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Abstract: Background: The application of Machine Learning (ML) to genetic individual-level data 

represents a foreseeable advancement for the field, which is still in its infancy. Here, we aimed to 

evaluate the feasibility and accuracy of an ML-based model for disease risk prediction applied to 

Primary Biliary Cholangitis (PBC). Methods: Genome-wide significant variants identified in sub-

jects of European ancestry in the recently released second international meta-analysis of GWAS in 

PBC were used as input data. Quality-checked, individual genomic data from two Italian cohorts 

were used. The ML included the following steps: import of genotype and phenotype data, genetic 

variant selection, supervised classification of PBC by genotype, generation of “if-then” rules for 

disease prediction by logic learning machine (LLM), and model validation in a different cohort. 

Results: The training cohort included 1345 individuals: 444 were PBC cases and 901 were healthy 

controls. After pre-processing, 41,899 variants entered the analysis. Several configurations of pa-

rameters related to feature selection were simulated. The best LLM model reached an Accuracy of 

71.7%, a Matthews correlation coefficient of 0.29, a Youden’s value of 0.21, a Sensitivity of 0.28, a 

Specificity of 0.93, a Positive Predictive Value of 0.66, and a Negative Predictive Value of 0.72. 

Thirty-eight rules were generated. The rule with the highest covering (19.14) included the following 

genes: RIN3, KANSL1, TIMMDC1, TNPO3. The validation cohort included 834 individuals: 255 

cases and 579 controls. By applying the ruleset derived in the training cohort, the Area under the 

Curve of the model was 0.73. Conclusions: This study represents the first illustration of an ML 

model applied to common variants associated with PBC. Our approach is computationally feasible, 

leverages individual-level data to generate intelligible rules, and can be used for disease prediction 

in at-risk individuals. 
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1. Introduction 

Precision medicine aims to tailor diagnosis, follow-up, and management of individ-

uals based on their genetic and environmental background. Several excellent examples of 

precision medicine have been produced in the field of cancer and cardiovascular medicine 

[1,2], while rare liver diseases lag behind. 

PBC is a rare disease of the small biliary ducts of the liver [3], characterized by an 

autoimmune pathogenesis and a strong genetic predisposition, with major histocompati-

bility complex (MHC) class-II haplotypes and non-MHC loci contributing to the genetic 

risk [3,4]. Applications of precision medicine in PBC are lacking, likely because it is a com-

plex trait, with dozens of variants participating in the genetic architecture of the disease 

with a small contribution [3], and also a rare disease, making it more difficult to recruit 

sufficiently large cohorts for genotyping [5]. 

Thanks to the establishment of national and international consortia, several genome-

wide association studies (GWAS) and two meta-analyses have been published so far, as-

sociating 57 variants with PBC [3,6]. The polygenic architecture of the disease, together 

with the high levels of heritability [3] represent a solid rationale to develop polygenic risk 

scores (PRSs). PRSs assume that each variant has a linear additive effect on disease [7]; 

yet, many authors have suggested that PRSs may be limited by their reliance on linear 

regression [1,8].  

Machine learning (ML) algorithms can be trained to model the genetic risk of a com-

plex trait, with theoretical advantages related to their ability to handle high-dimensional 

data by nonlinear effects applied to individual level data [8,9]. ML algorithms can take 

advantage of prior information—that can be added to a model to train it more effec-

tively—or employ minimal a priori assumptions about the nature of the genetic effects 

being modelled, potentially also taking into account gene-gene interactions [8,10]. 

The aim of this study was to evaluate the feasibility and accuracy of an ML-based 

model for genetic risk prediction of PBC using genome-wide significant variants identi-

fied in subjects of European ancestry in the recently published international meta-analysis 

of GWAS in PBC [6]. 

2. Materials, Methods, and Participants 

2.1. Study Design and Participants  

All cases met internationally accepted criteria for PBC [11]. The training cohort (here-

after referred as “PRE-RUN”) was composed of 1345 individuals of Italian ancestry: 444 

PBC cases and 901 healthy controls; 515 were males and 830 females [6]. The validation 

cohort (“RUN”) was made up of 834 individuals of Italian ancestry: 255 cases and 579 

controls; 335 were males and 499 females [6]. 

This study included quality-checked, imputed genotype data derived from the re-

cently published international meta-analysis [6]. For a detailed description of the cohorts 

under analysis, we referred to the methods sections of the meta-analysis by Cordell et al. 

[6], where the time span of data collection, the collection site and setting, relevant popu-

lation characteristics, and any inclusion or exclusion criteria used in original studies can 

be retrieved. 

2.2. Patient Privacy and Ethical Issues 

All participants gave written informed consent for genetic studies. The methods were 

performed in accordance with relevant guidelines and regulations and approved by San 

Paolo Hospital. The research conformed to the ethical guidelines of the 1975 Declaration 

of Helsinki. The protocol was approved by each participating centre in accordance with 

local regulations [6]. As far as the application of ML to clinical data, the Rulex proprietary 

software used in this work is compliant with the strictest data privacy regulations, such 

as the European Union’s General Data Protection Regulation (GDPR). GDPR allows auto-

mated ML predictions only if a clear explanation of the logic used to make each decision 
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is provided, which is difficult with black box models. This section of methods adheres to 

the guidelines and quality criteria for artificial intelligence–based prediction models in 

healthcare [12]. A full list of the consortium members appears in the Supplementary Ma-

terial. 

2.3. Data Preprocessing 

2.3.1. Selection of Genetic Variants 

The recent international meta-analysis identified 57 loci [6] associated with PBC at 

the genome-wide level of significance in patients with European and East Asian ancestry. 

For the current study, we selected those loci at a genome-wide significant threshold in 

Europeans (p < 5 × 10−8) that were reported as more likely to be causal after fine-mapping 

strategies (Supplementary Table S3 of the meta-analysis [6]), eventually including 46 non-

Human Leukocyte Antigen (HLA) loci (Table 1).  

Table 1. Selected loci at genome-wide significant threshold in Europeans. 

Chr Gene Start End 

1 MMEL1 2,273,723 2,773,723 

1 IL12RB2 67,570,194 68,070,194 

1 CD58 116,815,083 117,315,083 

1 FCRL3 157,420,290 157,920,290 

1 DENND1B 197,530,966 198,030,966 

1 CACNA1S 200,769,059 201,269,059 

2 DNMT3A 25,264,333 25,764,333 

2 TMEM163 135,091,200 135,591,200 

2 STAT4 191,693,742 192,193,742 

3 PLCL2 16,711,265 17,211,265 

3 RARB 25,133,587 25,633,587 

3 TIMMDC1 118,969,934 119,469,934 

3 IL12A-AS1 159,410,283 159,910,283 

4 NFKB1 103,290,780 103,790,780 

4 TET2 105,878,954 106,378,954 

5 IL7R 35,631,130 36,131,130 

5 LOC285626 158,509,900 159,009,900 

6 OLIG3 137,723,068 138,223,068 

7 ITGB8 20,128,801 20,628,801 

7 ELMO1 37,132,465 37,632,465 

7 TNPO3 128,367,466 128,867,466 

7 ZC3HAV1 138,479,543 138,979,543 

9 HEMGN 100,491,912 100,991,912 

10 WDFY4 49,775,396 50,275,396 

11 DEAF1 396,986 896,986 

11 CCDC88B, 63,860,422 64,360,422 

11 POU2AF1 110,989,365 111,489,365 

11 DDX6 118,490,104 118,990,104 

12 TNFRSF1A 6,190,009 6,690,009 

12 ATXN2 111,657,431 112,157,431 

13 LINC02341 42,805,002 43,305,002 

13 DLEU1 50,561,220 51,061,220 

14 RAD51B 68,499,927 68,999,927 

14 RIN3 92,864,787 93,364,787 

14 EXOC3L4 103,314,807 103,814,807 

16 CLEC16A 10,924,365 11,424,365 

16 IL4R 27,153,469 27,653,469 

16 DPEP2 67,786,939 68,286,939 
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16 LOC105371388 85,769,271 86,269,271 

17 ZPBP2 37,794,893 38,294,893 

17 KANSL1 43,899,348 44,399,348 

18 CD226 67,276,026 67,776,026 

19 TYK2 10,225,652 10,725,652 

19 MAST3 17,985,882 18,485,882 

19 SPIB 50,676,742 51,176,742 

22 RPL3 39,490,078 39,990,078 

Total 46 23,000 kb 

Selected loci at the genome-wide significant threshold in Europeans. Second and third columns 

report coordinates of the analyzed genomic region (hg38, start and end, respectively). Abbrevia-

tions: Chr, Chromosome. To take into account the linkage disequilibrium (LD) structure of the 

regions harboring the selected loci (hence avoiding missing genetic information), for each genome-

wide significantly associated locus, a region spanning ±250 kb upstream and downstream of the 

corresponding coding sequence was considered. We hence extracted Single Nucleotide Polymor-

phism (SNP) genotype data from the imputed set of data using PLINK 1.9 [13]. 

2.3.2. Import of PLINK Files in the Rulex Environment 

Rulex is a novel ML software able to make intelligible predictive models 

(www.rulex.ai). The Logic Learning Machine (LLM) is the core machine learning algo-

rithm of Rulex (Newton, MA, USA) and represents a method of supervised data mining. 

Rather than producing a math function, the LLM produces conditional logic rules, ful-

filling the definition of explainable Artificial Intelligence (AI) [14], as opposed to deep 

learning and other “black-box” AI algorithms [15,16]. A list of published works using 

Rulex in the field of biology and medicine can be found here [17–24]. PLINK files (.map 

and .ped files) were imported into the Rulex environment by the “Import from text” op-

erator and parsed accordingly. To account for the role of HLA, we selected and extracted 

from the HLA region only the best associated SNP within each cohort (--assoc function in 

PLINK). For PRE-RUN, the top variant was chr6:32653792:A:G, while for RUN it was 

chr6:32429303:A:G. The HLA SNP was recoded as an ordinal variable as follows: homo-

zygous (AA) = 1, heterozygous (AG, GA) = 2, homozygous (GG) = 3. Sex and the pre-

selected top HLA variant were used as additional features. 

2.4. Model Development 

2.4.1. Feature Selection 

The output of the study was the variable “Status”, identifying whether a subject of 

the study was a PBC patient (case) or a control. Features with a number of mode values 

above 95% were removed by the Rulex “Fill/Clean” operator. To avoid redundancy in 

input features, where redundancy speaks for high correlation, Rulex was used to rank all 

available features versus the disease status by univariate association based on Cramer’s 

V. After this univariate ranking, all the features entered a greedy forward selection pro-

cess. Greedy forward selection is a popular technique for feature subset selection [25]. The 

main advantages of this approach are its simplicity and its computational scalability, 

which makes it applicable to many practical problems, including the most complex ones. 

The algorithm starts with an empty set of features; then, the additional feature is added 

iteratively to the set, provided that it meets a predefined performance measure. 

At each step, the selected feature was the one with the highest correlation with the 

output, provided that its correlation with any of the already selected inputs did not exceed 

a threshold value, t. In this way, the landscape of input features was filtered only based 

on direct correlations (between the input features with the output and among input fea-

tures with each other). Since our aim was to avoid preliminary multivariate steps before 

LLM, we avoided the use of indicators such as the Akaike Information Criterion (AIC) 

[25], since it would implicitly introduce an auxiliary multivariate model by selecting fea-

tures according to their performance and number. 
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The second parameter that was used for tuning was the maximum number of fea-

tures, n, to be selected. The procedure terminated, and no additional features were con-

sidered for inclusion if, after a given iteration of the described greedy procedure, n fea-

tures were included. 

2.4.2. Internal Validation 

The final list of variants at the end of the feature selection process was used as input 

for the LLM operator, to build intelligible rules to predict the disease status. The Rulex 

LLM operator was nested within a process working in cross-validation classifying fea-

tures associated with the output of interest. For internal validation, LLM operated under 

a 10-fold cross-validation approach. Cross-validation involves partitioning a sample of 

data into complementary subsets, performing analyses on one subset (the training cohort) 

and validating the analyses on the other subset (the test cohort). The time for a complete 

run (from import to rules generation) was on average 2.5 h on a working station with 

64gb RAM. The output of each run of the model was a list of rules (called ruleset). A met-

rics section of the pipeline was dedicated to the evaluation of the performance of the 

rulesets in training and test cohorts. 

2.4.3. Hyperparameter Tuning 

In machine learning, a hyperparameter is a parameter whose value is used to control 

the learning process; it can be tuned to change the speed and quality of the learning pro-

cess. 

Several sets of parameters were evaluated before choosing the final optimal model. 

The parameters undergoing tuning were 

- correlation among features: three thresholds, t, based on Cramer’s V value were 

evaluated (0.7, 0.8 and 0.9); 

- number of pre-selected and selected features: several fixed combinations of thresh-

olds for pre-selected features and selected features were evaluated (Supplemen-

tary Table S1); 

- max error (errmax): errmax represents the maximum level of error for each rule 

included in the ruleset. In other words, this corresponded to the maximum per-

centage of cases belonging to output classes different from the predicted one, 

which verified the rule. 

Changes in the performance of the model after modifications of each parameter were 

evaluated based on the following metrics: Sensitivity, Specificity, Positive Predictive 

Value, Negative Predictive Value, Accuracy, Matthews coefficient, Youden’s index (defi-

nitions of the metrics are reported in the Supplementary Material). 

2.4.4. Final Model Selection and Rules Generation 

After 814 runs of the Rulex process, a full list of metrics including all hyperparame-

ters and accuracy metrics was available for choosing the best model. After choosing the 

combination that maximized the accuracy and specificity of the model, the model was re-

run with the chosen set of parameters, and the final ruleset was generated. 

The quality of each rule was then evaluated based on the following metrics specific 

to the Rulex environment: i) “Covering” is the percentage of samples belonging to the 

class described by the rule, fulfilling that specific rule; and ii) “Error” is the percentage of 

samples belonging to the other classes fulfilling that specific rule. A Feature ranking plot 

was also generated to help discriminate the most relevant features. 
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2.4.5. Haplotype Analysis 

To investigate whether Rulex LLM identified a risk haplotype, a case-control haplo-

type analysis was performed in PLINK 1.07 [26].  

2.4.6. Validation of the Model 

To further improve the robustness of our conclusions and reduce the risk of overfit-

ting, we also performed an external validation on a cohort (RUN) that was used only for 

this purpose. This cohort will be referred to as the forecast or validation cohort. 

Since the training and the forecast cohort did not include exactly the same features, 

only a fraction of the rules of the final model could be applied to the forecast cohort. To 

minimize the reduction in prediction power of the model due to this heterogeneity, we 

adopted a multi-step process. We decided not to extract a model in the training cohort 

based only on the shared features, in order to derive a single model that can be adapted 

to different forecasting cohorts, enhancing model plasticity and generalization. 

We calculated a count of the conditions present in the final ruleset but not verified in 

the forecast cohort because of missing data. Then, a frequent pattern mining auxiliary 

layer was built, leveraging the notion that many input features are highly correlated with 

each other, so that if a variant is missing, another highly correlated variant could ideally 

be retrieved [25]. More specifically, for each condition, c, the frequent pattern mining 

branch identified which conditions, among the shared ones, were the most correlated to 

c. For biological plausibility, only conditions located on the same chromosome as c and 

not more distant than 500,000 base pairs were considered as candidate conditions for re-

placement. Let us refer to the condition (among the candidate ones) that is more correlated 

to c as c’. The all-confidence score was used as a ranking metric for identifying the most 

correlated condition [27]. Rules constituting the model were adapted by substituting each 

condition c with c’, provided that the all-confidence score measuring their correlation met 

a minimum threshold of 0.9. 

Finally, the adapted ruleset was applied to the forecasting cohort. The application of 

this ruleset produced a forecast score, ranging from 0 to 1, for each of the considered in-

dividuals. For each subject, the forecast score was initialized to 0.5, and it increased or 

decreased according to the rules included in the model that the subject meets. For instance, 

if a patient verified all the rules that predicted to be a case and no rule that predicted to 

be a control, its forecast score would be 1. Conversely, if the patient verified all the rules 

that predicted to be a control and no rules that predicted to be a case, its forecast score 

would be 0. Figures 1 and 2 summarize the pipeline in the training and validation cohorts, 

respectively. 

 

Figure 1. Classification pipeline in the Rulex environment. Information is imported and parsed and 

then entered into a feature selection branch working in cross-validation. Several hyperparameters 

are evaluated, and their value can be tuned. Finally, the LLM model generates if-then rules for clas-

sification. After completing the pre-defined number of runs, the process generates a number of met-

rics, including accuracy measures and the feature ranking of attributes. Abbreviations: LLM, Logic 

Learning Machine. 
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Figure 2. Forecast pipeline in the Rulex environment. Information is imported for the validation 

cohort. The LLM model is applied to the validation cohort. The conditions that are missing in the 

validation cohort are analyzed, and a dedicated association mining algorithm operates to find in the 

training cohort new features that are present in the validation cohort and are correlated (at a prede-

fined threshold) to the missing conditions. The LLM model is then re-run in the validation cohort, 

and metrics of accuracy are calculated. Abbreviations: LLM, Logic Learning Machine. 

2.5. Statistical Analyses 

Comparisons between median scores between cases and controls were performed 

using the Wilcoxon signed-rank test. Diagnostic accuracy was evaluated using receiving 

operator characteristic (ROC) curves (R package ROCR). Area under the ROC curve 

(AUC) is reported together with its 95% confidence interval (CI). Calibration was assessed 

after calculating risk predictions according to a logistic regression model, which included 

the continuous forecast score. Individual predicted risks were then divided into ten 

equally sized categories (i.e., according to deciles). A calibration plot was then produced 

by comparing the mean predicted risk in each decile (displayed in the x axis) with the 

observed risk, calculated as the proportion of PBC cases within each decile (displayed in 

the y axis). Brier score, corresponding to the mean squared error of the prediction, was 

also calculated together with its 95% CI. Calibration analyses were performed with the R 

package riskRegression. All analyses were performed using R Statistical Software 4.0.3.  

To take into account the linkage disequilibrium (LD) structure of the regions harbor-

ing the selected loci (hence avoiding missing genetic information), for each genome-wide 

significantly associated locus, a region spanning ±250 kb upstream and downstream of 

the corresponding coding sequence was considered. We hence extracted Single Nucleo-

tide Polymorphism (SNP) genotype data from the imputed set of data using PLINK 1.9 

[13]. 

3. Results 

3.1. Description of the Training Cohort 

The training cohort (PRE-RUN) was composed of 1345 individuals of Italian ancestry: 

444 PBC cases (37 males and 407 females) and 901 healthy controls (478 males and 423 

females). The total number of SNPs in the training cohort was 105,150, distributed along 

a genomic region of 23,000 kb (46 loci). 
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3.2. Feature Selection 

After removing variants with a number of mode values above 95%, 41,899 variants 

were brought forward into the feature selection process. Univariate association between 

each of the 41,899 variants and the output (case vs. control) was performed, and features 

were ranked according to Cramer’s v (Supplementary Table S2). 

After univariate analysis, an iterative greedy procedure was performed to avoid the 

inclusion of input features strongly correlated to each other. Different values of hyperpa-

rameters (npresel, nsel, errmax, correlation) were evaluated in training and test cohorts 

(where the test represented the one-tenth randomly selected portion of the training cohort 

under cross validation). A total of 814 runs of the workflow were performed for hyperpa-

rameter optimization (Supplementary Table S3).  

The evaluation of the performance of the model was done on the test cohort, to avoid 

overfitting the model by choosing the best model on the training cohort. The configuration 

that maximized specificity with a good balance in terms of accuracy and precision in the 

test cohort had npresel = 872, nsel = 266, errmax = 0.05 and correlation = 0.8. The list of 

selected variants that entered the classification model as input features is shown in Sup-

plementary Table S4. 

3.3. Final Model 

The final LLM model generated 38 rules to classify the disease status. The LLM model 

reached an Accuracy of 71.7%, a Matthews correlation coefficient of 0.29, a Youden’s value 

of 0.21, a Sensitivity of 0.28, a Specificity of 0.93, a Positive Predictive Value of 0.66 and a 

Negative Predictive Value of 0.72 (Supplementary Table S5). Covering of rules ranged 

from 0.45 to 43.28, with a median value of 5.30 (IQR 2.59, 12.61); error ranged from 0.00 to 

5.86, with a median value of 3.41 (IQR 1.50, 4.76). 

The rule with the highest covering (19.14) predicting PBC was rule 4, with error equal 

to 3.88. Rule 4 included the following 13 features: female sex AND chr14:92932650 = C 

AND chr17:43906828 = G AND chr17:43912635 = A AND chr17:44038536 = CA AND 

chr17:44040823 = C AND chr17:44065263 = T AND chr17:44183317 = C AND 

chr17:44185431 = T AND chr17:44222335 = G AND chr17:44283022 = A AND 

chr3:119111870 = T AND chr7:128705730 = T (Table 2). The genes involved in rule 4 were 

RIN3, KANSL1, TIMMDC1, TNPO3. The covering and error of each condition is reported 

in Supplementary Table S6.  

Table 2. Best rule for prediction including sex as condition. 

Id Rule 4 

Number of conditions 13 

Output attribute Affection 

Output value Case 

Covering % 19.14 

Error % 3.88 

Condition 1 14:92932650_2 = “C” 

Condition 2 17:43906828_1 = “G” 

Condition 3 17:43912635_1 = “A” 

Condition 4 17:44038536_1 = “CA” 

Condition 5 17:44040823_1 = “C” 

Condition 6 17:44065263_1 = “T” 

Condition 7 17:44183317_1 = “C” 

Condition 8 17:44185431_1 = “T” 

Condition 9 17:44222335_1 = “G” 

Condition 10 17:44283022_1 = “A” 



J. Pers. Med. 2022, 12, 1587 9 of 15 
 

 

Condition 11 3:119111870_1 = “T” 

Condition 12 7:128705730_1 = “T” 

Condition 13 Sex = F 

“Covering” is the percentage of samples belonging to the class described by the rule fulfilling that 

specific rule; “Error” is the percentage of samples belonging to the other classes fulfilling that spe-

cific rule. 

The most informative rule that did not include sex but only genetic variants was rule 

11, including seven conditions: chr17:38020058 = AC AND chr17:38049589 = T AND 

chr17:38070071 = C AND chr17:43933579 = C AND chr2:135188248 = A AND chr2:25332696 

= C AND chr3:159726324 = C (Table 3).  

Table 3. Best rule for prediction using only genetic information. 

Id Rule 11 

Number of conditions 7 

Output attribute Affection 

Output value Case 

Covering % 12,162162 

Error % 4,661487 

Condition 1 17:38020058_2 = “AC” 

Condition 2 17:38049589_2 = “T” 

Condition 3 17:38070071_2 = “C” 

Condition 4 17:43933579_1 = “C” 

Condition 5 2:135188248_1 = “A” 

Condition 6 2:25332696_2 = “C” 

Condition 7 3:159726324_1 = “A” 

“Covering” is the percentage of samples belonging to the class described by the rule, fulfilling that 

specific rule; “Error” is the percentage of samples belonging to the other classes fulfilling that spe-

cific rule. 

The genes involved in rule 11 were TNPO3, KANSL1, TMEM163, RARB and IL12A-

AS1. The covering and error of each condition is reported in Supplementary Table S7. 

Feature ranking outlines the most relevant variants that have been used by the LLM 

to classify the output (Figure 3).  

 

Figure 3. Feature Ranking summary. The Feature Ranking task computes a set of measures to assess 

the relevance/usefulness of the input attributes within the LLM rules. Absolute relevancy gives an 

aggregate measure of how “strong” the correlation is between a given input attribute and the out-

put. As expected by the known female predominance of the disease, sex ranked first, and its rele-

vance was 0.81, 11.5 times more relevant than the second feature (the HLA SNP) and 13.5 times 

more relevant than the third one (the first non-HLA SNP). Among genetic variants, the HLA SNP 

ranked second, with a relevance of 0.07. Among non-HLA variants the best ones were 

chr19:50924093 (SPIB) (0.06), chr3:119111870 (TIMMDC1) (0.06) and chr2:191943742 (STAT4) (0.05). 

SEX

6:32653792:A:G

19:50924093

3:119111870

2:191943742

17:43940229
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3:119297389
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11:63908660
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3.4. Haplotype Analysis 

To investigate whether Rulex LLM identified a risk haplotype based on the observa-

tion that many conditions within the best rule were SNPs located on the same chromo-

some, a haplotype analysis was performed (Figure 4). Haplotype GACACTCTGA scored 

as the most frequent (0.515) and was associated with significantly increased risk to de-

velop PBC as compared to GACACCCTGA (0.214, OR 0.8376, 95% CI 0.68–1.03) and 

AGCTCACAG (0.264, OR 0.6624, 95% CI 0.542–0.809) (p-value 0.000205). 

 

Figure 4. Haplotype reconstruction based on SNPs identified as main conditions by Rulex. The ge-

nomic region with position of the 9 SNPs/conditions identified by Rulex. On the top, the ideogram 

of the entire chromosome 17 is shown; the close-up view indicates the relative positions of the SNPs 

projected in the lower part of the figure, where haplotypes are listed. Haplotypes were recon-

structed using the Plink software; odds ratios (OR) and 95% confidence interval (in parenthesis) 

were calculated relative to the reference haplotype. 

3.5. Forecast in the Validation Cohort 

The validation cohort (RUN) included 834 individuals of Italian ancestry: 255 cases 

(28 males and 227 females) and 579 controls (307 males and 272 females). In the validation 

cohort, 74,484 variants were included.  

The number of variants shared between the training and the validation cohorts was 

64,918. Since conditions in rules are connected by a boolean AND, if a condition was not 

found within the validation cohort, the whole rule could not be applied. Out of 139 differ-

ent unique features presents in rules, 16 (11.5%) were not available in the validation cohort 

despite the use of the association mining layer. Therefore, 28/38 (74%) rules of the original 

ruleset were effectively applied in the validation cohort. 
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The median score in cases was significantly higher than controls (0.52 (IQR 0.50–0.56) 

vs. 0.43 (IQR 0.28,0.50) (p < 0.001)) (Figure 5A); for higher scores, the number of cases in-

creased consistently (Figure 5B). By applying the ruleset derived in the training cohort, 

the AUC of the model was 0.73 (95% CI 0.69–0.76); the ROC curve in the validation cohort 

is presented in Figure 5C. In the validation cohort, the LLM model reached an accuracy of 

68.5%, a Matthews correlation coefficient of 0.28, a sensitivity of 0.55, a specificity of 0.74, 

a positive predictive value of 0.48 and a negative predictive value of 0.79. The LLM model 

produced individual predicted risks that were in strong agreement with the observed 

risks, indicating a good level of calibration (Supplementary Figure S1). 

 

Figure 5. Model performance in the validation cohort. (A) Score distribution between cases and 

controls in the validation cohort. In the box plot, boxes define the interquartile range; thick lines 

refer to the median. The p-value was calculated using the Wilcoxon rank sum test. Legend: 1 = 

healthy control (green color), 2 = PBC case (red color). (B) Proportion of cases and controls by deciles 

of score in the validation cohort. Legend: 1 = healthy control (green color), 2 = case (red color). (C) 

ROC curve for case-control discrimination in the validation cohort. AUC, Area Under the Curve; 

PBC, Primary Biliary Cholangitis; ROC, Receiver Operating Characteristics. 

4. Discussion 

Our proof-of-concept study shows that an ML-based model using common genetic 

variants to predict genetic susceptibility to PBC is (1) computationally feasible; (2) meth-

odologically innovative; (3) accurate and well calibrated. More specifically, the Rulex 

workflow generates the final ruleset within three hours, provides intelligible if-then rules 

for prediction, and achieves good accuracy in discriminating between PBC cases and con-

trols in a new validation cohort.  

From a result assessment perspective, it would have been possible to introduce a 

wrapper-based feature selection technique, possibly driven by the Akaike criterion. Yet, 

we set up a simpler, filter feature selection process (such as the ones discussed, for in-

stance, in [28]), so that the Logic Learning Machine model could be evaluated also in terms 

of its implicit multi-variate feature selection capabilities.  

Our findings are important because they translate the most updated knowledge 

about the predisposing genetic variants associated in previous GWAS to PBC in applica-

ble rules that can be used for risk stratification. 

In terms of clinical translation, the low prevalence of PBC in the general population 

makes mass screening neither feasible nor cost-effective: the target population for SNP 

genotyping and applications of rules for prediction would be at-risk individuals, such as 

first-degree relatives of PBC patients, who are known to have increased risk of developing 

the disease [29]. A recently presented congress communication [30] reported that, in a 

prospective cohort of first-degree relatives of patients with PBC, the prevalence of PBC 
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was 5 cases out of 231 individuals assessed (2%). The prevalence of PBC-specific autoan-

tibodies in first-degree relatives was 28 out of 231 (12%), with a higher prevalence in sis-

ters (23%). If these data were incorporated into our analysis, the final model would have 

a likelihood ratio of 4.0, meaning that if a first-degree relative tested positive, the risk of 

PBC would increase from 2% to 27% (2% + 25%) [31]. Clinical strategies to deal with first-

degree relatives are still in their infancy. Our LLM model could represent a valuable tool 

to allocate attention and resources across individuals with higher levels of genetic risk 

[32]. 

Regarding the methodology employed, there are some innovative aspects that are 

worth mentioning. First of all, the pipeline presented in this study utilized individual data 

and not summary statistics. Rulex did approach genetic information in a different manner 

than standard statistical genetic methods do: it did not evaluate a statistical imbalance of 

the allele frequency of a variant between cases and controls, but rather how the concomi-

tant presence of genetic variants having a specific DNA base would associate to discrimi-

nate between cases and controls. This approach is innovative and makes our model dif-

ferent from a PRS. For instance, the rule with the highest covering included only one SNP 

among those most significant based on effect sizes and p-values derived from previous 

studies; in other words, univariate statistical significance was not the only parameter to 

consider for the ML model to predict disease status. 

Multivariate computational approaches such as ours may be able to capture the com-

plex relationships among risk variants for complex traits, which represents a possible in-

novation for the field [8]. Groups instead of single attributes were linked to case/control 

prediction by Rulex LLM, indirectly inferring also complementary relations among in-

puts. Although our analysis was not aimed at studying epistasis specifically, the boolean 

AND that links conditions within the same rule might represent a proxy for statistical 

epistatic interaction. Rulex LLM could represent a novel method to improve the way 

gene–gene interactions are taken into account [33]. Further studies are needed to assess 

the applicability of Rulex LLM to study epistatic interactions. 

In terms of model explainability, the LLM generates if-then rules that are easy to un-

derstand. There is growing awareness in the scientific community about the importance 

of model explainability when ML algorithms are applied in the biomedical field [14,15]. 

There is also increasing concern related to the possible risk of gender and racial discrimi-

nation enhanced by ML algorithms, and this could be more problematic when the user 

cannot recognize how the algorithm is generating the output [34]. The explainability of 

the LLM rules makes the algorithm particularly interesting for future applications in risk 

stratification, as compared with black-box models like deep learning algorithms charac-

terized by excellent accuracy counterbalanced by low levels of explainability [15,35]. The 

high expectations behind ML should not preclude the recognition that ML algorithms 

have both pros and cons, and their use should be applied following international data 

protection and ethical guidelines for AI applications [36]. 

Our work has some limitations that need to be acknowledged. We did not perform 

an analysis comparable to a GWAS, because we pre-selected top variants from the inter-

national meta-analysis [6], both for computational reasons (a smaller collection of variants 

was deemed more suitable for a proof-of-concept study) and to follow what has been his-

torically performed for PRSs (pre-selection based on p-value). This approach could have 

been over-conservative; the pre-selection of top variants may have affection the capability 

of Rulex to leverage variants with lower effect size to make the model more robust and 

with higher covering. The next step will be to expand the analysis to the whole genomes 

(including sexual chromosomes [37]) to assess the scalability of our pipeline. We might 

anticipate that LLM rules would employ as conditions some variants that would not reach 

the established genome-wide threshold of significance by standard methods, since they 

might be important for classification based on the non-linear association method behind 

LLM. In addition, the greedy feature selection process may have been quicker than other 

strategies such as exhaustive grid search processes, at the expense of robustness. Iterative 
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strategies such as gradient evolution algorithms should also be tested to understand 

whether accuracy can be improved while keeping complexity, and consequently the com-

putational time, controlled [38].  

Advocates of PRSs do affirm that they will be more diffuse than ML-models based 

on individual data [7]; the main reason behind this statement is that PRSs use summary 

statistics and do not need individual data, overcoming ethical and logistic limitations re-

lated to genetic data sharing. We acknowledge this limitation, underlining that PRS and 

our ML approach are complementary. 

5. Conclusions 

To conclude, our study represents the first illustration of a successful analysis of com-

mon genetic variants with ML to study the genetic liability of a rare liver disease such as 

PBC. ML is computationally feasible and generates accurate information that can be lev-

eraged for disease prediction in at risk individuals. Our work paves the way for future 

prospective studies targeting relatives of patients with PBC and aiming at more intensive 

follow-up for early identification and timely treatment of new PBC cases. 
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