed ML classification using two features: P wave
amplitude and duration for comparison.
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Figure 3. P wave isolation by applying the MA-UPEMD method. (a) The first step in MA-UPEMD: a
sinusoid signal is added on the input signal, resulting in a masked signal. (b) Plots demonstrating
one of the sifting iterations in MA-UPEMD. UPEMD is applied with the minimum arclength criterion
on the QRS peaks. Specifically, when interpolating the spline for upper and lower envelope, the knots
for Q, R, and S peaks (o) are replaced with new knots found by applying the minimum arclength
criterion (*). After taking the mean of the upper and lower envelopes, the P and T waves are derived
(purple). Subtracting this mean gives the QRS wave (black). This is only one sifting for one phase in
MA-UPEMD. The process is repeated four times with different uniform phases to derive the mean
signal with only P and T waves (c). Then, the same MA-UPEMD is applied again on the signal with P
and T waves, with P wave as the spike to be separated. This results in the delineated baseline wonder
and T wave (purple) in (d) and the extracted P wave (red) in (e).
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Figure 4. P wave extraction using the bandpass filter method.

Figure 5. The PCA transform for eight of the 12 leads. (a) The eight channels for PCA transform
(b) The 3 PCs—PC1, PC2, and PC2, respectively. (c) The three-dimensional space constructed by the
new eigen space. The trajectory is defined by the three PCs in (b). Note that only the P wave is used
when calculating the transformation matrix in PCA. The QRS and T waves in (b,c) are projected by the
same matrix constructed by P wave and are only for demonstrating the relative position of the P wave.
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Figure 6. The P-loop descriptor by PC1 and PC2. The number of grey cells is the loop length, while
the number of white cells inside the loop is the loop area.

Figure 7. The inter-lead correlation of the P-loop by PC1, PC2 and PC3. The left panel is an example
from a control subject and the right panel is an example from a patient in the AF group.

Four types of ML classifiers were used to classify the AF: SVM, perceptron, random
forest, and XGBoost. The SVM projects the samples to a high-dimensional space with
a kernel function and maximizes the gaps between the groups in the space. Here, we
used the radial basis function as the kernel function. A perceptron is the simplest artificial
neural network with no hidden layers. Random forest and XGBoost are both ensemble
learning methods based on decision trees. The random forest uses “bagging” methods (i.e.,
bootstrap subsamples of the whole population and a portion of the features) to generate
multiple classification trees, and the final decision is the aggregation of all trees. XGBoost
is the “boosting” approach of ensembled decision trees. Unlike random forest, which
trains decision trees in parallel, gradient boosting trees build trees sequentially by placing
more weight on the misclassified samples of the previous tree, and the final decision is
the weighted summation of all the trees. All ML were performed using Python (version
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3.6.9) with package scikit-learn 1.0.2 [24] for the SVM, perceptron, and random forest, and
package xgboost (version 1.6.2) for XGBoost.

For model training and evaluation, the data were split into two sets: 80% of the data
were in the training set, and 20% were in the holdout testing set. The parameters of the
models were determined by grid search, using AUC (area under the receiver-operator
curve) as a metric and training with 10-fold cross validation. To compare the different
models, AUC, accuracy, sensitivity, specificity, precision, and F1 score were used to evaluate
the performance of the selected models on the testing set.

Table 1. List of features used in the machine learning models.

Feature Feature Name Description

P Wave P_dur P wave duration.

Morphology

L_AMP_X, C_AMP_X
X may be P, Q, R, S, or T

Mean of P, Q, R, S, or T wave amplitude on
limb leads and chest leads.

L_T_X, C_T_X
X: PR, QRS or QT

Mean of PR, QRS, or QT interval on limb leads
and chest leads.

L_STvol_R, C_STvol_R Average voltage of ST segment on limb leads
and chest leads.

Principal component PC1w, PC2w, PC3w Weight of eigenvalues from PC1, PC2 and PC3.

Inter-lead P wave dispersion

I_II, II_V1, V1_V2, V2_V3, V3_V4, V4_V5, V5_V6,
I_V1, II_V2, V1_V3, V2_V4, V3_V5, V4_V6, I_V2,
II_V3, V1_V4, V2_V5, V3_V6, I_V3, II_V4, V1_V5,

V2_V6, I_V4, II_V5, V1_V6, I_V5, II_V6, I_V6

P-loop angle between two leads.

Loop analysis
LoopArea Area of P-loop.

LoopLength Length of P-loop
LAratio Ratio of P-loop length and area

Frequency analysis r2050_PC1, r2050_PC2, r2050_PC3 The ratio between the total power in frequency
bands 20–50 Hz and 1–20 Hz

2.4.2. Feature Importance

One of the greatest advantages of feature-based ML is its explanatory ability. To
identify the most important features in predicting AF, we derived the Shapley additive
explanations (SHAP) [25] feature importance values using the open source python package
SHAP. The program first calculated the Shapley values of the features of each instance
in the dataset. Based on the coalitional game theory, the Shapley value of a feature (i.e.,
local feature importance) can be derived from the marginal contribution to the prediction
(probability of AF, in our case) when adding the selected feature to the model with all other
feature values randomly assigned. The SHAP value for global feature importance is then
defined as the average absolute Shapley values per feature across the data. This SHAP
value is different from the feature importance derived for tree-based classifiers (XGBoost
or random forest) and can be calculated for all classifiers, including perceptron, SVM,
XGBoost, and random forest.

2.4.3. Comparison with DL

To compare the performance of feature-based ML and end-to-end DL, we constructed
a convolutional neural network (CNN). Owing to the small dataset in our study, instead
of constructing a complicated model, a relatively simple structure was constructed to
prevent the model from overfitting (Supplementary Figure S1). The input of the network
is ECG signals with an input shape (5000, 12), meaning 5000 samples with 12 leads. The
CNN model comprises two convolutional blocks, each of which is composed of a one-
dimensional convolutional layer and a max-pooling layer with a pooling size of two. For
the convolutional layers, the ReLU activation function was adopted with a filter length of
five, starting with 16 filters in the first block and increasing to 32 filters in the second block.
Following the two convolutional blocks for temporal feature extraction was a dropout
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layer with a dropout rate of 0.2. Then, a fully connected layer with 16 neurons was used
to connect the spatial leads with the ReLU activation function and a dropout layer with a
dropout rate of 0.5. These convolutional blocks and fully connected layers were used to
combine the temporal and spatial information in the input 12-lead signals. We then used a
dense layer to incorporate this information. Finally, the output layer of the network was a
dense layer with a sigmoid function used to predict the probability of AF occurrence. The
model was optimized using the Adam optimizer with a learning rate of 10−5 to minimize
binary cross-entropy. The validation set was used to test the performance of the model
after each epoch and for hyperparameter tuning. The CNN model was developed using
Keras (version 2.4.0) with TensorFlow (version 2.4.1) backend in Python (version 3.6.9).

3. Results
3.1. Comparison of P Wave Signals Extracted by MA-UPEMD and Band-Pass Filter

To evaluate our proposed method for P wave extraction, the conventionally used
bandpass-filtered method was also applied to the signal and compared in our study. The
proposed method preserved more detailed fluctuations of the P wave than the bandpass-
filtered signal (Figure 8a). In addition, the spectrograms of the P wave signal were derived
using continuous wavelet transform to observe whether the P wave could be independently
isolated in both the time and frequency domains (Figure 8b–d) by the two methods. The
time-frequency representation of the R wave is a triangular mask across both the low- and
high-frequency bands (Figure 8b). For such a wide-band waveform, the leakage of the R
wave could not be removed using the conventional bandpass filter method. Furthermore,
the P wave form was compromised and distorted by the leakage of the adjacent R wave
owing to the undesired frequency response of the bandpass filter (Figure 8d). In contrast,
the MA-UPEMD method largely prevented the leakage of the R wave and kept the P wave
feature unharmed (Figure 8c).

3.2. Prediction of AF Using Different P Wave Extraction and ML Models

Table 2 shows the evaluation results of all selected models. All the scores were
reported with a probability threshold selected using the Youden index on the training
set (i.e., maximizing the sum of sensitivity and specificity). Among all the models, the
perceptron achieved the highest AUC (0.64) (Table 2, Figure 9), with an F1-score of 0.61. The
model had moderate specificity (0.71) but low sensitivity (0.47). Compared to the bandpass
filter-derived P waves, whose highest F1 was 0.60 and AUC was 0.63, our proposed method
improved the F1 score by 1%, AUC by 1%, and sensitivity by 7%.

Furthermore, the performance of the CNN, which was trained directly on the raw
signal, was also not better than that of our proposed methods. The CNN model only gave
an F1 score of 0.53 (Table 2), with an AUC of 0.51. Lower sensitivity (0.57) and specificity
(0.52) were also obtained from the CNN model.

Table 2. Performance of the ML models on the holdout testing set.

Model Method AUC Accuracy Sensitivity Specificity Precision F1

SVM
MA-UPEMD 0.61 0.58 0.67 0.51 0.55 0.60

BP-filter 0.61 0.55 0.62 0.49 0.51 0.56

Random forest
MA-UPEMD 0.63 0.59 0.57 0.61 0.56 0.56

BP-filter 0.63 0.60 0.64 0.57 0.56 0.60

XGBoost
MA-UPEMD 0.63 0.62 0.48 0.74 0.61 0.53

BP-filter 0.62 0.50 0.50 0.50 0.46 0.48

Perceptron MA-UPEMD 0.64 0.58 0.71 0.47 0.54 0.61
BP-filter 0.54 0.51 0.50 0.51 0.47 0.48

CNN 0.51 0.54 0.57 0.52 0.50 0.53
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3.3. Classification with Only P Wave Amplitude and Duration

Table 3 and Figure 10 present the results for these ML classifiers with only the P
wave amplitude and duration as inputs. All four classifiers gave an AUC < 0.56 and an
F1-score < 0.57, both of which are lesser than those gotten when using all the features
we derived.

Figure 8. Comparison of P wave signals of the same ECG extracted by MA-UPEMD and the bandpass
filter method in the time domain (a) and their corresponding time-frequency representations (b–d).
The adjacent R wave, which has a wide frequency band as shown in (b), introduces power leakage in
the bandpass filter method (d). In contrast, MA-UPEMD separates the R wave at a precise time and
frequency range, and thus better preserves the P wave.

3.4. Feature Importance

We further checked the SHAP feature importance values derived from the best model,
perceptron, and the top ten features that contributed to the model are listed in Figure 11.
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The SHAP summary plot showing the relationship between the value of each feature and
its impact on AF probability (positive/negative) is shown in Supplementary Figure S2. In
these models, the P wave angle between leads II and V4 (II_V4) was the most important,
followed by the angle between leads V3 and V5 (V3_V5). The third important feature was
the P wave duration (P_dur). Specifically, larger angles between leads II and V4; leads V3
and V5; and longer P wave duration contribute to a higher risk in AF (Figure S2).

Figure 9. ROC curve and the optimal operating point of machine learning classifiers for AF prediction
on the testing dataset. This figure shows the ROCAUC of SVM, random forest (RF), XGBoost (XGB),
and perceptron classifiers using (a). features extracted with the proposed method (b). features
extracted with the bandpass filter method.

Table 3. Performance of the ML models on the holdout testing set with only P wave amplitude and duration.

Model AUC Accuracy Sensitivity Specificity Precision F1

SVM 0.56 0.56 0.52 0.59 0.52 0.52
Random forest 0.50 0.48 0.43 0.53 0.44 0.43

XGBoost 0.53 0.59 0.43 0.74 0.58 0.49
Perceptron 0.55 0.56 0.62 0.51 0.52 0.57

Figure 10. ROC curve and the optimal operating point of different machine learning classifiers (SVM,
random forest (RF), XGBoost (XGB)) with P wave amplitude and duration.
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Figure 11. The top ten features that contribute the most SHAP feature importance in perceptron
model. The abbreviations of feature names are explained in Table 1.

4. Discussion

In this study, we developed an algorithm called MA-UPEMD to isolate P waves from
12-lead ECG recordings. With the features quantifying the temporal and spatial alterations
of the P wave, the ML models achieved an AUC of 0.64. This shows that, first, without
any drug effects, there are abnormalities in the 12-lead ECG for identifying potential AF
in patients during SR, even among age-matched normal controls. Second, comparing the
results of feature-based ML and DL, we found that ML performed better in this limited
number of patients in the database and provided explainable results for clinical inferences.
Third, the feature extraction step in ML further highlighted the importance of signal
preprocessing. Comparing the results of MA-UPEMD and the bandpass filter, the proposed
MA-UPEMD better depicted the P waveforms and resulted in higher classification scores.

Our perceptron model gives an AUC of 0.64, a specificity of 0.47, a sensitivity of
0.71, and a precision of 0.54, maximizing the sum of sensitivity and specificity, that is, the
Youden index. Note that this cutoff can be adaptively changed according to the application
scenario. For example, one can have a cutoff for higher sensitivity but lower precision
as a pre-screening step to identify more potential patients. Then, a 24 h Holter or wrist-
worn ECG event recorder can be provided for the patient. A recently published example
is the optical-based irregular pulse notification algorithm of a smart watch proposed by
Apple [26]. The algorithm provided a low precision of 0.34, thus achieving a high sensitivity
of 0.84. Considering the high risks and burden of stroke in patients with AF [27,28], early
identification of potential patients can be performed with a low-cost 12-lead ECG device
for further anticoagulation treatment.

We also showed that with limited samples in the database, a feature-based ML model
performed better than the DL model. Thus, preprocessing the signal and deriving physio-
logically meaningful features are crucial to the final performance of classifiers. We proposed
several features (adapted from the previously published QRS inter-lead analysis [23]) to
quantify the abnormality of the atrial activity from this extracted P wave, including the
weights of each PC, the angles between each pair of leads when projecting onto the PCs,
and the loop length and distance of the P wave. These features contributed significantly
to the ML models and increased the classification AUC compared with those using only
P wave duration and amplitude (AUC = 0.56 using P wave duration and amplitude;
AUC = 0.64 using all features). Specifically, the angles between leads II and V4 and leads
V3 and V5 are the top two important features (a larger value indicating higher AF risk).
The larger angles in these two pairs of leads are indications of distortion of the electrical
conduction, which may be due to abnormal atrial structure or triggers [29]. In addition,
the P wave duration ranked the third important feature in our model, with a larger value
indicating higher AF risk. The prolonged P wave duration, which results from enlarged
atria or atrial heterogeneity, is known to be associated with AF [30]. However, the P wave
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duration alone does not provide sufficient predictability in our results. This highlights the
significance of our proposed features.

Given the moderate AUC and accuracy of our ML on this small dataset, our findings
showed limited power for the proposed features in detecting patients with AF during
sinus rhythm. Since the pathology of AF involves fibrosis of any part of the atria, a single
source of abnormality or single-lead distortion may be under-detected by our features
which perform PCA on all leads and analyze inter-lead relationships. Several studies using
deep convolutional neural network models on each lead have detected subtle changes
in the early stages of AF. These deep convolutional neural network models (DNN) were
trained with large databases containing >650,000 ECG recordings, providing a holistic and
comprehensive view of the pathology of AF and therefore reaching an AUC > 0.8 [12–14].
Note that the DNN model performance varies according to sex, age, and ethnic groups [12]
and decreases when transferring databases [14]. Building a model with high performance
for clinical use requires expanding the database on the target population as well as a data-
efficient architecture/approach reflecting the pathology of the target disease to maximize
the available data. Considering the difficulties in data collection in biomedical science, our
explainable ML model, which underlies the key features in AF detection, may also provide
a reference for constructing models with higher efficiency and accuracy.

5. Limitations

Our study has some limitations. First, the ECGs were collected from patients visiting
Taipei Medical University Hospital for clinics or inpatient care; the prevalence of AF (3.5%)
in our study population was higher than the prevalence of approximately 1.07% in the
general population [31]. Second, although we only selected ECG records obtained within
three months prior to AF diagnosis, patients may have had various unknown lengths of AF,
which further increases the variability in our data. Third, we chose age-matched patients
as controls so that the trained models depicted abnormalities resulting merely from AF
and not from aging. This restricts the applicability of our results to general populations
with younger ages. Including younger patients might increase the AUC/accuracy and give
a seemingly better model performance due to high specificity in the young population.
Indeed, a preliminary result including younger patients in the control group from the same
cohort increased the AUC to approximately 0.8 (unpublished data). However, our study
focused on a population with a higher risk for AF due to more explainable differences in
features and realistic scenarios. Furthermore, given the prevalence of AF in the population
aged >65 years, some patients in our control group may have also had paroxysmal AF,
which was not detected in all visits. Finally, the higher chance of AF occurrence predicted
by the ML model does not justify anticoagulation or antiarrhythmic therapy, at least until
now. Once a high-risk patient is identified, AF can be confirmed by long-term monitoring
using conventional wearable devices [9,32], and the risk of stroke can be further evaluated
by CHA2DS2-VASc Score or AF burden.

6. Conclusions

In conclusion, our study showed that with appropriate preprocessing and feature
extraction, constructing a model on a limited database to identify potential AF in patients
is possible. The proposed methods in this study provide physiologically explainable
differences in the disease, work on a database of sizes that can be reproduced by regional
hospitals and may serve as a reference for more sophisticated and efficient classification
models. However, the accuracy of our proposed model is limited. Clinical diagnosis of
AF should be performed with long-term monitoring before treatment. Nevertheless, our
findings provide critical proof-of-concept evidence for unique information that might aid
in identifying paroxysmal AF and should be further tested in different age groups, centers,
and populations.
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study; Figure S2: SHAP summary plot showing the relationship between the value of each feature
and the impact on AF probability.
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