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Abstract: For the tumors located in the anterior skull base, germinoma and craniopharyngioma
(CP) are unusual types with similar clinical manifestations and imaging features. The difference in
treatment strategies and outcomes of patients highlights the importance of making an accurate preop-
erative diagnosis. This retrospective study enrolled 107 patients diagnosed with germinoma (n = 44)
and CP (n = 63). The region of interest (ROI) was drawn independently by two researchers. Radiomic
features were extracted from contrast-enhanced T1WI and T2WI sequences. Here, we established the
diagnosis models with a combination of three selection methods, as well as three classifiers. After
training the models, their performances were evaluated on the independent validation cohort and
compared based on the index of the area under the receiver operating characteristic curve (AUC) in
the validation cohort. Nine models were established and compared to find the optimal one defined
with the highest AUC in the validation cohort. For the models applied in the contrast-enhanced
T1WI images, RFS + RFC and LASSO + LDA were observed to be the optimal models with AUCs of
0.91. For the models applied in the T2WI images, DC + LDA and LASSO + LDA were observed to be
the optimal models with AUCs of 0.88. The evidence of this study indicated that radiomics-based
machine learning could be potentially considered as the radiological method in the presurgical
differential diagnosis of germinoma and CP with a reliable diagnostic performance.

Keywords: machine learning; radiomics; texture analysis; magnetic resonance imaging; germinoma;
craniopharyngioma

1. Introduction

Germ cell tumors (GCTs) mostly occur in pediatric and young adult patients [1].
Germinoma is the most common subtype of GCTs, which accounted for approximately
two-thirds of GCTs [2]. The main differential diagnosis of germinoma located in the anterior
skull base is craniopharyngioma (CP), an intracranial tumor sharing similar clinical mani-
festations and imaging features with germinoma. Both of them are located in the suprasellar
cistern [3,4], and dominated by non-specific symptoms of an elevated intracranial pressure
symptom at the time of diagnosis, such as headache and nausea [4–7]. Other mutual
manifestations include visual impairment, pituitary axis dysfunction, and neurohormonal
diabetes insipidus [4–7]. Alpha-fetoprotein (AFP) and human chorionic gonadotropin
(HCG) are suggested as biochemical markers for GCTs [8,9]. While AFP and HCG are
not elevated in some GCT cases, histopathologic confirmation is often required for the
definitive diagnosis [10]. Furthermore, HCG is sometimes elevated in the serum or cere-
brospinal fluid of patients with craniopharyngioma [11,12]. In these cases, AFP and HCG
cannot be applied as reliable biomarkers to differentiate between GCT and CP. However,
the management of germinoma and CP is quite different. For example, the treatment
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for localized CP without hypothalamic or optical involvement is recommended as the
strategy of total resection [13], while for germinoma, radiotherapy alone or neoadjuvant
chemotherapy plus radiotherapy is recommended [14,15].

Magnetic resonance imaging (MRI) is highly suggested in the diagnosis of both tumors
for its advantages in excellent soft tissue resolution, multiple plane imaging, non-ionization
radiation, and non-iodine contrast agent [16]. However, the image patterns of germinoma
and CP were similar to each other, which commonly present as a mixed solid and cystic
tumor with contrast enhancement. Considering the differences in treatment strategies
and patients’ outcomes, the preoperative diagnosis of these tumors is difficult but crucial,
especially for young patients with space-occupying lesions in the sellar or parasellar
region [6,7,17].

Texture analysis (TA) is a subset of radiomics technology. The principle of TA is
extracting objective and quantitative texture features from images to provide information
that can be analyzed with mathematical methods or computer technology [18]. With the
ability to extract information that is invisible to the naked eyes, TA has been wildly utilized
in medicine to facilitate preoperative diagnosis by MR images and personalized decision-
making in the treatment [19]. Previous studies have shown the feasibility of TA-based
machine learning models in the radiological diagnosis of various brain tumors [20–22].
Therefore, the current study aims to evaluate whether texture features extracted from MR
images could be applied in the differentiation between germinoma and CP when combined
with machine learning algorithms.

2. Materials and Methods
2.1. Patient Selection

Electronic medical records of patients with germinoma or CP in our institution from
November 2014 to June 2018 were reviewed. The inclusion criteria of patients were as
follows: (1) Pathologic confirmation of germinoma or CP; (2) available high-quality preop-
erative MR scans performed in the radiological department; (3) the lesion was located in the
anterior skull base. The exclusive criteria were as follows: (1) Incomplete medical records
in diagnosis or treatment; (2) recorded history of any other intracranial disease; (3) patients
had undertaken a treatment, such as surgery, radiotherapy or chemotherapy prior to the
available MR scan. The workflow of the current study is shown in Figure 1. This study was
approved by the medical ethics committee of West China Hospital (2021-S-851) and the
informed consent was waived.
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2.2. Image Acquisition

Brain MR images of all the patients were examined in the Department of Radiology
with the 3.0T GE Scanners before surgery. In the current study, the contrast-enhanced
T1-weighted (T1WI) and T2-weighted (T2WI) sequences were chosen to perform TA, since
the boundary between the normal brain tissue and tumor is well-circumscribed on these se-
quences. The parameters of contrast-enhanced T1WI were as follows: TR/TE = 552/10 ms,
thickness = 5 mm, FOV = 15 × 15 cm2, and data matrix = 256 × 256. Gadopentetate dimeglu-
mine (0.1 mmol/Kg) was the contrast agent for contrast-enhanced images. In addition, the
multi-directional data of contrast-enhanced T1WI were collected within 200 s after the injec-
tion of gadopentetate dimeglumine. T2WI was acquired before the contrast-enhanced T1WI,
and the parameters of T2WI were as follows: TR/TE = 3000/80 ms, thickness = 5 mm,
FOV = 19 × 19 cm2, and data matrix = 256 × 256.

2.3. Radiomic Feature Extraction

Two neurosurgeons participated in the extraction of radiomic features using LifeX
package (http://www.lifexsoft.org accessed on 6 December 2020) and following the in-
structions on the website [23]. With the supervision of a senior radiologist with 10 years of
experience, the regions of interest (ROI) were drawn along the boundary of the lesions slice-
by-slice to obtain three-dimensional radiomic features (Figure 2). Clear cystic components
were not included in the ROI since the signal strength of MRI varies with the composition
of the cystic contents. Any disagreement on the segmentation was solved by consensus or
by the senior radiologist.
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Figure 2. Example of region of interest drawing. This figure shows magnetic resonance imaging of
(A) germinoma on contrast-enhanced T1WI; (B) germinoma on T2WI; (C) craniopharyngioma on
contrast-enhanced T1WI; (D) craniopharyngioma on T2WI before and after drawing.

In our study, a total of 40 features were extracted from the imaging into the classifier
dataset, which were derived from six matrices of two orders. The first-order features, which
include the Histogram-based matrix and Shape-based matrix, describe the correlation
of voxel intensity distributions. The second-order features, which consist of Gray-level
co-occurrence matrix (GLCM), Gray-level run length matrix (GLRLM), neighborhood gray-
level dependence matrix (NGLDM), and Gray-level zone length matrix (GLZLM), play
a major role in the quantification of radiomic features. The calculation of the first-order

http://www.lifexsoft.org
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features was accomplished through 64 same-size bins and the second-order features were
accomplished through grey levels, which were quantized into 64 levels.

2.4. Features Selection

In fact, 40 is a relatively large number and some of the features may not be relevant
to the differential process. In addition, superabundant features may cause inevitable
overfitting. Therefore, we applied three feature-selection methods to select the relevant
features, including distance correlation (DC), random forest feature selector (RFS), as well as
the least absolute shrinkage and selection operator (LASSO). Finally, each feature-selection
algorithm generated one feature subset and laid the groundwork for further analysis.

2.5. Prediction Modeling

The establishment of the prediction models was based on three classification algo-
rithms, including linear discriminant analysis (LDA, also known as Fisher linear discrimi-
nant), support vector machine (SVM), and random forest classifier (RFC). With different
combinations of selection methods and classifiers, a total of nine models were established,
trained, and validated. The dataset was randomly divided into the training cohort and the
validation cohort at a ratio of 4 to 1. Feature selection and prediction model training were
performed on the training cohort, and then the performances of models were tested on the
corresponding validation cohort, which was repeated for 100 cycles. The evaluation of the
model performance was based on their diagnostic performance in the validation cohort
with the calculation of sensitivity, specificity, accuracy, and the area under the receiver
operating characteristic curve (AUC). Here, we used Scikit-learn 0.22, a Python module
for machine learning to apply feature selection and classification procedures with the
parameters suggested by the developers.

3. Results
3.1. Patient Characteristics

According to the inclusion and exclusion criteria, we identified 107 patients which
consisted of 44 germinomas and 63 CPs. The median age of patients with germinoma was
14 (range 1–44) years, and the age of patients with CP was 30 (range 2–73) years. The male
rates of patients with germinoma and CP were 19/44(43.2%) and 37/63(58.7%), respectively.
All of the patients had a biopsy of tumor and the diagnoses were made on frozen section
pathology, paraffin section pathology, and immunohistochemistry.

3.2. Diagnostic Value of Models

In this study, three feature-selection methods and three classifiers were used. In
addition, nine diagnostic models were established. Detailed selected radiomic features in
each circle are listed in Supplementary Material 1. We sorted the radiomic features by their
sum of contribution in the 100 ranking lists in a descending order, and the top six features
selected by each feature selector are listed in Table 1.

Table 1. The top radiomic features sorted by their sum of contribution in the 100 ranking lists in
descending order.

Sequence Feature
Selector Feature

Contrast-
enhanced

T1WI

DC HISTO_Energy GLCM_Homogeneity GLRLM_RP GLCM_Energy HISTO_Entropy_log10 GLZLM_ZLNU
RFS minValue GLZLM_SZE GLZLM_LZE NGLDM_Busyness GLZLM_LZLGE GLRLM_HGRE

LASSO GLZLM_ZLNU GLZLM_SZE HISTO_Energy HISTO_Entropy_log10 NGLDM_Coarseness minValue

T2WI
DC GLRLM_RP GLRLM_SRE GLCM_Homogeneity GLRLM_LRHGE GLRLM_SRLGE GLRLM_HGRE
RFS GLZLM_LZHGE GLZLM_LZE GLRLM_HGRE GLRLM_SRLGE minValue GLZLM_SZE

LASSO GLCM_Homogeneity GLZLM_ZLNU GLRLM_HGRE NGLDM_Coarseness GLZLM_SZHGE GLRLM_RP

Abbreviations: DC: Distance correlation; RFS: Random forest feature selector; LASSO: Least absolute shrinkage
and selection operator.
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The diagnostic values of models were evaluated based on the AUCs in the validation
cohort. Regarding the contrast-enhanced T1WI sequence, the RFS + RFC and LASSO + LDA
were observed to be the optimal methods with AUCs above 0.9, which were all 0.91
(Table 2, Figure 3), while overfitting was observed in the classifier of SVM when it was
combined with RFS; see Table 3 regarding the sensitivity, specificity, accuracy, and AUC
in the training cohort and validation cohort of RFS + RFC and LASSO + LDA models. A
detailed performance of all the models using parameters from the contrast-enhanced T1WI
sequence is shown in Supplementary Material 2.

Table 2. AUCs of the training and validation cohorts in different models using parameters from the
contrast-enhanced T1WI or T2WI.

Model
Contrast-Enhanced T1WI T2WI

Training Cohort Validation Cohort Training Cohort Validation Cohort

DC + LDA 0.91 0.89 0.88 0.88
RFS + LDA 0.93 0.86 0.85 0.85

LASSO + LDA 0.97 0.91 0.92 0.88
DC + SVM 0.83 0.82 0.87 0.87
RFS + SVM 1 0.5 1 0.5

LASSO + SVM 0.80 0.75 0.86 0.86
DC + RFC 0.89 0.79 0.92 0.84
RFS + RFC 0.97 0.91 0.95 0.78

LASSO + RFC 0.95 0.83 0.95 0.83
Abbreviations: AUC: Area under the receiver operating characteristic curve; DC: Distance correlation; LDA:
Linear discriminant analysis; RFS: Random forest feature selector; LASSO: Least absolute shrinkage and selection
operator; SVM: Support vector machine; RFC: Random forest classifier.

Table 3. Diagnostic value of the optimal models using parameters from the contrast-enhanced T1WI
or T2WI sequences.

Model
Training Cohort Validation Cohort

Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy AUC

Contrast-enhanced T1WI
RFS + RFC 0.87 0.95 0.91 0.97 0.81 0.84 0.83 0.91

LASSO + LDA 0.84 0.92 0.89 0.97 0.80 0.84 0.82 0.91

T2WI
DC + LDA 0.74 0.84 0.80 0.88 0.75 0.81 0.79 0.88

LASSO + LDA 0.75 0.90 0.83 0.92 0.71 0.82 0.77 0.88

Abbreviations: AUC: Area under the receiver operating characteristic curve; RFS: Random forest feature selector;
RFC: Random forest classifier; LASSO: Least absolute shrinkage and selection operator; LDA: Linear discriminant
analysis; DC: Distance correlation.

For the T2WI sequence, four patients with germinoma and five patients with CP were
not examined before the operation. DC + LDA and LASSO + LDA were observed to be
the optimal algorithms with AUCs of 0.88 (Table 2, Figure 3). Overfitting was observed in
RFS + SVM again, indicating that this model might be unqualified for the discrimination
of germinoma and CP. Table 3 shows the sensitivity, specificity, accuracy, and AUC in
the training cohort and validation cohort of DC + LDA and LASSO + LDA models. A
detailed performance of all the models using parameters from the T2WI sequence is shown
in Supplementary Material 3.
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4. Discussion

To the best of our knowledge, the current study was the first to apply radiomics-based
machine learning in the differentiation between germinoma and CP. Here, we have prelimi-
narily demonstrated that the combination of machine learning algorithms and radiomic
features extracted from MR images is helpful in the differential diagnosis of these two types
of tumors, providing a new method to assist in conventional radiological diagnosis.

Our results of the combination of TA and machine learning could lead to the devel-
opment of a novel method that would promote the preoperative diagnosis of germinoma
and CP. The accurate preoperative diagnosis of germinoma or CP is crucial in the dramatic
differences of the treatment strategies of these two types of tumors. Researches on MRI,
the most important examination for intracranial tumors, have shown that some imaging
characteristics could be considered significant in the diagnosis. For example, the imaging
characteristic of germinoma component is solid, which is predominant with the heteroge-
neous enhancement of the solid portion on the contrast-enhanced T1WI, while CP is cystic,
which is predominant with a marginal enhancement of the multi-cystic lesion [24]. Mean-
while, the apparent diffusion coefficient (ADC) of CP is usually higher than germinoma
on diffusion-weighted imaging (DWI) sequences [25]. However, the overall radiological
diagnostic accuracy of CP and germinoma was reported to be 87 and 64%, respectively,
given the heterogeneity of tumor components as well as the inter- and intra-observer vari-
ability [26]. The misdiagnosis could be worse, especially for some germ cell tumor cases
with cartilaginous tissue differentiation [27].

Recent researches have applied machine learning technology to the evaluation of
neuroimaging in many fields, such as differential diagnosis, biological characterization,
treatment response monition, and patient outcome prediction [28–31]. Radiomic fea-
tures extracted from MR images are quantitative and the analyzable data are fed into
machine learning algorithms. Previously, radiomics-based machine learning studies re-
ported the satisfactory performance of prediction models on the differentiation of primary
central nervous system lymphoma and glioblastoma, low-grade glioma and glioblastoma,
brain metastasis and glioblastoma, meningioma grading, as well as low- and high-grade
gliomas [29,32–35]. It is expected that radiomics-based machine learning will have a good
prospect of application in neuroimaging.

Although the high-throughput TA can provide a large and complex dataset, it makes
good use of the whole region of tumor information. However, the dataset usually contains
a high level of noise and redundant features. Moreover, it can lead to the high correlation
among the extracted features and inevitable risk of overfitting, causing the degeneration
of performance. Therefore, the selection of features is necessary. In this study, we applied
three selection algorithms, DC, RFS, and LASSO, in order to maximize the relevance to
the labels of classification. Selection methods are based on the collaboration of feature
importance ranking and model estimation. They are divided into three subcategories:
“Filter”, in which the score of feature importance does not depend on the given classifier;
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“wrapper”, which utilizes the classifier of interest to score and rank feature importance; and
“embedded”, which embeds features inside the classifier construction, while generating
more intricate feature selection and model estimation [36]. “Embedded” and “wrapper”
are similar in some aspects. However, “embedded” is more effective as it makes better use
of the data and avoids retraining a model from scratch for every feature subset. Among
the three selection methods, DC represented “filter”, while RFS and LASSO represented
“embedded”. The results showed that the application of different selection algorithms had
an impact on the performance of the models. Among the classifiers, LDA represents the
linear classifier that classifies two or more classes via a linear combination of features [37].
SVM, a non-linear classifier, constructs a decision hyperplane and achieves the separation
of classes by maximizing the margin between the training samples of classes and the
hyperplane [37]. RFC, a statistically non-parametric classifier, is realized by performing
a weighted ensemble of predictive probabilities of de-correlated trees [38,39]. The main
advantage of RF is its relatively simple structure, which facilitates the interpretation and
visualization of results.

The results of this study showed that the best prediction models were constructed by
RFS with RFC and LASSO with LDA in the contrast-enhanced T1WI, as well as DC with
LDA and LASSO with LDA in T2WI. Both of the LDA and RFC classifiers had relatively
consistent diagnostic performances. While overfitting was observed in the model of RFS
+ SVM in both of the MRI sequences. We are not able to determine what exactly caused
the overfitting, but considering that RFS + RFC achieved the highest AUC of 0.91, we
hypothesize that the overfitting was caused by the dependence of SVM on kernel functions
and support vectors. We tend to assume that LASSO + LDA can be successfully applied
in the presurgical diagnosis of germinoma and CP, due to its robust performance in both
contrast-enhanced T1WI and T2WI. However, the variance of diagnostic performance of
different selection algorithms might attribute to the relatively small sample size.

There were also several limitations in our study. First, this work was conducted in a
single institution. It is unclear whether the results could translate into other institutions
or even other patients that were not included in the study since the training and valida-
tion processes were performed within a specific population. However, the calculation of
radiomic features could be affected by the imaging settings, such as MR scanners and the
thickness of slices. Using the radiological data of one center can avoid the inconsistency of
imaging settings. Second, the sample size was relatively small. This is a common limitation
of other similar studies, which limits the performance of prediction models since it is highly
dependent on the training data. Third, this was a retrospective study with an inherent
restriction on the inevitable selection bias. Finally, we only extracted radiomic features
from two sequences (contrast-enhanced T1WI and T2WI). Features from other sequences,
such as fluid-attenuation inversion recovery and DWI, were not evaluated. Further studies
are required to assess the diagnostic values of machine learning from other sequences
with a larger sample size. Furthermore, the size of ROI was not assessed in this study.
However, some features are dependent on the size of ROI, such as SHAPE_Volume (mL),
while SHAPE_Volume (mL) was not in the final list of relevant features after summarizing
the results of feature selection in the 100 cycles.

5. Conclusions

In conclusion, the evidence of this study indicated that radiomics-based machine
learning could facilitate the preoperative differential diagnosis between germinoma and
CP. In addition, primary intracranial tumors that have similar clinical manifestations
and radiological features but different treatments, had a reliable diagnostic performance.
Here, we established high-performance prediction models based on selection methods and
classifiers, indicating that this non-invasive approach has the potential to assist in image
diagnosis and aid in personalized clinical decision-making.
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