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Abstract: Precision medicine is a new approach to understanding health and disease based on patient-
specific data such as medical diagnoses; clinical phenotype; biologic investigations such as laboratory
studies and imaging; and environmental, demographic, and lifestyle factors. The importance of
machine learning techniques in healthcare has expanded quickly in the last decade owing to the
rising availability of vast multi-modality data and developed computational models and algorithms.
Reinforcement learning is an appealing method for developing efficient policies in various healthcare
areas where the decision-making process is typically defined by a long period or a sequential process.
In our research, we leverage the power of reinforcement learning and electronic health records of
South Koreans to dynamically recommend treatment prescriptions, which are personalized based
on patient information of hypertension. Our proposed reinforcement learning-based treatment
recommendation system decides whether to use mono, dual, or triple therapy according to the
state of the hypertension patients. We evaluated the performance of our personalized treatment
recommendation model by lowering the occurrence of hypertension-related complications and blood
pressure levels of patients who followed our model’s recommendation. With our findings, we believe
that our proposed hypertension treatment recommendation model could assist doctors in prescribing
appropriate antihypertensive medications.

Keywords: precision medicine; hypertension; diabetes; reinforcement learning; Q-learning; treatment
recommendation; healthcare management

1. Introduction

Precision medicine is a new approach to understanding health and disease based on
patient-specific data such as medical diagnoses, clinical phenotype, biologic investigations
such as laboratory studies and imaging, and environmental, demographic, and lifestyle
factors. These data are called multi-modal when combined since they provide information
from various domains. The exponential increase in the amount of electronic health data that
can now be collected for each patient, in large part due to the advent of new technologies in
the fields of medicine, genetics, metabolic, and imaging, among others, has had a significant
impact on the evolution of precision medicine [1]. The number and diversity of diagnostic
tests generate an enormous amount of data that is difficult to comprehend and evaluate for
a single patient and considerably more difficult to comprehend and analyze in a dataset
including data from numerous patients. Fortunately, when more complex diagnostic tests
were created, the discipline of machine learning evolved as well, providing for more
efficient storage and analysis of these vast volumes of data than ever before. These two
advancements work together, with machine learning approaches utilizing the enormous
volumes of deep data produced in the healthcare system to promote precision medicine
diagnostics and therapies [1].
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The importance of machine learning techniques in healthcare has expanded quickly in
the last decade, owing to the rising availability of vast multi-modality data and developed
computational models and algorithms [2–4]. This new trend has sparked increased interest
in using advanced data analytics and machine learning methodologies in a range of
healthcare settings [5–7]. As a subset of machine learning, reinforcement learning has
made significant theoretical and technical advances in generalization, representation, and
efficiency in recent years [8]. It leads to an increase in its applicability to real-world
problems such as gaming, robotics control, autonomous driving, computer vision, and
biological data analysis [8–11].

Reinforcement learning is an appealing method for developing efficient policies in
various healthcare areas where the decision-making process is typically defined by a long
period or a sequential process [12]. In reinforcement learning problems, an agent takes
action based on its present state at each time step, and the environment provides evaluative
feedback and the new state. The agent aims to develop an optimal policy that maximizes the
amount of money it earns over time. Reinforcement learning is particularly well adapted
to systems with intrinsic temporal delays, such as those in which decisions must be made
without immediate knowledge of their effectiveness. A medical or clinical treatment regime
is typically made up of a series of decisions to determine the best course of action, such as
treatment type, drug dosage, or re-examination timing, based on a patient’s current health
status and prior treatment history, to maximize the patient’s long-term benefits. Unlike
traditional randomized controlled trials, which derive treatment regimens from the average
population response, reinforcement learning can be tailored to achieve precise treatment for
individual patients with high heterogeneity in response to treatment due to differences in
disease severity, personal characteristics, and drug sensitivity. Furthermore, reinforcement
learning can develop optimal policies based solely on prior experiences, with no prior
understanding of the mathematical model of biological systems required. This makes
reinforcement learning more practical than other existing machine learning approaches
in healthcare domains. Building an accurate model for the human health system and the
responses to administered treatments can be difficult, if not impossible, due to nonlinear,
varying, and delayed interactions between treatments and human bodies [8].

Hypertension become one of the major cause of death and disability-adjusted life-years
worldwide, with more cardiovascular deaths than other modifiable risk factors [13]. People
with hypertension are more likely to have comorbid chronic illnesses. Because the require-
ment to address concomitant chronic illnesses in addition to patients’ hypertension-specific
treatment goals poses a significant obstacle for efficient hypertension management, type 2
diabetes (T2DM) is the most prevalent multi-morbidity for hypertension patients [14]. With
this fact, we focused on the hypertension patients with T2DM to deal with severe state
patients. Despite the availability of various medications, hypertension is poorly controlled,
with large gaps in hypertension knowledge, antihypertensive therapy adoption, and blood
pressure control adequacy [15,16]. Recent papers and treatment guidelines on precision
medicine for hypertension have highlighted difficulties in the disease’s architecture, man-
agement issues, and the need for transformation [15–19]. Over the last half-century, the
treatment technique has remained virtually unchanged, and personalization of treatment
has not gone beyond taking African ancestry and serum renin levels into account [20].

Furthermore, substantial genetic, molecular, and physiological research discoveries
are not being integrated into screening, diagnostic, and management regimens. More
than half of patients require numerous clinic visits at varied intervals to try dose titration,
switching, or adding medicines until a satisfactory outcome is obtained, intolerable side
effects develop, or no further progress appears likely [20]. Despite the high prevalence
of hypertension, good health management must be devolved to the patients or machine
learning-based intelligent systems [21].

In our research, we leverage the power of reinforcement learning and abundant
electronic health records to dynamically recommend treatment prescriptions, which are
personalized based on patient characteristics, including age, sex, body mass index, blood
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pressure, laboratory tests, and duration of hypertension patients with T2DM. At the initial
state of the disease, doctors usually prescribe one medication for the initial treatment for
hypertension [22]. Prescription can move to dual or triple therapy when the patient’s
condition is not appropriate for mono or dual therapy, respectively [23]. Our proposed
reinforcement learning based treatment recommendation system decides whether to use
mono, dual, or triple therapy according to the state of the hypertension patients. We
evaluated the performance of our personalized treatment recommendation model by
lowering the occurrence of hypertension-related complications and blood pressure levels
of patients who followed our model’s recommendation. Moreover, we compared our
treatment recommendation with real-life doctors’ prescriptions to validate the reasonability
of the recommendation.

2. Materials and Methods
2.1. Data Descriptions

Medical data for this research were provided by the National Health Insurance Sharing
Service (NHISS) of Korea. The NHISS is a national agency providing the access of utilizing
national health information data. The NHISS collects data under relevant guidelines and
regulations, including obtaining informed consent from all participants (if participants are
under 18, consent is obtained from a parent and/or legal guardian). The period of database
is from 2003 to 2013.

Currently the NHISS maintains and stores national records for healthcare utilization,
prescriptions, and medical check-up. Medical check-up database contains major results
from medical check-up and behavior and habitual data from questionnaire. Specifically, it
includes the following contents: height, weight, waist, systolic and diastolic blood pressure,
fasting plasma glucose, total cholesterol, triglyceride, HDL and LDL cholesterol, history
(patient him/herself and family) of stroke, heart disease, hypertension, and diabetes, smoke
status, drink habit, and exercise frequency.

We chose patients’ records from a national cohort data available in the NHISS database,
and then filtered the hypertension patients with T2DM using the following criteria:

1. Diagnosis of hypertension according to the ICD-10 codes: I10;
2. Diagnosis of T2DM according to the ICD-10 codes: E10–E14;
3. Prescribed antihypertensive medications for more than 30 days;
4. Patients with complete medical check-up data upon appearance up to the end of

data period or death, which includes total cholesterol (TC), body mass index (BMI),
fasting plasma glucose (FPG), blood pressure (BP), smoke status, family history of
hypertension and T2DM.

After processing, the total number of hypertension patients with T2DM was 14,934.
From 1 January 2003, through to the date of their death or 31 December 2013, whichever
came first, all participants were tracked.

Table 1 shows the statistics of the 14,934 hypertension patients with T2DM used. Male
and female patients accounted for 56 percent and 44 percent of the data, respectively, with
mean ages of 57 and 63 years. The period of having hypertension in female patients was
0.7 years longer than in male patients. BMIs were similar in both sexes; FPG levels exceeded
140 mg/dL, and TC levels were within normal limits. Both male and female patients had
an average BP level of hypertension stage 1. Sixty-four percent and 41 percent of male and
female patients are currently smoking, respectively. Lastly, 34 percent and 38 percent of
male and female patients have a family history of hypertension, respectively.

2.2. Q-Learning

This study uses Q-learning, a data-driven model-free reinforcement learning approach
to recommend medication treatment for hypertension patients with T2DM based on their
current medical check-up measurements such as BP, FPG, BMI and smoke state.
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Table 1. Statistics of data set used.

Category Male Female

Sex (%) 56 44
Age, mean (SD) 57 (22) 63 (23)

Period of having hypertension (years),
mean (SD) 7.1 (3.4) 7.8 (2.8)

BMI (kg/m2), mean (SD) 27.9 (2.5) 28.2 (3.2)
FPG (mg/dL), mean (SD) 143.8 (53.2) 147.6 (51.6)
TC (mg/dL), mean (SD) 184.2 (47.3) 191.2 (47.9)

Systolic BP (mmHg), mean (SD) 132.5 (25.8) 138.5 (26.7)
Diastolic BP (mmHg), mean (SD) 84.8 (17.6) 87.9 (16.8)

Smoker (%) 64 41
Family history of hypertension (%) 34 38

Q-learning is adequate for determining the best action in a situation where neither the
transition function nor the probability distribution of state variables is known. Q-learning
is based on the estimation of a set of Q-values, which serves as a value function. Q-values
are estimated for each state–action (st, at) combination in the Q-learning method [24]. The
status of the environment (hypertension patient state, st) should be known in order to
choose the optimal action (antihypertensive medication, at) when the final Q-values are
calculated. Q-values are set to an arbitrary real number at the start of the process. The
reinforcement learning agent then calculates a reward value for each state and action
combination at iteration t. Equation (1) shows the essence of the algorithm, which is
the iterative process of updating Q-values as a function of the immediate reward rt and
Q-values of the next state-action pair Q(st+1, at+1). γ is the discount factor that regulates
the effect of future rewards relative to current rewards with range from 0 to 1.

Q(st, at)← rt + γ max
at+1
{Q(st+1, at+1)} (1)

The Q-values are updated so that the series of Q-values converges to an optimal
action-value function Q*, irrespective of any policy [25]. One of the most appealing features
of Q-learning is its flexible sampling strategies for generating state–action pairs. One of the
common sampling methods is the ε-greedy action selection, defined in Equation (2).

at =

{
arg max

a∈A
Q(st, a)

a ∼ A
with probability 1− ε,

otherwise.
(2)

where ε ∈ (0, 1]. The ε-greedy policy makes an agent select either the greedy action with
the probability of 1− ε, or otherwise it chooses a random action from the action space. The
randomness ensures that the agent experiments with alternative activities from time to
time, resulting in a greater return in the end.

2.2.1. State S

According to the World Health Organization report, several factors such as diet,
alcohol usage, physical activity, BMI, age, and smoking status can affect the blood pressure
level of hypertension patients [26].

In this research, we chose 5 components that affect the hypertension patients with
T2DM shown in Equation (3).

St = (St
COMPLICATIONS, St

AGE, St
PERIOD, St

BP, St
BMI); t = 1, . . . T (3)

where St
COMPLICATIONS is a state of hypertension-related complications at time t for

t = 1, . . . T. If a patient has one or more complication(s) at time t, it is 1; otherwise, it
is 0. We considered complications including heart and chronic kidney diseases, as shown
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in Table 2. We also defined the International Classification of Diseases (ICD-10) codes
of complications.

Table 2. Types and ICD-10 codes of hypertension complications.

Types of Complications ICD-10 Codes

Heart disease I11
Chronic kidney disease I12

Heart and chronic kidney disease I13

St
AGE is the age of the patients at time t for t = 1, . . . T. If a patient’s age is less than

55 years old, at time t, it is 1; otherwise, it is 0. We considered the boundary age as 55 years
because the risk of diabetes increases for patients aged > 55 years [27].

St
Period represents the time elapsed since the onset of diabetes. If the time is less than

or equal to 4 years, it is 0. If the time ranges between 5 and 8 years, it is 1; otherwise, it is 2.
St

BP represents the BP level. We divided the BP level into three levels according to the
BP measurement, as shown in Table 3. If the level is prehypertension, it is 0; stage 1, 1; and
stage 2, 2.

Table 3. Blood pressure level category.

Blood Pressure Category Systolic (mmHg) Diastolic (mmHg)

Prehypertension 120–139 80–89
Stage 1 140–159 90–99
Stage 2 160 or higher 100 higher

St
BMI represents the BMI. If the level is below 18.5, it is 0; between 18.5 and 25, it is 1;

and above 25, it is 2. These three levels were divided into the following stages: underweight,
normal, and overweight.

The total number of states in this model was 108 (2 × 2 × 3 × 3 × 3). We were
considering the factors that affect hypertension that we need to consider for recommending
treatment options.

2.2.2. Action A

The action of our model comprised prescriptions for hypertension patients with T2DM.
There are 4 classes of antihypertensive medications, which include, Diuretics (D), ACE
inhibitors (ACEi), Angiotensin II receptor blockers (ARB), and Calcium channel blockers
(CCB) [28]. We selected 14 medications that consisted of mono, dual, and triple therapies
made by 4 medications as shown in Table 4. We also observed the frequency of each action
used in the database in Figure 1.

2.2.3. Reward R

We adopted quality-adjusted life-year (QALY) in our model as a reward to improve
patients’ expected time in a healthy state. QALY is a disease load metric that considers
both the quality and quantity of life lived. It is used to measure the value of medical
therapies in economic evaluation. One QALY is the equivalent of a year of excellent health.
The QALY score ranges from 1 (excellent health) to 0 (dead). QALY can be used to guide
health insurance coverage decisions, treatment decisions, program evaluations, and future
program priorities [29].

The reward function R(a, s′) of our proposed model is shown in Equation (4), where a
is an action and s′ is the resulting state.

R
(
a, s′

)
= RWTP[

(
1− dCOMPLICATIONS(s′))(1− dAGE(s′))(1− dPERIOD(s′)) (4)
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(
1− dBP(s′))(1− dBMI(s′))]− CMED

RWTP is the value of willingness to pay for a QALY of 1. We considered the following
five decrement factors: dCOMPLICATIONS(s′), dAGE(s′), dPERIOD(s′), dBP(s′), and dBMI(s′)
due to complications, age, period, BP, and BMI levels. The details are shown in Table 5.
Lastly, CMED(a) represents the cost of medication used [30].

Table 4. Action descriptions.

Type No. Medication

Monotherapy

1 ARB
2 CCB
3 ACEi
4 D

Dual therapy

5 ARB + CCB
6 CCB + D
7 ACEi + CCB
8 ARB + D
9 ACEi + D
10 ACEi + ARB

Triple-therapy

11 ARB + CCB + D
12 ACEi + CCB + D
13 ACEi + ARB + CCB
14 ACEi + ARB + D
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Table 5. Reward value descriptions.

Notations Descriptions Decrement Values

dCOMPLICATIONS(s′)
Utility decrement value

associated to complications
0:0

1:0.248

dAGE(s′)
Utility decrement value

associated to age
[0, 55):0.08

[55, ~):0.129

dPERIOD(s′)
Utility decrement value associated

to hypertension period

[1, 4):0.078
[4, 8):0.085

[8, 11):0.112

dBP(s′)
Utility decrement value

associated to blood pressure

Prehypertension: 0.034
Stage 1:0.125
Stage 2:0.278

dBMI(s′)
Utility decrement value

associated to BMI

[0 ,18.5):0.028
[18.5, 25):0.07
[25, ~):0.172

CMED(a) Cost of medication It varies depends
on actions

The decrement values are referenced from other studies [31–34].

3. Hypertension Treatment Recommendation Results
3.1. Hypertension Treatment Recommendation Results

In this section, we observe the results of medications recommended by our model. The
model’s recommendation is similar with the prescriptions from a database that is made by
doctors. However, our model recommended more dual and triple therapies than doctors.
The distribution of recommended medications is shown in Figure 2.
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We also arranged the medications in mono, dual, and triple therapies to observe the
medications’ shift trend and verify the usage of multiple medications. The recommended
actions for each state component are shown in Figure 3.
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In Figure 3, we can observe the trend of the recommended medications that shift
from monotherapy to dual and triple therapies as the patients’ condition worsens. In
the age state, when the age was above 55 years old, monotherapy decreased by 16%,
while the portion of dual and triple therapy increased by 12% and 4%, respectively. The
patients with complications were also recommended more dual and triple therapies by 3
and 10% than without complication, respectively. In the period state, the recommendation
trends are similar with other states, but we observed that in 8 to 11 years, triple therapy
recommendation increased by 7% compared to other periods. Most importantly, in blood
pressure state, as the level of blood pressure becomes higher, more dual and triple therapies
are recommended. Lastly, it is the same with BMI state, overweight patients receive more
dual and triple therapy recommendations than underweight and normal state patients by
most 24% and 8%, respectively.

We excluded the recommendation results of female patients, since they have a similar
trend with the male patient, to improve readability (results are available upon request).

With this observation, we verified why our model’s recommendations have more dual
and triple therapy than prescriptions from the database. Furthermore, we validated our
model’s recommendations in the next section to prove the performance of our results.
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3.2. Concordance Rate Validation

This section validates the result by the concordance rate between the model’s rec-
ommendation and the doctor’s prescription. To rate the score, we checked if the model’s
recommendation and doctor’s prescription exactly match each state. For the doctor’s
prescriptions, the most frequent prescriptions for each state were compared with the rec-
ommendation of our model. Among 108 states, we counted the number of matched states
and calculated the percentage. The results shown in Table 6.

Table 6. Concordance rate between model’s recommendation and doctor’s prescriptions.

Gender No. of Matched States Concordance Rate

Male 92 85.18%
Female 88 81.48%

The results show a concordance rate of 85.18% and 81.48% for male and female
patients, respectively. As prescription may vary depending on the patient’s condition
and doctor’s preference, we believe that our model’s recommendation is reasonable for
hypertension treatment.

3.3. Medication Possession Ratio Validation

In this section, we obtained the medication possession ratio (MPR) of our model’s rec-
ommended medications to patients to validate the compliance and adherence. Medication
adherence is defined as the extent to which a patient takes the medication prescribed rec-
ommended by the provider [35]. In the previous studies, MPR-related adherence measures
were generally defined as the proportion of a time period where a medication supply is
available [36–38]. MPR can be calculated using Equation (5) [35].

Medication posseession ratio (MPR) =
Total days supply of medication

Number of days in period
× 100 (5)

In our research, we used the MPR to observe the adherence of patients to our model’s
recommended medications to validate that the patients really followed our recommended
actions to improve their health condition. The result of MPR is shown in Tables 7 and 8 for
male and female patients, respectively.

Table 7. MPR of male patients.

Mono Therapy Dual Therapy Triple Therapy

Min 34% 27% 25%
Max 85% 76% 78%

Mean 67% 61% 63%

Table 8. MPR of female patients.

Mono Therapy Dual Therapy Triple Therapy

Min 37% 31% 29%
Max 88% 79% 81%

Mean 71% 68% 66%

The result shows that for male patients, the mean MPR for all numbers of medication
have exceeded 61%. Same with female patients, the mean MPR of every number of medi-
cations exceeded 66%. With these results, we showed that our recommended medication
complied with patients.
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3.4. Model Concordance Rate vs. Hypertension-Related Complication Occurrence

In this section, we validate the performance of our recommended medication by
observing hypertension-related complications’ occurrence. Figure 4 illustrates the relation-
ship between the patient’s model-concordant rate and hypertension-related complications
occurrence rate for male and female patients. The patients were separated into different
groups by 20 percent based on their model-concordant rate, and the average occurrence
rate of complications in each group was calculated.
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Figure 4. Relationship between patients’ model concordance rate and complication occurrence for (a)
male patients and (b) female patients.

In Figure 4, the curves reflect a declining trend in general. In other words, the model-
concordant rate and the occurrence rate of complications have a negative relationship; the
greater the patient’s model-concordant rate, the lower the occurrence rate of complications.
Therefore, our model’s recommendation positively affects hypertension treatment and also
the management of good health conditions.

3.5. Model Concordance Rate vs. Blood Pressure Level

In this section, we validate the performance of our recommended medication by
observing the variation in the patients’ blood pressure level. Figure 5 illustrates the
relationship between the patient’s model-concordant rate and blood pressure levels for
male and female patients. As in Section 3.1, the patients were separated into different
groups by 20 percent based on their model-concordant rate, and this time, the average
blood pressure level in each group was calculated.

In Figure 5, the curves generally reflect a decreasing trend. This means that the model-
concordant rate and the blood pressure levels are inversely proportional; the greater the
patient’s model-concordant rate is, the lower the blood pressure level is. Therefore, our
model’s recommendation positively affects hypertension treatment and also the manage-
ment of proper blood pressure level.

3.6. Performance Comparison with Other Reinforcement Learning Model

We compared our proposed model with another reinforcement algorithm that is pop-
ular and previously studied by us, namely, the Markov decision process (MDP) [39]. The
performance comparison metrics used are the concordance rate with doctor’s prescription
and blood pressure level variation. The results are shown in Table 9 and Figure 6.
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Table 9 shows the concordance rate result between the models’ recommendation
and the doctor’s prescription. We checked if the model’s recommendation and doctor’s
prescription exactly match each state to rate the score.

The results show a concordance rate of 85.18% and 81.48% for our proposed Q-
learning model for male and female patients, respectively. The MDP model results are
78.7 and 75.93% for male and female patients, respectively. We verified that our model
has good performance by over-performing in the concordance rate compared to another
reinforcement learning algorithm.

Figure 6 shows the variation of patients’ blood pressure level according to concordance
rate of Q-learning and MDP recommendation. The patients were separated into different
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groups by 20 percent based on their model-concordant rate, and this time, the average
blood pressure level in each group was calculated. In Figure 6, the curves generally
reflect a decreasing trend for both models. However, the decreasing gap of our proposed
Q-learning is larger compared to the MDP model for both male and female patients.
Therefore, our proposed reinforcement learning model’s recommendation has greater
effects on hypertension treatment.

4. Discussion

We proposed a reinforcement learning-based hypertension treatment recommendation
model with South Korean medical records. We choose Q learning as our algorithm for the
recommendation because it is the fundamental reinforcement learning model. With the
proposed model, we recommend antihypertensive medications, whether to choose mono,
dual, or triple therapy according to the state of the patients. Using the Korean medical
records, we observed that the model’s recommended actions change from monotherapy to
dual and triple therapies as patients’ condition worsens. For example, in age state, as the
age above 55 years old, monotherapy recommendation was decreased while dual and triple
therapy increased. Hypertension-related complications also affect the recommendation
trend by having more dual and triple therapies. In the period state, as patients have a
longer period of hypertension, we observed that triple therapy recommendations increased.
For blood pressure state, as the level of blood pressure goes higher, dual and triple therapy
recommendations are getting higher. Lastly, overweight patients are recommended for
more dual and triple therapy recommendations than underweight and normal state patients
in BMI state.

Our recommended actions are validated by computing the concordance rate between
the model’s recommendation and the doctor’s prescription. This rate is calculated by
comparing the model’s recommendation and doctor’s prescription if they match each other.
The reason for checking this rate is to verify that our model recommends appropriate med-
ications for accorded states. The results showed that the concordance rate was higher than
80% for all patients. We could claim that the recommendation is reasonable considering
that prescription may vary depending on the patient’s condition and doctor’s preference.
We also worked on MPR validation to verify patients’ compliance and adherence to our
model’s recommended medications for further verification. Patients’ adherence to medica-
tion is also related to the excellent maintenance of hypertension treatment. If the MPR is
in an acceptable range, we can claim that patients have complied with our recommended
medications. As shown in the results section, the mean MPR for mono, dual, and triple
therapy medication exceeded 61% for male patients. As well as female patients, the mean
MPR of all numbers of medicine exceeded 66%. With these results, we showed that our
recommended medication complied with patients.

After proving our model’s recommendations are reasonable and complied with pa-
tients, we validate the hypertension maintenance performance by observing the relation-
ship between the patient’s model-concordant rate and hypertension-related complications
occurrence and variation of blood pressure level. The results showed that the relationship
curves reflect a declining trend in general. In other words, the model-concordant rate and
the occurrence rate of complications and blood pressure levels have a negative relationship;
the greater the patient’s model-concordant rate, the lower the occurrence rate of complica-
tions and blood pressure levels. Therefore, our model’s recommendation positively affects
hypertension treatment and also the management of good health conditions.

Lastly, we compare our model’s performance with another reinforcement learning
which is MDP. The performance comparison metrics used are concordance rate with
doctor’s prescription and blood pressure level variation. The results showed that our
proposed model has a higher concordance rate than MDP by 7% and 4% for male and
female patients, respectively. Moreover, for the variation of patients’ blood pressure level
according to the concordance rate of Q learning and MDP recommendation, we observed
that as the rate of concordance increases, the blood pressure level decreases for both
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models. However, the decreasing gap of our proposed Q learning is larger compared to
the MDP model for both male and female patients. Therefore, we verified our proposed
hypertension treatment recommendation model using reinforcement learning has high-
quality performance.

The limitation of our study is that we only deal with one kind of medical record,
which our national health institute provides. It could also be the strength of our paper that
only a few studies have utilized the health records of South Koreans for medical machine
learning research. However, it is better to acquire at least two health databases to verify
results in various methods. Moreover, we could not use hemoglobin A1c level, one of the
important factors for diabetes patients, due to the absence in the database. We decided to
use BMI levels to represent the patient’s condition since it is the risk factor for diabetes and
hypertension.

In future work, we would like to acquire other EHRs by collaborating with hospitals
in Korea or databases from other countries to verify our proposed model and compare the
result by race. Furthermore, by having various databases, we can broaden the disease area
to a large point of view. In this research, we only cover hypertension patients with diabetes,
but we plan to expand to general hypertension or other severe diseases in future studies.

Finally, it is crucial to deal with the uncertainty of the action or prescription in the
clinical practice. Our model studies and learns from the many rounds of the database to
get closer to the realistic and precise prescription, leading to optimal actions. Therefore, we
believe that doctors could apply data-based machine learning results to their research field
to assist in clinical practice.

5. Conclusions

This research suggested a reinforcement learning-based antihypertensive medication
recommendation system for hypertension patients with T2DM. This research aims to
address the challenge of precision medicine utilizing enormous electronic health data and
machine learning, which led to the introduction of a reinforcement learning model called
Q-learning. We constructed the model to be as realistic as possible by including the risk
factors of hypertension as a state and a combination of antihypertensive medication as
action. We used the 11-year electronic health records of a South Korean database with
1 million patients per year to create the model. We delicately designed the states, actions,
and reward functions to simulate our proposed model.

Our results highlight that the hypertension treatment recommended by our Q-learning
model is significant, as it correctly predicts the trend of a shift from monotherapy to dual
and triple therapy as the patient’s condition worsens, because even in the real world, when
a patient’s condition does not progress, doctors increase the number of medications and
prescribe them in combination. We also proved that the performance of our proposed
model by lowering blood pressure level of patients.

Based on our findings, making the appropriate decision about the correct number and
type of antihypertensive medicine could help postpone or prevent hypertension-related
complications such as heart disease, chronic renal disease, and both. Furthermore, our
reinforcement learning approach can help minimize patient stress, lower healthcare costs,
and improve the overall quality of life by reducing the time it takes to obtain a successful
hypertension treatment. To conclude, we believe that our proposed hypertension treatment
recommendation model could assist doctors in prescribing appropriate antihypertensive
medications.
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