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Abstract: Next-generation sequencing (NGS) is progressively being used in clinical practice. How-
ever, several barriers preclude using this technology for precision oncology in most Latin American
countries. To overcome some of these barriers, we have designed a 25-gene panel that contains pre-
dictive biomarkers for most current and near-future available therapies in Chile and Latin America.
Library preparation was optimized to account for low DNA integrity observed in formalin-fixed
paraffin-embedded tissue. The workflow includes an automated bioinformatic pipeline that accounts
for the underrepresentation of Latin Americans in genome databases. The panel detected small
insertions, deletions, and single nucleotide variants down to allelic frequencies of 0.05 with high
sensitivity, specificity, and reproducibility. The workflow was validated in 272 clinical samples from
several solid tumor types, including gallbladder (GBC). More than 50 biomarkers were detected
in these samples, mainly in BRCA1/2, KRAS, and PIK3CA genes. In GBC, biomarkers for PARP,
EGFR, PIK3CA, mTOR, and Hedgehog signaling inhibitors were found. Thus, this small NGS panel
is an accurate and sensitive method that may constitute a more cost-efficient alternative to multiple
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non-NGS assays and costly, large NGS panels. This kind of streamlined assay with automated
bioinformatics analysis may facilitate the implementation of precision medicine in Latin America.

Keywords: NGS-panel; target therapies; predictive biomarkers; somatic variants; gallbladder cancer;
Latin America

1. Introduction

In recent decades, molecular pathology has advanced substantially thanks to the
exponential growth of genetic sequencing technology. The introduction of next-generation
sequencing (NGS) opened the doors to high-throughput, multi-gene, massive data collec-
tion. This tool’s ability to sequence more, faster, and at a reduced cost has made it attractive
for many clinical research applications. In cancer, using this technology to interrogate
solid tumor samples has propelled a massive characterization of genes involved in the
disease [1,2]. This rise in “oncogenomics” has been accompanied by an increase in can-
cer drug approval and development [3,4]. Identifying tumor-specific genetic signatures
and correlating them to treatment outcome has evolved into a strategy termed “precision
medicine”, a new diagnostic and treat process based on approved genomic biomarkers [4].

In Latin America and the Caribbean, 1.4 million new cancer cases were estimated to
occur in 2018, while mortality rates varied among and within the region [5,6]. The most
common types of cancer with the highest incidence are prostate (age standardized rate
(ASR) 60.4), breast (ASR 56.8), colorectal (ASR 18.6), cervix uteri (ASR 15.2), lung (ASR 13.1),
and stomach (ASR 9.5) cancers [1]. Overall, estimated age-standardized cancer incidence
rates in Latin America are lower than those reported in North America and some European
countries; however, the region exhibits higher mortality rates [7]. This paradox reflects the
disparities in early diagnosis and treatment opportunities in the region.

In high- and medium-income countries, precision medicine is making its way into
standard cancer treatment, improving survival and investigational drug trial success for
many patients. A combination of factors prevents this helpful tool from becoming accessible
to most of the world’s population. In Latin America, approved and available gene-based
cancer screening assays are often solutions designed to meet first world standards. These
large panels are great diagnostic tools in regions of abundant therapy options, but for Latin
America and other regions, they are not cost effective, leaving behind a need for more
comprehensive regional solutions. Additionally, the absence of automated clinician-ready
reporting for many of these approved panels creates another major cost and obstacle to
their widespread implementation. As a result, NGS-based oncology panels do not appear
to be cost-effective solutions for many governments and are not being implemented in
health and insurance systems despite local sequencing capabilities. This scenario creates
an urgent need for customized validated solutions and data interpretation in a clinical
environment [8].

In addition, an important caveat to interpreting Latin American cancer patient’s
genetic data is the under-representation of Latin American individuals in global resources
characterizing the frequency of both germinal and cancer genome variants. Great cancer
genomics efforts, such as TCGA and ICGC, are deprived of minorities (including subjects
of Hispanic ethnicity [9]), limiting their capacity to describe somatic mutations with a
prevalence below 10% and overcome the somatic background mutation frequency in
specific ethnic groups [10]. For instance, the average Amerindian ancestry in cancer
patients across all cohorts in TCGA is about 4% [9,11]. Additionally, the Latin American
population is under-represented in germline variant repositories, which may induce a false
categorization and overestimation of somatic variants [12–14]. Thus, an additional blood
sample should accompany the tumor sample, increasing the sequencing costs.

To address these challenges, we designed, optimized, and validated a hybridization-
based target enrichment workflow with multiple automated analyses capable of detecting
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variants in 25 genes; 23 of them with an association to a drug’s response supported by the
FDA or well-powered studies with consensus from experts in the field. Although this panel
was designed to meet current and near-future Chilean precision oncology needs, we expect
the panel and workflow to be relevant to other countries in the region. This workflow
was locally validated using breast, colorectal, gastric, ovarian, pancreatic, and gallbladder
tumor tissue samples and we reported its ability to detect single nucleotide variants (SNVs)
and small insertions and deletions with high sensitivity and specificity. Additionally,
high reproducibility was obtained for non-synonymous variants between and within runs.
Finally, to address the shortage of health professionals trained in bioinformatics, the entire
workflow, including quality control of sequencing data and calling for somatic variants,
was automated and made available.

2. Materials and Methods
2.1. Panel Design

The panel targets hotspots, selected exons, or complete coding regions of 25 genes and
includes predictive biomarkers in solid tumors. We refer to this panel, plus its associated
workflow and analysis, as TumorSec™. For selecting targeted regions, biomarker genes
classified with evidence 1, 2, 3a, 3b, R1, and R2 were selected for solid tumors in the OncoKB
database (www.oncokb.org, accessed on 1 June 2021) [15]. Next, biomarker mutations with
level of clinical evidence A, B, and C were selected in the Clinical Interpretation of Variants
in Cancer, CiVic database (https://civicdb.org/home, accessed on 1 October 2018) [16]
and the Variant Interpretation for Cancer Consortium (VICC) meta-knowledgebase [17].
Biomarkers were selected based on their level of evidence and incidence in the targeted
tumor in Latin America. TP53 and ARID1A complete coding regions were incorporated,
as they contain prognosis and predictive chemotherapy biomarkers. The complete list of
genes and drug associations is provided in Table 1.

Table 1. Genes included in the panel and their therapy association.

Gene Drugs Tumor Type Evidence 1

AKT1 * AZD-5363
Breast cancer

Ovarian cancer
Endometrial cancer

B

ALK

Ceritinib
Crizotinib
Alectinib
Brigatinib
Lorlatinib

Non-small cell lung cancer A

ARID1A *

Trastuzumab
ENMD-2076
Bevacizumab
Everolimus

Breast cancer
Ovarian clear cell cancer

Renal cell carcinoma
C

BRAF *

Encorafenib + Cetuximab
Vemurafenib
Dabrafenib

Trametinib + Dabrafenib
Cobimetinib + Vemurafenib

Trametinib
Encorafenib + Binimetinib

Vemurafenib + Cobimetinib,
Trametinib + Dabrafenib

Vemurafenib + Cobimetinib
Encorafenib + Panitumumab

Colorectal cancer
Melanoma

Non-small cell lung cancer
Anaplastic thyroid cancer

Hairy cell leukemia
Pilocytic astrocytoma

Ganglioglioma
Pleomorphic xanthoastrocytoma

A

www.oncokb.org
https://civicdb.org/home
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Table 1. Cont.

Gene Drugs Tumor Type Evidence 1

BRCA1 *

Olaparib
Niraparib
Rucaparib

Talazoparib

Ovarian cancer
Peritoneal serous carcinoma

Breast cancer
Prostate cancer

Ovary/fallopian tube
Pancreatic cancer

A

BRCA2 *
Olaparib

Rucaparib
Talazoparib

Ovarian cancer
Peritoneal serous carcinoma

Breast cancer
Prostate cancer

Ovary/fallopian tube

A

CDK4 * Palbociclib
Abemaciclib Liposarcoma B

EGFR

Erlotinib
Afatinib

Osimertinib
Gefitinib

Dacomitinib

Non-small cell lung cancer A

ERBB2

Trastuzumab
Fam-Trastuzumab deruxtecan-nxki

Trastuzumab + Pembrolizumab
Afatinib

Breast cancer
Gastric adenocarcinoma

Gastroesophageal junction
adenocarcinoma

Non-small cell lung cancer

A

ESR1
Anastrozole
Fulvestrant
Palbociclib

Breast cancer B

IDH2 Enasidenib Acute myeloid leukemia A

KIT

Sunitinib
Imatinib

Regorafenib
Sorafenib
Ripretinib

Gastrointestinal stromal tumor
Melanoma A

KRAS *

Cetuximab
Panitumumab

Erlotinib
Lapatinib

Regorafenib
Selumetinib

Gefitinib
Afatinib
Icotinib

Irinotecan

Colorectal cancer
Non-small cell lung cancer A

MET
Crizotinib

Capmatinib
Tepotinib

Non-small cell lung cancer A

MTOR * Everolimus
Temsirolimus

Renal cell carcinoma
Bladder Cancer B

NRAS * Cetuximab
Panitumumab Colorectal cancer A

PDGFRA
Imatinib
Sunitinib

Regorafenib
Gastrointestinal stromal tumor A
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Table 1. Cont.

Gene Drugs Tumor Type Evidence 1

PI3KCA *

Buparlisib
Serabelisib
Alpelisib

Copanlisib

Breast cancer A

PTCH1 * Vismodegib
Skin basal cell carcinoma
Squamous cell carcinoma

Medulloblastoma
A

PTEN *

Everolimus
Pembrolizumab

Cetuximab
Sorafenib

Renal cell carcinoma
Glioma

Head and neck squamous cell
carcinoma

Colorectal cancer
Hepatocellular carcinoma

B

ROS1
Crizotinib
Alectinib
Ceritinib

Non-small cell lung cancer C

SMO Vismodegib Skin basal cell carcinoma B

TP53 * Prognosis Various A

TSC1 * Everolimus
Giant cell astrocytoma
Renal cell carcinoma

Renal angiomyolipoma
A

TSC2 * MTOR inhibitors
Giant cell astrocytoma
Renal cell carcinoma

Renal angiomyolipoma
A

1 Level of evidence according to AMP/ASCO/CAP Level A: FDA-approved therapy included in professional guidelines; B: well-powered
studies with consensus from experts in the field; C: FDA-approved therapies for different tumor types or investigational therapies [18]. The
highest level of evidence is shown. Some biomarkers may have additional indications with lower levels of evidence for different cancer
types or protocols. * For these genes, all exons were targeted.

Synthesis of the soluble, biotinylated probe library was performed on the NimbleGen
cleavable array platform (SeqCap EZ Choice (RUO); Roche/NimbleGen, Basel, Switzer-
land). The probe design was optimized using the NimbleDesign software utility (Nimble-
Gen, Roche, Basel, Switzerland).

2.2. Sample Information

In total, 183 tumor tissue samples were sequenced for this study. In total, 19 were
freshly frozen (FF): 13 colorectal and 6 breast; 164 were formalin-fixed paraffin-embedded
(FFPE) blocks: 9 breast, 71 ovary, 1 gastric, 43 gallbladder, and 40 colorectal tumors.
Additionally, DNA from 89 whole blood or buffy coat samples were sequenced: 7 from
colorectal and 72 from breast cancer patients. Colorectal and gastric cancer samples
were obtained from the “Biobanco de Tejidos y Fluidos de la Universidad de Chile.” To
capture real world heterogeneity in sample quality, breast, ovary, and gallbladder FFPE
tissue samples were collected from the pathology services from several sites along the
country (Fundación Arturo López Pérez, Clínica Dávila, Clínica Indisa, Red UC Christus,
Biobanco de Tejidos y Fluidos, Hospital Padre Hurtado, Hospital Regional de Concepción,
Hospital Regional de Talca, Hospital de Puerto Montt, Hospital San Juan de Dios, Hospital
Santiago Oriente Doctor Luis Tisné Brousse, Instituto Nacional del Cáncer, Hospital del
Salvador, Hospital Regional de Coquimbo, Hospital Regional de Arica, Hospital Clínico
San Borja Arriarán).
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2.3. Control Samples

Three reference standard DNA samples from Horizon Discovery (Cambridge, UK)
were used as positive controls for variant calling: HD200 (FFPE somatic), HD793, and
HD794 (germline BRCA1/2 variants).

2.4. DNA Extraction, Quantification, and Sample Quality Control

DNA from frozen tissues was extracted using the QIAamp DNA Mini Kit (Qiagen,
Germantown, MD, USA). FFPE tissue DNA was extracted using GeneJet FFPE DNA
Purification Kit and RecoverAll™ Total Nucleic Acid Isolation (Invitrogen, Thermo Fisher
Scientific, Carslbad, CA, USA), following the manufacturer’s instructions, with overnight
lysis instead of the suggested 1–2 h for FFPE tissue. Germline DNA was purified from
whole blood samples or buffy coat using the Wizard® Genomic DNA Purification Kit
(Promega, Madison, WI, USA), according to manufacturer’s protocol.

Purified DNA was quantified using the Qubit(™) dsDNA HS Assay and Quant-IT(™)
Picogreen® dsDNA Reagent Kit (Invitrogen, Thermo Fisher Scientific, Carslbad, CA, USA).
The purity of DNA was assessed by measuring the 260/280 nm absorbance ratio. For FFPE
samples, fragment length and degradation were assessed using the HS Genomic DNA
Analysis Kit (DNF-488) in a Fragment Analyzer (Agilent, formerly Advanced Analytical).
DNA ranged from >1000 bp to 200 bp. Samples with <200 bp are not recommended for
processing with the TumorSec workflow.

2.5. Library Preparation

Then, 100–150 ng of DNA (blood and frozen tissues) and 200 ng of DNA (FFPE) were
used as input for sequencing library preparation. NGS libraries were prepared using
KAPA HyperPlus Library Preparation Kit (Kapa Biosystems, Cape Town, South Africa). A
double size selection was performed in libraries prepared with DNA from frozen tissue
and blood and a single size selection for DNA from FFPE. Libraries were quantified using
the QubitTM dsDNA HS Assay Kit (Invitrogen, Thermo Fisher Scientific, Carslbad, USA)
and Quant-ITTM Picogreen® dsDNA Reagent Kit (Invitrogen). The quality of the amplified
library was checked by measuring the 260/280 absorbance ratio and fragment’s length,
using the HS NGS Analysis Kit (DNF-474) in a Fragment Analyzer (Agilent, formerly
Advanced Analytical).

2.6. Target Enrichment

Prepared DNA libraries (1200 ng total mass) were captured by hybridization probes
(Roche NimbleGen SeqCap EZ. Roche, Pleasanton, USA). The number of samples used for
pre-capture multiplexing was based on sample type: six were pooled for FFPE and blood
samples, while fresh frozen tumor samples were pooled in reactions of four. Captured
libraries were assessed for concentration and size distribution to determine molarity.

2.7. Sequencing Run Set-Up

Libraries were diluted to a concentration of 4 nmol/L and processed for sequencing,
according to the manufacturer’s instructions (Illumina, San Diego, CA, USA). The final
captured library concentration for sequencing was 9.4–9.5 pM. Libraries were sequenced in
an Illumina® MiSeq System using paired-end, 300 cycles (MiSeq Reagent Kits v2, Illumina®

Illumina, San Diego, CA, USA).

2.8. Bioinformatic Analyses

The bioinformatic pipeline is summarized in Supplementary Figure S1. Filtering
of reads and base correction were performed with the fastp v0.19.11 tool. The filtered
reads align with the reference genome GRCh37/hg19 using Burrows–Wheeler Alignment
mem (BWA mem v0.7.12). MarkDuplicates tool of Picard v2.20.2-8 was applied to identify
duplicates. To reduce the number of mismatches to the reference genome, the reads were
realigned with RealignerTargetCreator and IndelRealigner from GATK v3.8 [19]. Finally,
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the quality scores were re-calibrated with the combination of GATK’s BaseRecalibrator and
PrintReads tools [19].

The SomaticSeq v.3.3.0 program was used to call the variants in single-mode using only
tumor sequence data [20]. This tool maximizes the sensitivity by combining the result of five
next-generation variant SNV callers—Mutect2 [21], VarScan2 [22], VarDict [23], LoFreq [24],
and Strelka [25]—adding Scalpel for indels. The reported SNVs were identified by at least
three out of five SNV callers, and the reported indels by at least three out of the six callers.
The consensus variants obtained by SomatiSeq were annotated using the Cancer Genome
Interpreter (https://www.cancergenomeinterpreter.org/, accessed on 1 June 2021) [26] and
ANNOVAR [27] using RefGene, GnomAD v2.1.1 (genome and exome), ESP6500, ExAC
v0.3, 1000 Genomes phase 3, CADD v1.3, dbSNP v150, COSMIC v92, and CLINVAR.

2.9. Variant Filtering and Sequence Quality Reporting

Variants with allele frequencies greater than 0.5 and with an altered allele depth
≥12 reads were selected. These thresholds were established as the limit of detection
(LOD) for the NGS TumorSec panel following the recommendations of the Association
for Molecular Pathology and College of American Pathologists [28]. Polymorphisms were
eliminated, discarding alleles reported in 1000 Genomes, ESP6500, GnomAD, or ExAC [27]
with a frequency greater than 0.01. Filtering was extended to include all under-represented
populations that had information in GnomAD and ExAC. Additionally, a dataset containing
genetic variants in Chilean individuals was used for further filtering.

The bioinformatics pipeline was executed automatically, creating pdf reports that
allowed an easy view of quality metrics per sample. For this purpose, the programs FastQC
v0.11.8, Qualimap v2.2.2a, Mosdepth v0.2.5, and MultiQC v1.8 were executed between the
pre-processing of the bioinformatics workflow. The main metrics are the number of initial
raw reads, the percentage of filtered reads, the duplication rate, the number of reads on
target regions, the average depth on-target regions, the uniformity percentage, and the
ratio of on-target regions with a minimum coverage of 100× to 500×. For variant calling
and annotation, the coverage threshold for FFPE and FF was set at 300× in at least 80% of
target regions.

The bioinformatic pipeline and tutorial can be found in the GitHub repository called
Pipeline-TumorSec (https://github.com/u-genoma/Pipeline-TumorSec, accessed on 1
June 2021).

2.10. Germline Variant Calling

Data were pre-processed following the pipeline shown in Supplementary Figure S1.
Variant calls were made using the GATK HaplotypeCaller tool. A minimum confidence
threshold of 30 was set for variant calling. Additionally, a coverage threshold was set at
200× in at least 80% of target regions. Finally, a variant calling hard-filter for SNPs and
indels was applied separately following GATK recommendations [29].

3. Results
3.1. Panel Design and Sequencing Metrics

A total of 25 genes were included in this target enrichment panel, covering 98 kb
of sequence length. Design details broken down by gene are shown in Table 1. In total,
79% (15/19) of fresh frozen, 71% (116/164) of FFPE, and 89% (79/89) of blood samples
processed passed the sequencing quality threshold, capturing a minimum of 80% of target
regions at a depth of 300×. A summary of relevant sequencing metrics for all 210 passed
samples is shown in Supplementary Table S1. FFPE samples showed a high percentage of
duplicates and off-target reads. Uniformity was >90% for all sample types and >90% of
targeted regions had ≥300× coverage (Supplementary Figure S2).

https://www.cancergenomeinterpreter.org/
https://github.com/u-genoma/Pipeline-TumorSec
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3.2. Panel Performance

The panel’s performance was calculated using the reference HD200 (Horizon Discov-
ery) standard FFPE sample containing characterized mutations in the following genes:
BRAF, KIT, EGFR, KRAS, NRAS, PIK3CA, ARID1A, and BRCA2. As observed in Figure 1A,
the assay captured all 13 positive variants. A 0.98 coefficient of correlation (r-squared) was
extrapolated with a p-value of 3.221 × 10−10 between expected variant allele frequencies
(VAF) from the positive control and those reported by the assay. VAFs ranged from 24.5%
to as low as 1%, showing the assay’s high analytical sensitivity.

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 8 of 18 
 

 

was extrapolated with a p-value of 3.221 × 10−10 between expected variant allele frequen-
cies (VAF) from the positive control and those reported by the assay. VAFs ranged from 
24.5% to as low as 1%, showing the assay’s high analytical sensitivity. 

Additionally, the panel’s performance for detecting BRCA1/2 germline mutations, 
which are predictive biomarkers for PARP inhibitor therapy in breast, ovarian, and pros-
tate cancer, was tested (Table 1). Thus, references DNA HD793 and HD794 (Horizon Dis-
covery), which contain known germline variants in BRCA1 and BRCA2 at VAF of 50 and 
100%, were sequenced. Figure 1B shows that 11 out of 11 reported variants were detected 
at the expected VAF. The correlation coefficient between expected and reported VAF is 
0.99 with a p-value of 2.2 × 10−16. Importantly, no mutations were detected in the 15 posi-
tions reported as “no-mutated” (true negatives), showing the assay’s high specificity. 

 
Figure 1. Performance and analytical sensitivity of the panel. Correlation between expected allelic 
frequencies for reported variants in commercial standard control samples and those observed by 
the assay: (A) FFPE Horizon Discovery sample (HD 200); (B) germline DNA samples with BRCA1/2 
mutations (HD 793 and HD 794). 

For reproducibility assessment, three FFPE samples from different tumors (colorec-
tal, ovary, and gallbladder) were used to prepare two separate libraries each. All samples 
passed the sequencing metrics threshold with ≥300× coverage in 99.6% of target regions 
and 89% uniformity. A 100% concordance among non-synonymous variants detected in 
the different libraries was observed (Figure 2A). 

Inter-runs repeatability was assessed using four FFPE samples (three ovaries and one 
HD control). Different libraries were sequenced in different runs. Reproducibility of se-
quencing metrics (94% of target regions with ≥300× coverage and ≥87% uniformity) and 
concordance of detected variants were also observed (Figure 2B). One ovarian FFPE sam-
ple was assessed in three different library preparations and three separate sequencing 
runs (Figure 2C). A high correlation (r = 0.99) was observed between VAFs called in all 
the different settings (Figure 2D). 

Figure 1. Performance and analytical sensitivity of the panel. Correlation between expected allelic
frequencies for reported variants in commercial standard control samples and those observed by the
assay: (A) FFPE Horizon Discovery sample (HD 200); (B) germline DNA samples with BRCA1/2
mutations (HD 793 and HD 794).

Additionally, the panel’s performance for detecting BRCA1/2 germline mutations,
which are predictive biomarkers for PARP inhibitor therapy in breast, ovarian, and prostate
cancer, was tested (Table 1). Thus, references DNA HD793 and HD794 (Horizon Discovery),
which contain known germline variants in BRCA1 and BRCA2 at VAF of 50 and 100%,
were sequenced. Figure 1B shows that 11 out of 11 reported variants were detected at
the expected VAF. The correlation coefficient between expected and reported VAF is 0.99
with a p-value of 2.2 × 10−16. Importantly, no mutations were detected in the 15 positions
reported as “no-mutated” (true negatives), showing the assay’s high specificity.

For reproducibility assessment, three FFPE samples from different tumors (colorectal,
ovary, and gallbladder) were used to prepare two separate libraries each. All samples
passed the sequencing metrics threshold with ≥300× coverage in 99.6% of target regions
and 89% uniformity. A 100% concordance among non-synonymous variants detected in
the different libraries was observed (Figure 2A).

Inter-runs repeatability was assessed using four FFPE samples (three ovaries and
one HD control). Different libraries were sequenced in different runs. Reproducibility of
sequencing metrics (94% of target regions with ≥300× coverage and ≥87% uniformity)
and concordance of detected variants were also observed (Figure 2B). One ovarian FFPE
sample was assessed in three different library preparations and three separate sequencing
runs (Figure 2C). A high correlation (r = 0.99) was observed between VAFs called in all the
different settings (Figure 2D).
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Figure 2. Reproducibility and repeatability of the assay: (A) within sequencing run reproducibility
based on three patient samples, each from a different tumor type (colon, ovaries, gallbladder). Venn
diagram displays variants observed in two different library preparations for each of the three samples.
(B) Repeatability between sequencing runs was assessed using the same libraries from three different
FFPE cancer and control (HD200) samples in two separate sequencing runs. Venn diagram displays
variants observed between two sequencing runs. (C) One ovarian cancer sample was processed using
four different combinations (colors) of library preparation and sequencing runs. (D) Correlation
between allele frequencies of variants obtained in repeatability and reproducibility tests (displayed
in (A,B)).

3.3. Comparison between FFPE, Fresh Frozen, and Blood gDNA

To assess whether the protocol and bioinformatic workflow for detecting somatic
mutations discard FFPE-induced artifacts and germline variants, DNA from FFPE, fresh
frozen (FF) tumor, and buffy coat samples from six ductal breast carcinoma subjects
was sequenced.

Variants detected among all sample triads for each of the six subjects are outlined
in Figure 3. Nine variants in the FF sample set were reported. Seven of these variants
were also reported in the matching FFPE samples. It is worth noting that the two variants
detected in an FF sample (FA6-005) were found in the FFPE sample but at frequencies <5%
(the LOD established for the assay).

To further explore FF and FFPE samples’ concordance, the allele frequencies of both
synonymous and non-synonymous variants detected in both sample types were plotted
(Figure 4). Variants with AF < 5% display a low r-value (0.68, p-value of 2.479 × 10−9).
However, when all variants (73) are analyzed, correlation increases (r = 0.95, p-value
of <2.2 × 10−16). Importantly, no germline variants and no variants exclusive for FFPE
samples were detected using the pipeline for somatic mutations.
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Figure 4. Correlation between allele frequencies in synonymous and non-synonymous variants found
in paired FFPE and fresh frozen samples: (A) correlation between variant allele frequencies (VAF)
in all variants found in FFPE and fresh frozen samples (FF). (B) Correlation between frequencies of
variants found at VAF below LOD (0.05).

3.4. Validation of the Assay in Clinical Samples

To validate the assay and analysis capabilities in “real world” samples, 183 tumor
biopsies from different clinical sites were processed. In total, 131 out of the 183 were
successfully sequenced (116 FFPE and 15 FF): breast (14), ovary (69), gastric (1), gallbladder
(31), and colorectal (16).

All variants with allelic frequency > 0.01 reported in at least one of the following
four germline population variant’s databases (PVDs): GnomAD, ESP6500, ExAC, and
1000 Genomes, were eliminated. However, given that the Latin American population is
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not well represented in these repositories, somatic mutations were initially overestimated
due to their absence or low (<1%) VAF. Thus, the classification of remaining variants was
performed using the algorithm depicted in Supplementary Figure S2. This algorithm was
designed based on recommendations from Sukhai et al. (2019) [30] and using annotations
in COSMIC, dbSNP, CLINVAR, and PVDs databases. Filtering was extended to include all
under-represented populations that have information in GnomAD and ExAC. Additionally,
a local genetic germline database from Chilean individuals was used. The resulting variants
were classified as germline, somatic, putative germline, putative somatic, putative germline
novel, or putative somatic novel.

A total of 256 protein-affecting variants were found in the 131 samples. Among
these, 197 non-synonymous somatic and putative known and novel somatic variants
were identified in 111 out of the 131 samples (85%) (Table 2); moreover, 144 were unique
variants. Figure 5 shows a breakdown of somatic mutations by gene and tumor type.
Non-synonymous variants are shown according to mutation type (missense and nonsense
mutations, frameshift causing deletions and insertions, and variants positioned in splice
sites). Overall, TP53, BRCA2, PIK3CA, ARID1A, KRAS, TSC2, PTEN, and BRCA1 were
the most frequently mutated genes. TP53 and PIK3CA were the most prevalent mutations
in ovary cancer; TP53, BRCA2, and KRAS in colorectal cancer; and TP53 and PIK3CA
in breast cancer. In 31 samples of GBC, we found 36 mutations in TP53 (16), KRAS (4),
ARID1A (3), ERBB2 (2), TSC2 (2), PIK3CA (2), PTCH1 (2), TSC1 (2), and BRCA1, PTEN,
and BRAF (1 each).

Table 2. Classification of non-synonymous variants found in 131 quality-passed tumor samples. The
number of total and unique variants by classification is shown.

Classification of Variants Total Variants Unique Variants

Germline 55 26
Putative Novel Germline 4 3

Somatic 125 86
Putative Somatic 13 13

Putative Novel Somatic 59 45
Total 256 173
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3.5. Identification of Biomarkers for Targeted Therapies

In total, 137 (69.5%) out of the 197 identified somatic variants are described as a
biomarker for drug response, which is supported by different levels of evidence: FDA
guidelines (44) and clinical guidelines (9), late trials (37), early trials (119), case report
(42), and (113) pre-clinical data. The affected gene and target drug associations with
supporting evidence from “case reports” to “FDA guidelines” are depicted in Figure 6,
which outlines: (1) the fraction of samples with reported genetic alterations; (2) the level
of existing evidence for the biomarker; (3) the gene affected; and (4) the drug association
(resistant or responsive). Table 3 contains a detailed description of the biomarker mutations
supported by FDA and NCCN clinical guidelines found in this study in all samples.
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Table 3. Biomarker mutations supported by FDA (n = 44) and NCCN guidelines (n = 9), found in the analyzed clinical
samples. The associated drug and the mutation’s predictive effect are indicated.

Gene Mutation Drug Effect

BRCA1 E1609 *, L702Wfs * 5, N1745Tfs * 20, Q1273 *, V370I
Rucaparib (PARP inhibitor)
Olaparib (PARP inhibitor)

Responsive
BRCA2

A2603S, D1796Mfs * 9, K3327Nfs * 13, L1114V,
splice_acceptor_variant, T2783Afs * 13, T2790I,

I1364M, L398P, D635G, R2034C

KRAS A146V, Q61H
G12A, G12D, G12V, L19F, Q25 * fs * 1

Panitumumab
(EGFR mAb inhibitor)

Cetuximab (EGFR mAb inhibitor)
Resistant

NRAS G12C, Q61R
Panitumumab

(EGFR mAb inhibitor)
Cetuximab (EGFR mAb inhibitor)

Resistant

PIK3CA H1047R, E545A, E545K, E542K, R88Q, N345S, E579K Alpesilib + Fulvestrant Responsive

PTCH1 R441H, D717N, H1240R, P725S, V580A, T677A, N871D Vismodegib (SHH inhibitor) Responsive

TSC1 K375Sfs * 30, L826Q, L827Q, T582S Everolimus (MTOR inhibitor) Responsive

TSC2 R1729C, S1530L, K533delK, A460T, A950T, D1084G,
P1771L, S1096C, T154I

*: It is a mutation nomenclature.
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In GBC samples, we found biomarker mutations in eight genes, with supporting
evidence ranging from case reports to FDA and NCCN guidelines in different tumor types
(Table 4). It is worth highlighting the presence of predictive biomarkers for drugs that
are currently in use for treating different cancers, such as PARP, ERBB2, EGFR, PIK3CA,
mTOR, and Hedgehog signaling inhibitors.

Table 4. Biomarker mutations found in GBC samples. The number of samples with the mutation, associated drug,
supporting level of evidence, and tumor where the evidence was generated are indicated.

# of Samples Gene Mutation Drugs Evidence Tumor Tested

1 BRCA1 V370I

Rucaparib (PARP inhibitor)
Olaparib (PARP inhibitor)

WEE1 inhibitor
Platinum agent (chemotherapy)

Veliparib; Cisplatin (PARP
inhibitor; chemotherapy)

FDA guidelines

Case report
Early trials

OV
BRCA
BRCA

OV
OV

2 ERBB2 L755S
Dacomitinib (Pan ERBB inhibitor)

Neratinib (ERBB2 inhibitor)
Temsirolimus (MTOR inhibitor)

Early trials NSCLC
CANCER, LUAD

4 KRAS
G12A
G12V
Q61H
G12D

Panitumumab (EGFR mAb
inhibitor)

Cetuximab (EGFR mAb inhibitor)
Trastuzumab; Lapatinib (ERBB2
mAb inhibitor; ERBB2 inhibitor)

Gemcitabine; MEK inhibitor
(chemotherapy; MEK inhibitor)

MEK inhibitor
Selumetinib (MEK inhibitor)

PI3K pathway inhibitor; MEK
inhibitor

Abemaciclib (CDK4/6 inhibitor)
Imatinib (BCR-ABL inhibitor and

KIT inhibitor)

FDA guidelines
FDA guidelines

Late trials
Early trials
Early trials
Early trials
Early trials
Early trials
Case report

COREAD
LUAD

PA
NSCLC, HC, BT, L

L
PA
L
L

GIST

1 PIK3CA E545K

PI3K pathway inhibitor
Everolimus; Trastuzumab;

chemotherapy (MTOR inhibitor;
ERBB2 mAb inhibitor;

chemotherapy)
Cetuximab (EGFR mAb inhibitor)

AKT inhibitor
PI3K pathway inhibitor
PI3K pathway inhibitor

FDA guidelines
Late trials
Late trials
Early trials
Early trials
Case report

BRCA
BRCA

COREAD
BRCA

ED, OV, CESC
BLCA, HNSC, L

1 PTCH1 P725S Vismodegib (SHH inhibitor) FDA guidelines BCC, MB

11 TP53

E171 *
G244S
G266V

K321Ifs * 10
L257P
R280T

V173Gfs * 10
R213 *
R248W
R273C
W53 *
R273H
R248Q
Q192 *
C238F

MDM2 inhibitor
Abemaciclib (CDK4/6 inhibitor)

Cisplatin (chemotherapy)
WEE1 inhibitor

Early trials
Early trials
Early trials
Early trials

LIP
BRCA

FGCT, MGCT
OV

1 TSC1 L826Q Everolimus (MTOR inhibitor)
FDA guidelines

Early trials
Case report

GCA, RA
BLCA

ST, S, R

2 TSC2 D1084G
S1096C Everolimus (MTOR inhibitor) FDA guidelines GCA, RA

1 ARID1A # Splice acceptor
variant

(EZH2 inhibitor)
(PD1 inhibitor)

(PARP inhibitor)
(ATR inhibitor)

Pre-clinical
Pre-clinical
Pre-clinical
Pre-clinical

OV
OV

CANCER
CANCER

# For ARID1A, pre-clinical evidence is shown, *: It is a mutation nomenclature.
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4. Discussion

As a result of its global adoption and implementation, the clinical utility of NGS in
the field of oncology has a rapidly growing body of evidence. The ability to obtain massive
amounts of genetic information from small amounts of tissue provides clear advantages for
decision-making processes against cancer [2,4,31]. Nevertheless, a large portion of cancer
patients around the world do not have this option readily available. This work attempts to
favor the implementation of NGS in the Latin American health system by showcasing a
locally developed assay, accompanied by an open-source automated analysis focused on
the target population’s needs.

A critical consideration for implementing NGS in low resource settings is finding a
workflow compatible with low-quality, highly degraded samples. Although fresh frozen
tissue is the gold standard for molecular analyses, its use in clinical practice is impractical
because of its high cost and technical difficulties related to its obtainment, processing, and
storing. The sample storage infrastructure found in the developed world, with dedicated
−80 ◦C and −20 ◦C freezers, is too often not in the budget for many Latin American
diagnostic laboratories. FFPE tissue samples are much more cost effective, as they can be
stored at room temperature. However, tumor biopsies in this region are often fixed with
formalin with different protocols and laboratory environments, producing varied DNA
damage during and after the formalin fixation process (e.g., fragmentation, degradation,
crosslinking [32,33]).

DNA quality is affected by the type of formalin used for tissue fixation and the time
since preservation [34], both of which vary highly in laboratories across Chile. A total of
48 FFPE samples failed to pass the DNA, library, or sequencing quality controls. Most of
the failed samples were colorectal (33/40) and gallbladder (12/43) samples. Twenty-four
failed colorectal samples had low on-target rates, suggesting issues with hybridization
and/or capture, while the 12 gallbladder samples did not pass the library preparation
quality metrics.

In general, FFPE samples showed a higher percentage of duplicates and off-target
reads (Table S1). However, these characteristics do not affect sequencing results. FFPE
samples have the highest mean on-target region’s coverage compared to FF and BC. Re-
moving duplicates is intended to reduce noise during the variant identification process
and minimize false positives. These results suggest removing duplicates has little effect
on this panel’s performance at the sequencing depths of interest (~300×). As sequencing
technologies continue to advance, PCR duplicate removal will become less of an issue [35].

Somatic mutation analysis and fusion detection are critical in cancer research [1,15].
In this project, we focused on creating a cost-effective regional tool with clinical relevance.
As a result of our approach, a tailored DNA based panel, we lack the ability to detect
relevant RNA gene alterations such as fusions. Although side-by-side DNA and RNA
analysis would provide a more complete understanding of gene alteration profiles, it
can be costly and time consuming. Future solutions such as total nucleic acid library
preparation followed by target enrichment could provide a more comprehensive analysis
in one workflow. In the meantime, this panel detects point mutations in ALK, MET, and
ROS1, which have been associated with resistance to TKI.

Currently, there is no community consensus about the most appropriate variant caller
for somatic mutations [36]. For this reason, the bioinformatic pipeline for variant calling
used in this work incorporated six variant callers capable of producing highly accurate
somatic mutation calls for both SNVs and small indels. Somatic variant callers discard
germline variants by interrogating the reference genomes and population databases, such
as 1000 Genomes, where Latin American genetic variation is not well represented. Thus, we
implemented a more accurate bioinformatic pipeline that allowed variants’ classification as
somatic, germline, and putative somatic/germline. This variant calling process highlights
the extra layer of difficulty Latin American researchers and clinical laboratories face due to
the absence of reference genomes representative of our population in the major databases.
The overestimation of somatic variants is a problem when facing the tumor of a patient
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from any region or ancestry without a reference genome informative of the genetic variation
in that specific population. This issue is critical for therapy determinants, such as tumor
mutational load, which should be carefully interpreted in these patients [37].

The addition of reference genomes representative of the population in combination
with the genetic characterization of more cancers will help address questions involving the
distribution of genetic alterations among different world populations.

The best approach for resolving the somatic vs. germline mutations issue is to include
respective blood samples alongside biopsies. However, this raises the assay’s cost per
patient, which may delay the assay’s implementation.

To achieve more accurate somatic variant calling, further efforts towards genetic
characterization of the Latin American and other under-studied populations are needed.
Building an inclusive tumor reference genome database will allow for the discovery of
novel somatic mutations and non-explored correlations to the disease.

The assay was designed to meet the biomarker needs in countries with low partici-
pation in clinical trials and in which a limited number of drugs are available or currently
in use in clinical practice. Among the 131 predictive biomarkers for therapies response
detected by the assay, 52 are supported by evidence recognized by the FDA and NCCN
clinical guidelines.

Although a small number of GBC samples was successfully sequenced, biomarker
mutations in nine genes were identified. Importantly, these are predictive biomarkers for
drugs that are currently in use for treating different cancers, such as PARP, ERBB2, EGFR,
PIK3CA, mTOR, and Hedgehog signaling inhibitors. Since most of these drugs are available
in Chile and LATAM, finding predictive biomarkers in GBC generates opportunities for
specific and basket clinical trials including GBC patients from Chile and other regions in
LATAM, where this disease has an unusually high prevalence.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11090899/s1, Table S1: Sequencing metrics (median) for all samples that passed QC filters.
Figure S1: General workflow of the bioinformatic pipeline for identifying somatic variants. Figure
S2: Sequencing metrics and mean coverage of targeted genes according to sample type. Figure S3:
Algorithm for variant´s classification.
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