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Abstract: Background: Mini-Mental State Examination (MMSE) is the most widely used tool in cog-
nitive screening. Some individuals with normal MMSE scores have extensive cognitive impairment.
Systematic neuropsychological assessment should be performed in these patients. This study aimed
to optimize the systematic neuropsychological test battery (NTB) by machine learning and develop
new classification models for distinguishing mild cognitive impairment (MCI) and dementia among
individuals with MMSE ≥ 26. Methods: 375 participants with MMSE ≥ 26 were assigned a diagnosis
of cognitively unimpaired (CU) (n = 67), MCI (n = 174), or dementia (n = 134). We compared the
performance of five machine learning algorithms, including logistic regression, decision tree, SVM,
XGBoost, and random forest (RF), in identifying MCI and dementia. Results: RF performed best
in identifying MCI and dementia. Six neuropsychological subtests with high-importance features
were selected to form a simplified NTB, and the test time was cut in half. The AUC of the RF model
was 0.89 for distinguishing MCI from CU, and 0.84 for distinguishing dementia from nondementia.
Conclusions: This simplified cognitive assessment model can be useful for the diagnosis of MCI and
dementia in patients with normal MMSE. It not only optimizes the content of cognitive evaluation,
but also improves diagnosis and reduces missed diagnosis.

Keywords: machine learning; dementia; cognitive dysfunction; neuropsychological tests; mental
status and dementia tests

1. Introduction

The prevalence of dementia is rising with the aging of the population, affecting the
quality of life and increasing the burden on society and the family [1]. Mild cognitive
impairment (MCI) is considered a transitional stage between normal aging and dementia,
with a higher risk of developing dementia. The diagnosis of MCI and dementia early has
prognostic value [2,3].

The most widely used screening tool for dementia is the Mini-Mental State Examina-
tion (MMSE) [4], a 30-point instrument that assesses several domains including orientation,
attention, language, memory, and executive function. MMSE has good sensitivity and
specificity for detecting dementia. Creavin et al. reported that in the community, a pooled
sensitivity of 0.85 and specificity of 0.90 at a cut point of 24, and sensitivity of 0.87 and
specificity of 0.82 at a cut point of 25 [5]. Pooled estimates of 15 studies showed a sensi-
tivity of 0.89 and specificity of 0.89 at a cut point of 23 or less or 24 or less [6]. However,
the sensitivity (0.20–0.93) and specificity (0.48–0.93) to detect MCI vary significantly in
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different studies, meaning less consistent estimates for test accuracy [6]. Thus, its ability to
distinguish between cognitively impaired subjects and cognitively unimpaired (CU) adults
is limited [7–9], leading to the possibility that some patients with normal MMSE scores but
cognitive impairment may be missed.

For these individuals with normal MMSE scores, a more comprehensive cognitive
assessment is needed. The systematic neuropsychological test battery (NTB) designed by
the Peking Union Medical College Hospital (PUMCH) consists of more than 20 subtests
to evaluate five cognitive domains: executive function, visuospatial ability, language,
memory, and abstract reasoning and calculation [10]. It takes into account Chinese culture
and language and is suitable for the Chinese elderly to detect MCI and dementia. All
these subtests have been used and validated in the Chinese population, and normative
population data were available. However, administering such a comprehensive battery is
time-consuming.

Recent studies had shown that machine learning (ML) exhibited excellent performance
in identifying MCI and dementia [11–17], but these mostly used biomarker data such as
neuroimaging and CSF components that were expensive technologies [12,13,16]. ML diag-
nostic models based on cognitive data were gradually being applied [11,15,18,19]. Random
forest (RF), an ensemble ML method based on a set of decision trees, has positive signifi-
cance in processing complex neuropsychological data and excellent predictive performance
for the diagnosis of cognitive impairment [15]. Using the feature selection method in RF, we
can determine the importance of features and delete insignificant ones, thereby reducing
the complexity of the NTB.

Therefore, the purpose of this study was to use RF to simplify the NTB and shorten
evaluation time. Several important neuropsychological subtests were selected, and new
RF models were developed to classify CU, MCI, and dementia for people with normal
MMSE scores.

2. Materials and Methods
2.1. Participants

375 (67 CU adults, 174 MCI patients and 134 dementia patients) participants were
enrolled consecutively from the PUMCH dementia cohort, the Dementia Clinic of the
Department of Neurology of PUMCH between May 2009 to April 2021. They received a
detailed clinical evaluation that included medical history taking, physical and neurological
examinations, a systemic of neuropsychological tests, laboratory testing, and neuroimaging
studies (head CT or MRI). The inclusion criteria included MMSE score ≥ 26, with normal
function in motor, sensory, balance, reflex, and ability to complete all neuropsychological
tests. Patients with significant functional disabilities, a history of major psychiatric illness, or
any other central nervous system disorders other than cognitive impairment were excluded.

2.2. Neuropsychological Examinations

Cognitive tests included the Chinese version of the MMSE [20] and the PUMCH
version of Montreal cognitive assessment (MoCA-P) [10]. Previous studies had shown
that MMSE scores were influenced by age, gender, and particularly years of education [9].
Several studies that investigated the normative data of the MMSE in the Chinese population
got different optimal cut-off points ranging from 19 to 26 for dementia screening [9,21,22].
In this study, we defined ≥26 points as normal MMSE scores. A Chinese version of
ADL was used to determine impairment in everyday functioning [23], which was revised
and supplemented according to the scale of Lawton and Brody [24], consisting of eight
activities focused on instrumental ADL (IADL) (including using telephone, shopping, food
preparation, housekeeping, laundry, transportation, managing medications, and handling
finances) and 12 activities focused on the basic ADL (BADL) (e.g., dressing, bathing, eating,
getting in or out of bed, using the toilet and so on). Each item of ADL range from 1 to 4
(1 = can do it myself, 2 = have some difficulty doing but can still do it by myself, 3 = need
help to do it, 4 = cannot do it at all). The lowest ADL score was 20 points, indicating that
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the patient’s ability was completely normal, and the highest was 80 points. The Hospital
Anxiety and Depression (HAD) scale was used to screen for anxiety and depression among
patients [25]. Participants were administered the above assessments as the diagnostic
neuropsychological measures.

All subjects underwent the systemic NTB to evaluate five cognitive domains. These
were: (1) Executive function: category verbal fluency [26], the digit symbol test (DST) [27],
the trail making test A (TMT A) [28], the clock drawing test [8], paired-associate learning
(PAL) of The Clinical Memory Test [29], the block design test of the Aphasia Battery of Chi-
nese [30], and modified Luria three-step task [31]; (2) Visuospatial ability: the block design
test and figure copying of the Aphasia Battery of Chinese [30], the copy of a modified Rey-
Osterrieth figure [32], and gestures imitation; (3) Language: several subtests of the Aphasia
Battery of Chinese including spontaneous speech, auditory comprehension, repetition, and
naming [30]; (4) Memory: PAL, the logical memory test (LMT) of the modified Wechsler
Memory Scale [33], and the auditory verbal learning test-Huashan version (AVLT-H) [34]
were used to assess verbal memory. Nonverbal memory was measured by the modified
Rey-Osterreith with a 10-min free recall; and (5) Abstract reasoning and calculation: sub-
tests of the Wechsler Adult Intelligence Scale including similarities and calculations [27].
All subtests of NTB were not used to assist in making the clinical diagnosis of MCI or
dementia, but as screening tests for machine learning.

2.3. Diagnostic Criteria

A clinical diagnosis of CU, MCI, or dementia was made based on all available informa-
tion including clinical history and neuropsychological measures. MCI and dementia were
diagnosed based on clinical judgment and/or on cognitive test performance according to
the clinical criteria of the National Institute on Aging and the Alzheimer’s Association (NIA-
AA) guidelines [35–37]. Dementia diagnostic criteria included the following: evidence of
decline from a previous level of cognitive performance; cognitive impairment diagnosed
through history-taking and/or cognitive assessment; evidence of impairment in activities
in daily living (ADL score > 23, IADL score > 11). MCI diagnostic criteria included the
following: evidence of decline from a previous level of cognitive performance; no evidence
of impairment in activities in daily living (ADL score ≤ 23, IADL score ≤ 11); not meeting
the criteria for dementia. Subjects in the CU group had no or only mild cognitive decline,
and neuropsychological tests were in the normal range.

2.4. Statistical Analysis

Continuous variables were described as mean ± standard deviation (M ± SD) and
categorical variables as numbers and percentages (n, %). ANOVA with Bonferroni post-
hoc tests or chi-square analysis was applied to detect significant differences between the
different subgroups. A p-value of <0.05 was considered statistically significant. Statistical
analysis was performed by SPSS version 24.0 software (Chicago, IL, USA).

2.5. Machine Learning

We manually extracted 64 features, including basic demographic information (sex,
age, education years, etc.) and neuropsychological scores of NTB. All features were listed
in Supplementary Table S1. At first, we used RF to calculate the importance of all features
and perform feature selection. We tested all features with five-fold cross-validation and
used mean area under the curves (AUC) as the performance metric. Different features
had different importance in diagnosing dementia. Selecting the top-ranked features and
filtering out the bottom-ranked features can simplify the classification process.

Next, other classification models, including logistic regression, decision tree, SVM,
and XGBoost were trained and compared with RF. The performance of various models was
evaluated by accuracy, precision, recall, F1 score, and AUC.

After selecting the features with high importance or the features we were interested in,
5-fold cross-validation was employed to train classification models, and the corresponding
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receiver operating characteristic (ROC) curves were also plotted. For each model, we got
three ROC curves to distinguish CU, MCI, and dementia. The performance of each model
effectiveness was evaluated using the mean ROC of the 5-fold cross-validation, the mean
AUC, sensitivity, and specificity. AUC takes a value between 0 and 1, where AUC = 1
represents perfect diagnostic accuracy. Sensitivity is the true positive rate and specificity is
the true negative rate. Sensitivity and specificity were calculated according to the maximal
Youden’s Index (sensitivity + specificity−1).

Classification models were built by using Python 3.7.9 with the package scikit-learn
0.23.2.

3. Results
3.1. Participants’ Characteristics

375 participants, 161 men and 214 women, aged 65.51 ± 11.46 years, were recruited.
Of these, 67 (17.9%) were CU, 174 (46.4%) had MCI, and 134 (35.7%) had dementia. Table 1
shows the baseline demographic and cognitive profiles of the three groups. The dementia
group was significantly older than the MCI group, and years of education were significantly
higher in the CUs than in the subjects with MCI and dementia. There was no significant
gender difference between the three groups. For MMSE and MoCA-P scores, CU > MCI >
dementia (p < 0.001); for ADL, IADL and BADL, CU = MCI < dementia.

Table 1. Comparison of demographic details and cognitive data among the groups.

Total n = 375 CU n = 67 MCI n = 174 Dementia
n = 134 χ2/F a Post Hoc Tests b,c

Age (years) 65.51 ± 11.46 63.24 ± 12.00 64.16 ± 11.61 68.41 ± 10.44 7.05 ** 1 = 2 < 3
Gender (% female) 214 (57.1%) 43 (64.2%) 99 (56.9%) 72 (53.7%) 1.99 -

Education years 12.28 ± 3.91 13.88 ± 3.34 11.93 ± 3.98 11.96 ± 3.92 6.63 ** 1 > 2 = 3
MMSE 27.80 ± 1.31 28.70 ± 1.17 27.95 ± 1.22 27.15 ± 1.17 40.42 ** 1 > 2 > 3

MoCA-P 24.35 ± 3.08 27.18 ± 1.65 24.64 ± 2.77 22.54 ± 2.82 71.52 ** 1 > 2 > 3
ADL 24.34 ± 4.57 21.78 ± 2.05 22.26 ± 2.53 28.31 ± 4.85 136.32 ** 1 = 2 < 3
IADL 11.39 ± 3.30 9.45 ± 1.82 9.82 ± 1.99 14.39 ± 3.11 160.18 ** 1 = 2 < 3
BADL 12.95 ± 1.92 12.33 ± 0.73 12.45 ± 1.01 13.93 ± 2.69 31.29 ** 1 = 2 < 3

HAD-anxiety 4.66 ± 3.38 4.45 ± 3.15 4.48 ± 3.52 5.01 ± 3.29 1.06 -
HAD-depression 4.88 ± 3.48 4.50 ± 3.50 4.46 ± 3.44 5.64 ± 3.41 4.86 * 1 = 2 < 3

Data were shown as mean ± standard deviation (SD) or frequency (percentage, %). a Test statistic: F = one-way
ANOVA value; χ2 = chi-square test value. b 1: CU group; 2: MCI group; and 3: Dementia group. c Pair-
wise comparisons among the three groups of subjects were conducted using the Bonferroni post hoc tests.
* p < 0.05; ** p < 0.001. Abbreviations: ADL = Activities of Daily Living; BADL = Basic ADL; CU = Cognitively
Unimpaired; HAD = Hospital Anxiety and Depression; IADL = Instrumental ADL; MCI = Mild Cognitive Impair-
ment; MMSE = Mini-Mental State Examination; MoCA-P = PUMCH version of Montreal Cognitive Assessment;
PUMCH = Peking Union Medical College Hospital.

3.2. Assessment of Feature Importance

We extracted all features (64 features) into the RF classification model and calculated
feature importance. ROC analysis for the detection of MCI and dementia and the top
20 features were shown in Figure 1. ROC-AUC of all features for distinguishing MCI from
CU was 0.90 ± 0.04, sensitivity and specificity were 0.89 and 0.77 (Figure 1A), and the most
important feature was PAL-T (total score of the three learning trials of PAL) (Figure 1B).
ROC-AUC of all features for distinguishing dementia from MCI was 0.81 ± 0.07, sensitivity
and specificity were 0.75 and 0.74 (Figure 1C), and the most important feature was AVLT
N5 (the fifth long-delayed free recall trial of AVLT-H) (Figure 1D). ROC-AUC of all features
for distinguishing dementia from non-dementia was 0.87 ± 0.04, sensitivity and specificity
were 0.90 and 0.73 (Figure 1E), and the most important feature was AVLT N5 (Figure 1F).
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Figure 1. Receiver operating characteristic (ROC) curve analysis for the detection of MCI and
dementia and the optimal 20 features. (A) ROC curve of all features for the detection of MCI from
CU. (B) 20 top-ranked features for the detection of MCI from CU. (C) ROC curve of all features for
the detection of dementia from MCI. (D) 20 top-ranked features for the detection of dementia from
MCI. (E) ROC curve of all features for the detection of dementia from non-dementia. (F) 20 top-
ranked features for the detection of dementia from non-dementia. Abbreviations: AVLT N1 = the
first learning trial of AVLT-H (auditory verbal learning test-Huashan version); AVLT N3 = the third
learning trial of AVLT-H; AVLT N4 = the fourth short delayed free recall trial of AVLT-H; AVLT N5 =
the fifth long delayed free recall trial of AVLT-H; AVLT N6 = the sixth delayed category cue recall
trial of AVLT-H; AVLT-L = total score of AVLT N1, N2,and N3; AVLT-T = total score of AVLT N1, N2,
N3, N4 and N5; BDT-T = total score of the block design test; CVF = category verbal fluency; DST =
Digit Symbol Test; HAD = hospital anxiety and depression; LMT N2 = the second story of logical
memory test (LMT); LMT N3 = the third story of LMT; LMT-T = total score of LMT; PAL N1 = The
first learning trial of PAL (paired-associate learning); PAL N1-Simple part = simple word pairs of PAL
N1; PAL N2 = The second learning trial of PAL; PAL N2-Difficult part = difficult word pairs of PAL
N2; PAL N3 = The third learning trial of PAL; PAL N3-Difficult part = difficult word pairs of PAL N3;
PAL-T = total score of PAL N1, N2, and N3; TMT A = trail making test A; TMT B = trail making test B.
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3.3. Performance of Various Classification Models

Table 2 shows the performance of various classification models. The accuracies of
the logistic regression, decision tree, SVM, XGBoost, and RF models were 0.605, 0.597,
0.624, 0.664, and 0.680, while the AUCs were 0.796, 0.696, 0.809, 0.816, and 0.852. Among
these methods, The RF classifier achieved the most stable performance with high accuracy
compared with other classifiers.

Table 2. Performance of models trained by various methods.

Accuracy Precision Recall F1 Score ROC-AUC

Logistic Regression 60.53 60.80 60.08 60.12 79.62
Decision Tree 59.73 60.48 60.86 60.21 69.55

SVM 62.40 65.37 59.29 61.17 80.87
XGBoost 66.40 67.78 66.15 66.70 81.61

Random Forest 68.00 71.09 66.73 68.02 85.17

3.4. Selecting the Optimal Neuropsychological Tests to Establish Diagnostic Models

Finally, we selected six interested neuropsychological subtests with 22 high impor-
tance features (including AVLT-H, PAL, modified Rey figure, LMT, DST, and TMT A). The
selected features contained in each neuropsychological subtest were listed in Supplemen-
tary Table S2. These features trained four new RF diagnosis models. The Performance
(ROC AUC, sensitivity, and specificity) of these four models were shown in Table 3. If we
selected three selected subtests (AVLT-H, PAL, and modified Rey figure) with 19 features to
establish the diagnosis model, AUC to detect CU from MCI, MCI from dementia, dementia
from nondementia was 0.86, 0.77, 0.84, respectively. If we selected four subtests (AVLT-H,
PAL, modified Rey figure, and LMT) with 20 features, AUC to discriminate CU from MCI,
MCI from dementia, dementia from non-dementia was 0.87, 0.79, 0.83. If we selected five
subtests (AVLT-H, PAL, modified Rey figure, LMT, and DST) with 21 features, AUC to
detect CU from MCI, MCI from dementia, dementia from nondementia was 0.86, 0.77, 0.84,
respectively. When we chose all six important subtests with 22 selected features to establish
the RF classification model, AUC to detect CU from MCI was 0.89 (sensitivity = 0.87 and
specificity = 0.85), AUC to detect MCI from dementia was 0.79 (sensitivity = 0.84 and speci-
ficity = 0.63), and AUC to detect dementia from nondementia was 0.84 (sensitivity = 0.72
and specificity = 0.81). RF Model based on 22 neuropsychological features was almost
equivalent to the model established using all 64 features. At the same time, the cognitive
tests time was reduced from more than an hour to 30 min.

Table 3. Performance of the four new RF diagnosis models on the classification of CU, MCI, and Dementia.

New Diagnosis
Models Subtests of Interest

Number
of

Features

ROC AUC for CU
vs. MCI

(Sensitivity,
Specificity)

ROC AUC for
MCI vs. Dementia

(Sensitivity,
Specificity)

ROC AUC for
Dementia vs.
Nondementia
(Sensitivity,
Specificity)

Model-1 PAL, AVLT-H,
Modified-Rey 19 0.86 (0.79, 0.84) 0.77 (0.68, 0.76) 0.84 (0.72, 0.81)

Model-2 PAL, AVLT-H,
Modified-Rey, LMT 20 0.87 (0.78, 0.84) 0.79 (0.76, 0.66) 0.83 (0.70, 0.83)

Model-3 PAL, AVLT-H,
Modified-Rey, LMT, DST 21 0.87 (0.83, 0.84) 0.79 (0.81, 0.65) 0.84 (0.84, 0.71)

Model-4
PAL, AVLT-H,

Modified-Rey, LMT, DST,
TMT A

22 0.89 (0.92, 0.74) 0.79 (0.84, 0.63) 0.84 (0.85, 0.73)

Abbreviations: AVLT-H = Auditory Verbal Learning Test-Huashan version; CU = Cognitively Unimpaired; DST =
Digit Symbol Test; LMT = Logical Memory Test; MCI = Mild Cognitive Impairment; Modified-Rey = Modified
Rey-Osterreith figure; PAL = Paired-Associate Learning.
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4. Discussion

The present study found that 35.7 percent of subjects with MMSE scores ≥ 26 had
evidence of dementia. Similar results have been obtained from previous studies [38,39].
This suggests that MMSE, as the only cognitive testing tool, is not sufficient to diagnose
cognitive impairment. According to the 2011 NIA-AA criteria of “dementia”, when clinical
history and bedside cognitive tests cannot provide evidence of cognitive impairment,
neuropsychological tests should be performed [36]. In this study, we applied the RF
algorithm to determine the contribution of different cognitive tests and to screen out
efficient neuropsychological features for better diagnosis of cognitive impairment. Our
results showed that the RF algorithm has satisfactory performance in the task of diagnosing
MCI (AUC = 0.89) and dementia (AUC = 0.84). The ML method helped develop a simplified
version of NTB for CU, MCI, and dementia classification in patients with MMSE scores
≥ 26. The diagnostic model finally included six neuropsychological tests with highly
important features, and other low-importance tests were deleted, thus greatly shortening
the evaluation time.

The NTB is suitable for the Chinese cultural background and language habits, but the
normative data of its subtests have not been updated for a long time. As the education level
and living conditions of the Chinese have improved significantly in recent decades, the
clinical value of the norms has been limited. Reestablishing the norms for large samples is
time-consuming and requires organization and resources to conduct. In addition, the norms
are influenced by many factors such as age, gender, education level, and residence (rural or
urban). ML has the potential to solve the above problems by allowing multi-dimensional
interactions between variables [15]. It also can rank variables that are critical to assessing
cognitive impairment, which can be used to optimize neuropsychological testing [40,41].
RF can handle both linear and non-linear data and offers an advanced method to deal
with outliers or missing values [42]. It has been used to solve classification and regression
problems and can serve as a powerful tool to distinguish MCI and dementia [43]. Studies
have found that the RF algorithm has excellent efficiency in diagnosing dementia based
on neuropsychological testing [15]. Kleiman et al. reported that RF two-class classification
showed greater clinical utility compared to the three-class approach in classifying cogni-
tive impairment [44]. Therefore, our two-class models for distinguishing MCI from CU,
dementia from MCI, or dementia from nondementia.

One review [45] that included 59 studies indicated that MMSE, as a global cognitive
screening tool, showed the highest discrimination coefficient in the ML automatic clas-
sification of cognitive impairment. However, previous studies did not focus on people
with normal MMSE scores when developing diagnostic models or optimizing neuropsy-
chological tests using ML methods [45]. In these studies, subjects with MCI and mild
dementia had significantly lower baseline scores on the bedside cognitive tests than our
sample [11,41,44,46,47]. For example, Quintana et al. [47] reported that the mean MMSE
score of the MCI group and dementia group was 25.77 ± 2.22, 20.37 ± 3.98, respectively. In
the Chiu et al. [11] study, the mean MMSE and MoCA scores in the very mild dementia
group were 19.7 ± 4.7, 12.4 ± 6.0, respectively. Lower MMSE scores indicate more severe
impairment of cognition, and the diagnostic accuracy of the ML model developed based
on this situation will be higher, which means that it is more difficult to detect dementia in
people with normal MMSE. Classification models using ML on demographical and neu-
ropsychological data in the literature showed wide heterogeneity in performance metrics.
Weakley et al. [48] reported a sensitivity and specificity of 0.84 and 0.89 for differentiating
MCI from CU, and 0.95 and 0.97 for dementia and CU, and Battista et al. [41] with 0.98
and 0.81 for MCI, and 1.00 and 0.96 for dementia. In this work, the selected sample were
subjects whose MMSE was higher than the cut-off value. This is the first time to address
the question that classifies people with normal MMSE. Our results showed that the RF
model has good sensitivity (0.87) and specificity (0.85) for differentiating MCI from CU, as
well as good sensitivity (0.85) and specificity (0.73) for dementia from nondementia.
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RF had also been proven to be more effective in feature selection. Previous studies
that focused on ML and cognitive measures had the disadvantage of having fewer neu-
ropsychological features [47,49], or they just focused on the comparison between MCI
and CU or CU and dementia [50,51]. Our study included 20 neuropsychological tests and
compared CU, MCI, and dementia groups. The most frequent optimal neuropsychological
tests reported in the literature were episodic memory [41,47,49] (like AVLT, logical mem-
ory test) and semantic fluency [46,47,52]. However, these neuropsychological measures
mainly focus on Alzheimer’s disease and dementia and cannot examine the damage of
multiple cognitive domains. In our research, the combination of six tests is sufficient to
cover multiple cognitive domains including executive function, visual perception function,
language, memory, and attention, which can help diagnose all-cause dementia. AVLT-H
and LMT, which assess both immediate and delayed recall, are popular methods for detect-
ing episodic memory impairment [53,54]. PAL measures the strength of memory binding
of twelve word-pairs [29]. The word pairs are presented verbally, one pair at a time. Then
the participant hears the first word of each word-pair and is asked to answer the last word.
PAL assesses episodic memory and executive function and could successfully detect MCI
and dementia [55,56]. Modified Rey includes copy and delayed recall of the complex figure,
assessing visuospatial ability and nonverbal memory. Good performance of DST and TMT
A requires intact motor speed, attention, and visual perception functions, which is an
important executive domain involved in semantic information processing [57]. The 2011
NIA-AA staging criteria also suggests some neuropsychological tests that are considered to
be predictors of conversion from MCI to dementia [33]. These tests are generally consistent
with those selected in our study.

In addition, the RF algorithm could be used not only to optimize the NTB but also
to simplify individual subtests. For example, AVLT-H begins with three learning trials,
followed by the fourth short delayed free recall trial, the fifth long-delayed free recall trial,
the sixth category cue recall trial, and the recognition trial [53]. When ranking variables’
importance, we found that AVLT N5 was the most important feature. Therefore, we choose
to administer the first five trials of AVLT-H in the future practical application and delete
the sixth category cue recall trial and the recognition trial. The second story of LMT was
the best predictor among the three stories, so only the second story needs to be completed
when performing this neuropsychological test.

There were two main limitations to this study. First, this study was a retrospective,
single-center, observational study with inherent selection bias. Prospective, multi-centered,
large-scale studies are therefore warranted. A second limitation is that we did not sub-
classify dementia. Subjects in the dementia group were patients with all-cause dementia,
most of which is Alzheimer’s disease and vascular dementia, and other dementia sub-
types such as frontotemporal dementia and dementia with Lewy body were rare. This
might cause some features to become less important. For example, language-related fea-
tures such as repetition and naming were removed. Future research needs to consider
dementia subtypes.

5. Conclusions

The present study showed that the RF algorithm can be a useful tool to classify
CU, MCI, and dementia among a population with normal MMSE. We found that the
optimized NTB, consisting of six neuropsychological tests (AVLT-H, PAL, modified Rey
figure, LMT, DST, and TMT A), enables detection of MCI and dementia with good sensitivity
and specificity. As cognitive markers, neuropsychological assessments have the excellent
performance to identify cognitive disorders. For low- and middle-income countries, this has
advantages over using classifiers based on more invasive, expensive, and time-consuming
methods such as cerebrospinal fluid markers.
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