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Abstract: Ameloblastoma is the most common benign odontogenic neoplasm, but with an aggressive
behavior and a high recurrence rate. Nowadays wide surgical resection is the current recommended
treatment, which can cause further loss of function and esthetics. Recent studies point to the
stem/progenitor cells as both initiators and propagators of the tumors. Elucidation of the cellular
and molecular mechanisms underlying the tumor stem cells is of broad interest for understanding
tumorigenesis and for developing effective targeted therapies. SRY related HMG box gene 2 (SOX2)
is a transcription factor that plays important roles in development, stem cell renewal, and cancer
formation. Few studies have revealed increased SOX2 expression in atypical ameloblastoma and
ameloblastic carcinoma. For the development of personalized medicine for ameloblastoma, biomark-
ers that provide prognostic or predictive information regarding a tumor’s nature or its response to
treatment are essential. Thus, in this study, we aimed to study if SOX2-positive cells exist in ameloblas-
tomas and their correlation with the clinicopathologic parameters. Our data suggested BRAF(V600E)
mutation might contribute to the expansion of SOX2-positive cells. The identification of BRAF(V600E)
mutation and the amplification of SOX2-positive cells in ameloblastomas imply the possible benefit
of applying BRAF and SOX2 inhibitors in recurrent and un-resectable ameloblastomas.
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1. Introduction

Ameloblastoma is the most common odontogenic neoplasm, but with a high recur-
rence rate. Ameloblastomas are divided into three subtypes by WHO classification of
tumors [1], namely, solid/multicystic type (AM-S/M), extraosseous/peripheral type, and
unicystic type. These subtypes differ in clinicoradiographic presentations and prognosis.
The AM-S/M is the most common subtype with an aggressive clinical behavior. Although
AM-S/M tumors are slow growing, they are locally invasive, which causes considerable
tissue destruction and subsequent morbidity. In addition, the AM-S/M tends to infiltrate
in between cancellous bone trabeculae beyond the radiographical margin, and this fea-
ture leads to high recurrence rate if adequate surgical margins are not acquired [1]. The
recurrence rate of AM-S/M has been reported up to 50 to 90% after curettage, and an
alarming recurrence rate of 15% even after marginal or block resection [2]. Recent advances
of molecular biology unraveled that recurrent BRAF(V600E) activating mutation is the most
common genetic aberration in ameloblastomas [3–5], however, the detailed tumorigenic
molecular mechanism is yet to be fully elucidated.

J. Pers. Med. 2022, 12, 77. https://doi.org/10.3390/jpm12010077 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm12010077
https://doi.org/10.3390/jpm12010077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0001-8693-9200
https://orcid.org/0000-0001-9574-2194
https://orcid.org/0000-0002-3880-3787
https://doi.org/10.3390/jpm12010077
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm12010077?type=check_update&version=1


J. Pers. Med. 2022, 12, 77 2 of 18

Although the pathogenesis of the ameloblastoma has been pursued for years, the
origin of this tumor remains unknown. The stem cells play a major role in the regulation of
tissue homeostasis. The adult stem cells are long-lived and have the ability of self-renewal
and multi-lineage differentiation [6]. If the proliferative capacity of stem cells becomes
uncontrolled and the differentiation potential become impaired, these self-renewable stem
cells tend to have the potential to cause tumor initiation [7]. Several markers are proposed
for identification of tissue-specific stem cells [8,9], however, there is no universal marker
for adult stem cells. In regard to odontogenesis, some dental epithelial stem cell (DESC)
markers have been identified. For example, the active stem cell marker, Lgr5, has been
found in the stellate-reticulum(SR) region of the cervical loop [10]. Furthermore, in vivo
lineage tracing experiments further show that the SOX2-positive DESCs give rise to multi-
ple lineages of dental epithelial cells [11]. SOX2 is a transcription factor of the SOX family.
The SOX family plays various roles during development, in adult tissue homeostasis and
regeneration, and in fate decisions of stem and progenitor cell and differentiation [12].
SOX2 is expressed in multiple epithelial tissues, such as oral epithelium, cervix, anus, testes,
lens, and multiple glands, and the SOX2-expressing cells are demonstrated to continuously
generate mature cell types in experiments of genetic lineage tracing and transplantation [13].
SOX2 is also involved in multiple tumor cell functions, such as the promotion of tumor cell
proliferation [14–16], the ability to repress apoptosis [16,17], acceleration of cell invasion
and migration [18–20], and regulation of self-renewal in tumor stem cell populations [19,21].
SOX2 expression also has been correlated with clinical parameters, such as staging, relapse,
therapy resistance, and prognosis of patients in various cancers [20,22–27]. In addition,
BRAF(V600E) mutation was shown to be associated with upregulation of SOX2 [28]. How-
ever, conflicting data regarding the expression profile of SOX2 in ameloblastoma are present
in the contemporary literatures [29,30]. As a consequence, the biological significance of
SOX2 in this odontogenic neoplasm and its clinical relevance are still shrouded in mystery.
Thus, providing a defined detection method for SOX2 in ameloblastoma, elucidating the
identity as active or quiescence stem cells, and investigating the roles in drug response will
be beneficial for developing personalized medicine in the future.

In this study, we first compared two different antibodies for precise detection of
SOX2 in ameloblastomas, then explored the immunohistological staining patterns of SOX2
across the variants of ameloblastoma and verified their concordance to the sequencing
results of BRAF. Correlations of SOX2, Ki-67, and clinicopathological parameters were also
performed. We also demonstrated that knockdown of SOX2 leads to decreased viability of
ameloblastoma cells, and increased expression of SOX2 was associated with resistance to
anti-BRAF small molecule inhibitors, vemurafenib and dabrafenib, in ameloblastoma cells.
Our study demonstrated a good example of how to verify a biomarker from clinical aspect
and examine the biological function of the molecule toward precision medicine.

2. Materials and Methods
2.1. Patients and Specimens

Seventy-four formalin-fixed, paraffin-embedded tissues of ameloblastoma were col-
lected in this study. All tissue blocks were obtained from the Department of Oral Pathology,
National Taiwan University Hospital, Taiwan, from 2007 to 2016. The diagnosis was based
on histological examination of hematoxylin and eosin-stained tissue sections by four board
certified oral pathologists (Chun-Pin Chiang, Bu-Yuan Liu, Julia Yu Fong Chang, and
Yi-Ping Wang). All of these specimens were acquired from biopsy, curettage, excision,
or enucleation without decalcification. The 74 enrolled cases were divided as follicular
type (age 18 to 79 years, mean age 47.2 years), plexiform type (age 12 to 77 years, mean
age 30.9 years), and unicystic type (age 11 to 66 years, mean age 29 years). The detailed
epidemiologic data are summarized in Table 1. Six dental follicles of impacted third molars
from 6 patients with the presence of numerous remnants of odontogenic epithelial rests
were also collected as the control group of dental epithelia. This study was approved by the
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Research Ethics Committee of National Taiwan University Hospital (No. 201412058RINA,
201608088RINA and 201901034RIND).

Table 1. Clinical parameters in three histologic patterns of ameloblastoma.

Follicular Type (n = 27) Plexiform Type (n = 22) Unicystic Type (n = 25)

Age (year)
<20 1 8 9

21 to 40 9 8 12
≥41 17 6 4

Gender
Men 15 18 12

Women 12 4 13
Location
Maxilla 5 0 0

Mandible 22 22 25
Bone perforation

Present 16 14 13
Absent 2 6 4

Root resorption
Present 15 13 11
Absent 7 7 11

Size of lesion a

<100,000 7 9 15
100,001 to 200,000 10 5 8
≥200,001 5 6 1

a The numbers in the row of lesion size were obtained from measuring pre-surgical panoramic X-ray with ROI
manager of Image J (National Institutes of Health, Bethesda, MD, USA).

2.2. Immunohistochemistry and Immunofluorescence of SOX2 and Ki67

Immunohistochemical stain was performed using previously described protocols [31].
The primary antibodies for SOX2 staining were rabbit anti-SOX2 IgG (1:500–1:1,000 dilution;
Millipore, Billerica, MA, USA) and anti-SOX2 (1:100 dilution; 3579S; Cell Signaling, Danvers,
MA, USA), and they were incubated with the sections at 4 °C overnight. For Ki-67 staining,
the monoclonal antibody (1:100 dilution; clone MIB-1; Dako, Agilent, Santa Clara, CA,
USA) was incubated for 20 min in room temperature (RT).

For double immunofluorescence assay, six cases of ameloblastoma (2 follicular, 2 plexi-
form, and 2 unicystic type) with high level of SOX2 and Ki-67 expression were pretreated
and incubated with primary antibodies against SOX2, as described in immunohistochem-
ical staining. After washing the slides with PBST0.1 three times for 5 min, incubation
with secondary antibody (1:300; Alexa Fluor 546-conjugated goat anti-rabbit IgG; Thermo
Fisher Scientific, Waltham, MA, USA) was completed at RT for 1 h. After washing PBST
5 min for 3 times, these slides were incubated with Ki-67 monoclonal antibody (Dako) for
20 min. After washing, slides were incubated in secondary antibody (1:300; Alexa Fluor
488-conjugated goat anti-mouse IgG; Thermo Fisher Scientific) for labeling Ki67+ cells at
RT for 1 h. Then, we washed these slides in PBST for 5 min 3 times, the nuclei of tumor cells
were stained with 4′,6-diamidino-2-phenylindole (DAPI) (Thermo Fisher Scientific), then
washed in PBST for 5 min and mounted with cover slides by Prolong® Diamond Antifade
Mountant (Thermo Fisher Scientific).

2.3. Assessment

For assessing immunohistochemically stained sections, digitized images were cap-
tured. Ten views of every case were randomly selected under 200-fold magnification for
quantification. If lesser than ten views could cover all the tumor area, we counted all
tumor parts in the section. All histopathological images were taken with Olympus BH-2
microscope and DP2-BSW image acquisition software (Olympus, Tokyo, Japan). Only
tumor cells with nuclear staining were regarded as positive cells. The quantification of
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positive tumor cells to SOX2 and Ki-67 and the numbers of total tumor cells were counted
by Image J and IHC profiler Plugin (National Institutes of Health, Bethesda, MD, USA).
The labeling index was calculated as the percentage of SOX2 and Ki-67-positive nuclei to
all tumor nuclei.

The clinical parameters, such as bone perforation and root resorption caused by tumor
were acquired from records of surgical findings, pathological reports, and radiographic
examinations. The size of lesions was measured from cases with pre-surgical panoramic
X-ray by utilizing ROI manager of Image J. The digitalized panoramic X-ray were available
in 22 of 25 cases in follicular type, 20 in 22 cases of plexiform type, and 22 in 25 cases of
unicystic type.

2.4. Cell Lines and Cultures

Ameloblastoma cell lines (AM1 and AM3) were generous gifts from Dr. Shosei Kishida
from Kagoshima University in Japan. These cells were cultured in KSFM (Defined Ker-
atinocyte serum free medium; Gibco, Thermo Fisher Scientific) in a humidified incubator
with 5% CO2 at 37 ◦C.

2.5. Cell Viability Assay

To measure the viability of ameloblastoma cells, alamar blue assay was performed.
The cells were cultured in 24-well plates, and then alamar blue solution (Thermo Fisher
Scientific) was added to each well according to the manufacturer’s protocol. After incuba-
tion for 1–3 h at 37 ◦C, the culture medium containing alamar blue solution was collected
for further analysis. Both absorbance and fluorescence were detected using the Dynatech
microplate reader (Dynatech Medical Products, Billingshurst, West Sussex, UK) with ex-
citation at 544 nm and emission at 590 nm. The absorbance and fluorescence were taken
as proportional to the number of cells present and were expressed as a percentage of the
respective positive and negative controls.

2.6. Knockdown of SOX2

For SOX2 knockdown, AM1 and AM3 cells were transfected by lentiviruses with short
hairpin RNAs cloned into the pLKO.1 vector. A non-specific shGFP-pLKO.1 was used as
negative control. The shRNA and lentiviruses reagents were purchased from the RNAi
Core Facility (Academia Sinica, Taipei, Taiwan). Stable cells were selected in the presence
of puromycin for 1 week.

2.7. Immunocytofluorescence Assay

Cells were seeded onto chamber slides and fixed with 2% paraformaldehyde for
20 min and permeabilized with 0.1% Triton X-100 for 10 min. After washing, cells were
blocked with 1% bovine serum albumin (BSA) in PBS for 30 min. Cells were stained
with antibody against SOX2 (1:100 Cell Signaling, Danvers, MA, USA) for 60 min at RT,
followed by incubation with secondary antibody (1:300; Alexa Fluor 488-conjugated goat
anti-rabbit IgG; Thermo Fisher Scientific) for 60 min at RT. Nuclei were counterstained with
DAPI (Thermo Fisher Scientific). Cells were observed under Olympus BX53 fluorescence
microscope (Olympus, Tokyo, Japan).

2.8. PCR and Sanger Sequencing

Fifty-five cases with sufficient amounts of tissue were used for macro-dissection of
tumor component for DNA extraction and PCR amplified. DNA was extracted by using
AllPrep DNA/RNA FFPE kit (Qiagen, Germantown, MD, USA). Sanger sequencing for
BRAF(V600E) mutation was then performed. Primers used in DNA sequencing are listed
in Supplementary Table S1.
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2.9. Treatment of BRAF Inhibitors

BRAF inhibitors, vemurafenib and dabrafenib (MedChemExpress, Monmouth Junc-
tion, NJ, USA), were added in the cell culture medium using measured IC50 concentration
for 72 h before detecting cell viability. The resistant clones were developed using IC50
concentration for selection and subcultured for at least 2 passages.

2.10. RNA Purification, Reverse Transcription, and Quantitative Real-Time PCR (qRT-PCR)

Total RNA was extracted from AM1 and drug treated AM1 cells, and reverse tran-
scription was subsequently performed. qRT-PCR was performed using the Light Cycler®

480 SYBR Green I Master kit (Roche Applied Science, Indianapolis, IN, USA) and the
LightCycler480 System (Roche Applied Science). The gene expression levels of each sample
were normalized to the expression levels of GAPDH. Primer sequences used were listed in
Supplementary Table S1.

2.11. Western Blot Analysis

Western blots were performed as previously described [32]. The membrane was incu-
bated with antibody against Anti-P Glycoprotein 1 antibody (1:1000 Abcam, Cambridge,
UK), BRAF(V600E) (VE1) (1:2000 Spring Biosciences, Abcam), ERK (1:1000 Cell Signaling),
phosphor-ERK (1:1000 Cell Signaling), SOX2 (1:1000 Cell Signaling), AKT (1:1000 Cell
Signaling), phosphor-AKT (1:1000 Cell Signaling), α-tubulin (1:5000 Cell Signaling).

2.12. Statistical Analysis

Data were entered into the Statistical Package for Social Sciences (SPSS) program,
Version 23 (SPSS Inc., Chicago, IL, USA). The associations between clinicopathological pa-
rameters and the expression status of SOX2 and Ki-67 were analyzed by Mann–Whitney U
test. Spearman’s correlation coefficient was used to identify the correlation between SOX2
and Ki-67 expression status, and between expression of both markers and clinicopatholog-
ical parameters. The difference between two experimental groups in all in vitro studies
and correlation between SOX2-positive cell numbers and BRAF status in ameloblastomas
were evaluated by t-test. A p value of <0.05 was considered significant. All values are
represented as mean ± standard deviation.

3. Results
3.1. Verifying Specificity of Antibody for Detection of SOX2-Distinct Expression Patterns of SOX2
in Three Types of Ameloblastoma under Different Anti-SOX2 Antibodies

The conflicting results regarding the SOX2 expression pattern in ameloblastomas are
most likely due to using different antibodies. As the first step toward precision medicine,
a defined and precise detection method for SOX2 is required. Thus, we first examined
the expression patterns of SOX2 using two different antibodies, which have been used in
the literature [29,30], in 15 ameloblastoma cases. All fifteen cases were positive for both
anti-SOX2 antibodies. However, the expression patterns of the two primary antibodies
were notably different (Figure 1). The positive signal of 3579S from Cell Signaling was
scattered and was detected at the nuclei of the tumor cells. The signal was predominantly
seen in the peripheral ameloblast-like cells and focally positive in SR-like cells. (A2, B2,
C2, D2). The intensity of stain was variable between areas and cases. On the other hand,
anti-SOX2 antibody of Millipore resulted in a diffuse nuclear and focal cytoplasmic stain in
both ameloblast-like cells and SR-like cells in all cases (A3, B3, C3, D3). The surrounding
stromal cells were mostly SOX2-negative. In normal oral squamous epithelium, the positive
signals of SOX2 were restricted at the basal and parabasal layers when incubated with
3579S of Cell Signaling (Figure 1E2). However, a diffuse non-specific stain of SOX2 was
discerned in keratinocytes in the full thickness of the surface epithelium when interrogated
with the Millipore antibody (Figure 1E3). According to the expression pattern, we chose
3579S of Cell Signaling for our subsequent assays of SOX2 in a larger cohort study, due to
better specificity.
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(Figure 2) and the detail labeling indices were shown in Table 2. Thus, it is important to 
know that SOX2 positivity does not imply neoplasm. 

Figure 1. Different types of ameloblastoma with hematoxylin and eosin (H&E) stain and immunohis-
tochemical stains (IHC). Histopathological subtypes were as followed: follicular (A1–3), plexiform
(B1–3), and unicystic (C1–3,D1–3). The (D) series are the intraluminal portion of a unicystic ameloblas-
toma. The (E1–3) are normal oral squamous epithelium including in the specimen, serving as an
internal positive control. (A2,B2,C2,D2,E2: 1:100 dilution (Cell Signaling); A3,C3,D3,E3: 1:1000
dilution (Millipore); B3: 1:500 dilution (Millipore). Original magnification ×200 in A–D; ×100 in E).

3.2. Remnants of Odontogenic Epithelium in Dental Follicle Containing SOX2+ Cells

All six cases of odontogenic epithelial rests in dental follicles showed positive SOX2
stain in a scattered pattern. Most positive cells were located in the periphery of the nests
(Figure 2) and the detail labeling indices were shown in Table 2. Thus, it is important to
know that SOX2 positivity does not imply neoplasm.

Table 2. Expression status of SOX2 in remnants of odontogenic epithelial rests.

Case Number Labeling Indices of SOX2 Immunostain (%)

DF-1 33.8
DF-2 47.3
DF-3 45.7
DF-4 47.8
DF-5 59.2
DF-6 34.1

Mean ± S.D. (%): 44.7 ± 9.6
Median (%): 46.5
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Figure 2. Remnants of odontogenic epithelium in dental follicle containing SOX2+ cells. (Immuno-
histochemical staining showing SOX2+ cells in dental follicular tissue with (A) few remnants and
(B) more remnants.) (Original magnification ×200).

3.3. Expression of SOX2 in Ameloblastoma

The expression patterns of SOX2 in ameloblastoma to anti-SOX2 antibody crosses
the histological subtypes. It showed scattered nucleus stain in the majority of periph-
eral pre-ameloblast/ameloblast-like cells and focal SR-like cells in follicular type AMs
(Figures 1A2 and 3A1) and plexiform AMs (Figures 1B2 and 3B1). In the unicystic group,
most positive cells were also seen in the basal cell layer reminiscent of ameloblast-like
cells (Figure 1C2). The expression pattern of SOX2 in the intra-luminal and mural ex-
tension of unicystic AM was identical to that seen in the follicular and plexiform AMs
(Figures 1D2 and 3C1). Labeling indices for SOX2 immunostaining of these 74 cases were
present in Tables 3 and 4. The tumors of plexiform type showed the highest mean labeling
index of SOX2 immunostaining, followed by unicystic and follicular type (Table 4).

Table 3. Immunohistochemistry in three histologic patterns of ameloblastoma.

Follicular Type
(n = 27)

Plexiform Type
(n = 22)

Unicystic Type
(n = 25)

Ratio of high columnar cells in SOX2+ cells
<2 20 21 20
≥2 7 1 5

Labeling index of SOX2 (%)
<10 17 5 8

11 to 20 3 4 7
>20 7 13 10

Labeling index of Ki-67 (%)
<3 21 11 14

3 to 6 3 6 7
>6 3 5 4

Table 4. Comparison of expression status of SOX2 in three types of ameloblastomas.

Histologic Type Mean ± S.D. (%) Median (%) Comparing with p a

Follicular type 17.2 ± 21.9 6.2
Plexiform type 0.031
Unicystic type 0.107

Plexiform type 28.8 ± 22.1 23.3
Follicular type 0.031
Unicystic type 0.216

Unicystic type 20.3 ± 16.5 14.2
Follicular type 0.107
Plexiform type 0.216

a Mann–Whitney U test.
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Figure 3. Comparison of the location of positive cells under SOX2 and Ki-67 immunostain. The cells
show exclusively positive to one of these two antibodies. (A) follicular type; (B) plexiform type;
(C) unicystic type, mural subtype. (Original magnification ×200).

3.4. Expression of Ki-67 in Ameloblastoma

All cases except one unicystic AM were positive to Ki-67 immunostain. Most of the
positive cells were located in the second and first layer of the peripheral ameloblast-like
cells, and some in central SR-like cells (Figure 3(A2,B2,C2)). Labeling indices for Ki-67
immunostaining of our tested cases were present in Tables 3 and 5. The plexiform type
AM showed the highest labeling index to Ki-67 immunohistochemical stain, and it was
followed by unicystic type and follicular type AMs (Table 5).

3.5. Cells Expressing SOX2+ or Ki-67+ Are Located in Different Populations, Suggesting SOX2+
Cells Are Most Likely Quiescent Stem Cells

When reviewing these immunostaining slides, we noted the cells which showed posi-
tive to anti-SOX2 antibody were negative to Ki-67, and vice versa (Figure 3). However, no
correlation between the expression status of these two markers was noted (Supplementary
Table S2). For further verification, we performed immunofluorescence in six cases of AM
showing high expression level of SOX2 and Ki-67 to validate the spatial correlation of these
two markers. Under immunofluorescence, we found that most of the SOX2-positive cells
were located in the periphery of the tumor island with some in the central area, and the
Ki-67+ cells located in the first and second layer of the peripheral cells (Figure 4A–C series).
Furthermore, these two markers were generally mutually exclusive on the cellular level.
Scant double-labeling cells were identified in three cases. One case was a follicular type
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with soft tissue invasion, which contained minimal inflammatory cells infiltration in the
stroma (Figure 4D series). The other two cases were plexiform type, which showed dense
infiltration of inflammatory cells in the fibrous stroma with proliferation of tumor epithelial
cells (Figure 4E series). Squamous epithelium included in the specimen of ameloblastoma
was utilized as a positive control (Figure 4F series). SOX2+ cells were involved from basal
to spinous layer of the epithelium, but the intensity was greater in the cells of basal and
parabasal cell layers, and Ki-67+ cells located in parabasal layer.

Table 5. Comparison of expression status of Ki-67 in three types of ameloblastomas.

Histologic Type Mean ± S.D. (%) Median (%) Comparing with p a

Follicular type 2.5 ± 2.0 2.0
Plexiform type 0.048
Unicystic type 0.674

Plexiform type 4.1 ± 3.3 3.0
Follicular type 0.048
Unicystic type 0.179

Unicystic type 3.3 ± 3.1 1.8
Follicular type 0.674
Plexiform type 0.179

a Mann–Whitney U test.
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3.6. Correlation of Expression Status of SOX2 and Ki-67 with Clinicopathological Parameters
and Findings
3.6.1. Clinical Parameters—Recurrent Lesions Showed Higher SOX2 Positivity Comparing
to Original Samples

Statistically, no significant correlation between the labeling indices of these two
markers and lesional size was identified. In addition, the labeling indices of SOX2 and
Ki-67 failed to correlate with bone perforation and root resorption caused by the tumor
(Supplementary Table S3). Interestingly, no correlation between the size of lesions with the
presence of root resorption and bone perforation is identified in three types of ameloblas-
toma (Supplementary Table S4).

Among 74 enrolled cases, 13 cases (9 cases of follicular, 3 cases of plexiform, and 1 case
of unicystic type) were obtained from recurrent lesions (Supplementary Table S5), and
7 other cases (3 are in follicular group and 4 are in plexiform group) developed recurrent
lesion later (Supplementary Table S6). No significant difference in both labeling indices is
seen between those recurrent cases and primary lesions of the same histological subtypes.
Three paired primary and recurrent lesion cases from the same patients were obtained
(Figure 5A–C). The recurrent cases showed much higher labeling indices of SOX2 than
paired primary lesions, however, the difference of labeling indices of Ki-67 remains to
be inconclusive.
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lesions. (A1: recurrent and A2: primary lesions of patient 1; B1: recurrent and B2: primary lesions of
patient 2; C1: recurrent and C2: primary lesions of patient 3).
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3.6.2. Pathological Parameters and Findings

To see if the labeling indices of SOX2 and Ki-67 can serve as a biomarker for the
presence of mural extension of unicystic ameloblastoma, we interrogated these indices
between mural type and intra-luminal/luminal type unicystic ameloblastoma. No signif-
icant difference in SOX2 and Ki-67 labeling indices was noted between these two types
(Supplementary Table S7). In addition, no significant difference was noted between the
intra-luminal/luminal unicystic ameloblastoma and the combined group of mural type
unicystic ameloblastoma and conventional solid ameloblastoma of follicular and plexiform
types (Supplementary Table S8).

3.7. SOX2 Knockdown in Ameloblastoma Cell Lines Reduced Cellular Viability

In order to investigate the impact of SOX2 on the viability of ameloblastoma, we
silenced SOX2 by shRNA through lentiviral system in ameloblastoma cell lines (AM1 and
AM3). The knockdown efficiency was checked with fluorescence observation of GFP (as
a reporter) and Western blot, and confirmed valid inhibition of SOX2 (Supplementary
Figure S1). Knockdown of SOX2 prominently downregulated the cell viability of both
ameloblastoma cell lines (Figure 6).
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3.8. Increased SOX2-Positive Cells in BRAF(V600E) Mutated Ameloblastomas

Fifty-five ameloblastoma cases, including 18 cases of follicular type, 16 cases of plex-
iform type, and 21 cases of unicystic type were sent for Sanger sequencing. Forty-eight
cases harbored BRAF(V600E) mutation (Figure 7).

SOX2-positive cells were found in all cases regardless of BRAF status, with an average
of 22.5% SOX2-positive cells in ameloblastomas. BRAF(V600E)-mutated ameloblastoma
cases showed significantly more SOX2-positive cells (24.5%) than in wild type (6.6%)
(p < 0.05) (Figure 8 and Table 6).
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Table 6. SOX2-positive rate distribution among BRAF(V600E) wild type and mutant in different
subtypes of the ameloblastoma cases in this study.

Ameloblastoma BRAF(V600E) Wild Type BRAF(V600E) Mutant

Subtype Follicular Plexiform
(n = 2)

Unicystic
(n = 5)

Follicular
(n = 18)

Plexiform
(n = 14)

Unicystic
(n = 16)

SOX2-positive cells - 7.25% ± 0.03% 6.3% ± 0.02% 21.74% ± 0.22% 35.05% ± 0.2% 18.87% ± 0.15%

Average 6.57% ± 0.02% 24.54% ± 0.21%

3.9. Ameloblastoma Resistant Clones Show Upregulation of SOX2 Expression

The ameloblastoma cell line AM1 had been shown harboring BRAF(V600E) mutation
in previous studies [4,5], which was also confirmed in our investigation (Figure 9). The
cell viability of AM1 cells were reduced by treatment of BRAF inhibitors vemurafenib and
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dabrafenib (Supplementary Figure S2). Then, we developed the resistant clones of AM1
cells after a long-term treatment with individual inhibitor. The AM1 vemurafenib resistant
clone (AM1-Vre) and AM1 dabrafenib resistant clone (AM1-Dre) revealed significantly
downregulated BRAF(V600E) and upregulated SOX2 mRNA levels compared to untreated
cells. In the Western blot analysis, the expression of SOX2 was found to be upregulated in
the resistant clones (Figure 9).
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4. Discussion

Ameloblastoma is a tumor from odontogenic epithelial origin. It is thought to arise
from rests of dental lamina, from a developing enamel organ, from the epithelial rests of
Malassez cells, from lining of an odontogenic cyst in intrabony lesions, and from the basal
cell layer of oral mucosa in peripheral type. Among these candidate tissue origins, the rests
of dental lamina are the most promising origin of ameloblastoma. After the process of tooth
development is complete, the dental lamina will degenerate to remnants of odontogenic
epithelium retained in the jaws. For observing the expression pattern of SOX2 in dental
lamina cells, it is ideal to perform the SOX2 immunohistochemistry on a developing tooth
bud. However, the sections of developing tooth buds are difficult to obtain. Therefore, we
compromised using dental follicle which contained remnants of odontogenic epithelium as
our resource of dental epithelium.

SOX2 is a stem cell marker, and the SOX2+ dental epithelial stem cells were shown
to give rise to all lineages of dental epithelial cells [11]. As these SOX2+ cells have the
capacity to form the epithelial component of a new tooth, SOX2+ cells in dental lamina
were thought to be dental epithelial stem cells. Moreover, SOX2+ cells were located by
immunohistochemistry in dental lamina of human developing tooth germ [29]. Since the
most accepted origin of ameloblastoma was the dental lamina cells, we also found that cells
in epithelial rests of dental follicle showed SOX2 expression. These SOX2+ dental lamina
cells might play a significant role in the pathogenesis of ameloblastoma.

The SOX2 expression pattern of ameloblastomas was scattered with variable intensity
as the expression pattern we observed in odontogenic epithelial rests. Among these three
histological subtypes of ameloblastoma, the highest percentage of the tumor stained with
SOX2 was the plexiform type. Most of the positive cells were located in the peripheral cells
with lesser in the SR-like cells. Plexiform type ameloblastoma consists of anastomosing
cord-like odontogenic epithelium and is supported by matured fibrous tissue. The epithelial
components are comprised of peripheral ameloblast-like cells with lesser or absent presen-
tation of SR-like cells. The histological features should be the reason for why the plexiform
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type had the highest labeling index of SOX2 immunostain. We also noticed that the cells
with different morphology might have a distinct expression to SOX2. The majority of the
positive cells were round or oval in shape, as the features of primitive cells, but most of the
peripheral pre-ameloblast ⁄ ameloblast-like high columnar cells with reverse polarity were
negative to SOX2 [33]. These different appearances of tumor cells resemble the morphologic
change in the process of amelogenesis. In the process of amelogenesis, the precursor cells
of ameloblasts are cuboidal or low columnar in shape, then they convert to long columnar
cells as ameloblasts in the later stage [11,34]. Since SOX2 has been considered as a stem
cell marker [35], it is expressed in premature cells or cells with stem cell properties. This
finding implied the long columnar polarized ameloblasts are differentiated cells, while
these round or oval cells are undifferentiated, premature cells. Even though the tumor cells
within ameloblastoma are not true ameloblasts, we propose the morphological difference of
these tumor cells corresponds to different differentiation status as in amelogenesis. This is
a reason as to why most positive cells in ameloblastoma are round in shape, while negative
are columnar cells.

Juuri E et al. [29] showed that SOX2 was expressed in the epithelial cells of follic-
ular and plexiform ameloblastoma diffusely. However, Lei et al. [30] found that SOX2
staining was essentially negative in most ameloblastoma, with occasional positivity in
tumor cells. In contrast, it was diffusely and strongly positive in the tumor islands of
ameloblastic carcinoma. They assumed that SOX2 might be the potential marker for dys-
plastic change in ameloblastic neoplasms. In our investigation, when using the antibody
used by Lei et al., we found that the islands, anastomosing cords, and cystic lining of the
tumor display prominent scattered nuclear stains, especially in the peripheral cells. The
numbers of positive cells were not as rare as they pointed out. Most of ameloblastomas
arise from jawbones. For this reason, variable amounts of bone fragments are included in
specimens obtained from surgical procedures, and these specimens must be subjected to
decalcification for tissue processing. In our experience, the acid affected the consequence
of immunohistochemistry largely, resulting in false negative staining. This might be the
reason for why the cases of ameloblastoma were mostly negative to SOX2 immunostaining
in the study published by Lei et al. Therefore, we excluded the specimen that had been
subjected to decalcification. We only included cases collected from biopsy or enucleation
without the decalcified procedure in this study. Since many of collected cases were gathered
from a biopsy specimen, the amount of tumor within formalin fixed paraffin embedded
sections was limited. The labeling indices counted on sections of biopsy might not really
reflect the expression of the whole tumor. We had included several cases from biopsy and
further surgery of identical patients for investigation, and we found that there is an existing
discrepancy of expression levels in different tissue sampling. Nevertheless, the influence of
sampling error was difficult to determinate and avoid.

Ki-67 (MIB-1) is a well-established proliferative marker used in immunohistochemistry.
The labeling indices for Ki-67 in follicular, plexiform, and unicystic ameloblastomas were
within the range of several studies previously published [36–38]. We exhibited that the
Ki-67+ and SOX2+ cells belonged to a different population of tumor cells, and SOX2+ cells
were almost negative for Ki-67. Double-labeling cells in immunofluorescence were noted
in one case with soft tissue invasion and two cases with inflammatory condition. In these
three cases, the labeling indices of SOX2 were extremely high (Figure 4(D1,E1)), which
resembled the expression pattern of squamous epithelium (Figure 4F1). Transformation of
tumor morphology was seen in two plexiform cases with inflammatory cells infiltrate, the
appearance of the tumor strands was identical to proliferative squamous epithelium. We
proposed that the tumor behavior and inflammatory condition might affect the amount of
SOX2 expressing cells within a tumor.

Most of the tumor cells were exclusively positive for SOX2 or Ki-67 in immunohis-
tochemistry and immunofluorescence. This suggested that these SOX2+ cells might be
quiescent cells. Though ameloblastoma is a benign tumor, it is notorious for a high re-
current rate and locally invasive behavior. Vanner et al. displayed the SOX2+ cells were
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quiescent compared with other rapid-cycling tumor cells, and these SOX2+ cells drove
tumor regrowth after treatment in medulloblastoma [39]. It is possible that these quiescent
SOX2+ tumor cells give rise to the recurrent lesion in ameloblastoma. Several surveys
indicate the surgical methods affect the prognosis of ameloblastoma largely [1,38]. In
our collected cases, 13 cases were recurrent tumors; nine of them had well documented
surgical methods. Seven cases were treated by enucleation, and two underwent bone tumor
excision in the previous surgery. There was no recurrence in cases treated by bloc resection.
Some tumor nests might be remained when the tumor was not adequately removed. SOX2
expressing cells remaining in these nests might give rise to the recurrent disease. On the
other hand, SOX2 was thought to be a prognostic marker for patients with breast [22],
colorectal [20,26], gastric cancer [24], and melanoma [40]. More than one third of sinonasal
carcinoma harbored SOX2 amplification, and these cases were more likely to relapse after
primary therapy [25]. In our study, when comparing the SOX2 labeling indices between
non-recurrent and the recurrent group, or cases with further recurrent lesion and cases
without recurrence, no significant difference was noted. However, when comparing the
paired primary and recurrent lesions of same patient, we found that the labeling indices
were much higher in recurrent tumor than the primary one (Figure 5). This finding reflects
the increment of SOX2+ cells after treatment in medulloblastoma by lineage tracing [39],
and implies that SOX2+ population is responsible for the relapse of ameloblastomas.

In a transplantation study of skin squamous cell carcinoma (SCC) in mice, they showed
that SOX2 marked skin SCC tumor-propagating cells. They also found SOX2 was essential
for skin tumor maintenance [14]. In oral SCC, Chou et al. [41] revealed the downregulation
of SOX2 led to reduced proliferation, self-renewal, and tumorigenicity in oral cancer stem
cells (CSCs). By targeting SOX2, the tumourigenicity and EMT traits were decreased in
oral CSCs [41], and growth of medulloblastoma was also inhibited [39]. In our experiment,
the cell viability was reduced in both ameloblastoma cell lines by silencing SOX2. Collec-
tively, the role of SOX2-positive cells in ameloblastoma may be tumor-propagating and a
driver of recurrence. Considering the high recurrent rate and locally invasive nature of
ameloblastoma, patients who have recurrence will encounter extended surgical treatment
and reconstruction. Recently, peptide aptamer targeting SOX2 displayed inhibition of
proliferation and migration of esophageal SCC [42]. Since SOX2 exists in numerous tissues,
local delivery of drug targeting SOX2 may be a potential therapeutic option for recurrent
or unresectable ameloblastic neoplasms with amplification of SOX2.

BRAF inhibitor with or without MEK inhibitor for treatment of unresectable or
metastatic melanoma and metastatic non-small cell lung cancer with BRAF(V600E) muta-
tion were approved by the U.S. Food and Drug Administration [43]. A large proportion of
ameloblastomas harbor BRAF(V600E) mutation, the BRAF inhibitor with or without the
combination of MEK inhibitor was applied in several cases of unresectable or recurrent
ameloblastoma harboring BRAF(V600E) mutation [44–47]. In these case series, this targeted
therapy to BRAF mutated ameloblastomas revealed a significant response. The therapy
through BRAF/MEK inhibition might serve as a neoadjuvant and/or adjuvant therapeutic
option in unresectable ameloblastic neoplasms with BRAF(V600E) mutation. However,
after long-term application of BRAF inhibitor, residual tumor unresponsive to treatment
has been reported [45–47]. Relapse was also frequently present in several cancers under
treatment with BRAF inhibitor [48,49]. In our investigation, we found the drug resistant
clone of ameloblastoma cells revealed upregulation of SOX2. The amplification of SOX2
might assist the maintenance of stemness property and spur further recurrence.

In this study, we sorted out the expression patterns of SOX2+ and Ki-67+ cells in
dental follicle and ameloblastoma, confirmed a high rate of BRAF(V600E) mutation of
ameloblastomas in Asian patients, and these mutated cases showed significantly more
SOX2-positive cells. Several findings indicated that the SOX2 expressing cells played signif-
icant roles in propagation and recurrence of ameloblastoma and suggested BRAF(V600E)
mutation may contribute to the expansion of SOX2-positive cell compartment. However,
the role of SOX2 in clinical behavior of ameloblastoma and the cross-talks between SOX2
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and MAPK pathway have not been clarified. It needs further investigation to uncover what
roles SOX2 and BRAF play in the tumor biology of ameloblastoma. Since ameloblastoma is
a benign tumor, the establishment of an animal model and primary tumor cell culture for
ameloblastoma are difficult to execute. It may take time to overcome these problems for
further experiments.
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