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Abstract: In response to the unmet need for timely accurate diagnosis and prognosis of acute
infections and sepsis, host-immune-response-based tests are being developed to help clinicians
make more informed decisions including prescribing antimicrobials, ordering additional diagnostics,
and assigning level of care. One such test (InSep™, Inflammatix, Inc.) uses a 29-mRNA panel to
determine the likelihood of bacterial infection, the separate likelihood of viral infection, and the
risk of physiologic decompensation (severity of illness). The test, being implemented in a rapid
point-of-care platform with a turnaround time of 30 min, enables accurate and rapid diagnostic use
at the point of impact. In this report, we provide details on how the 29-biomarker signature was
chosen and optimized, together with its molecular, immunological, and medical significance to better
understand the pathophysiological relevance of altered gene expression in disease. We synthesize
key results obtained from gene-level functional annotations, geneset-level enrichment analysis,
pathway-level analysis, and gene-network-level upstream regulator analysis. Emerging findings are
summarized as hallmarks on immune cell interaction, inflammatory mediators, cellular metabolism
and homeostasis, immune receptors, intracellular signaling and antiviral response; and converging
themes on neutrophil degranulation and activation involved in immune response, interferon, and
other signaling pathways.

Keywords: biomarkers; diagnosis; prognosis; acute infections; sepsis; bacterial; viral; host response;
immune response; interferon; neutrophil

1. Introduction

Sepsis is a syndrome most recently redefined (‘Sepsis-3′) as a life-threatening dysregu-
lated host immune response to infection [1]. A leading cause of morbidity and mortality,
sepsis is also a major driver of health system costs across the United States [1–4]. Although
frequently used synonymously with bacteremia, sepsis can be caused by bacterial as well as
viral, fungal, or parasitic infections; and also can be mimicked by noninfectious etiologies,
making diagnosis particularly challenging when an infectious source is not immediately
apparent [5]. Early treatment with appropriate antibiotics has been shown to reduce
morbidity and mortality in cases of bacterial sepsis [6,7]. However, antibiotics are well
known to cause substantial adverse side effects and may often be unwarranted [8,9]. Also,
indiscriminate and prolonged use of antibiotics can lead to antimicrobial resistance [10].
Taken together, timely accurate diagnosis of sepsis, and its underlying cause, is of great
clinical interest [11,12].

An ideal diagnostic test for the management of patients with acute infections and
suspected sepsis should answer the following clinically actionable questions in a highly
accurate and rapid (<30 min) manner: (1) does the patient require antibiotics? (2) what
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other diagnostic tests should be ordered to make the diagnosis? (3) what level of care does
the patient need? Importantly, such a test would help the emergency department (ED)
to: (1) avoid antibiotics in patients without bacterial infections (i.e., ‘rule-out’ bacterial
infection); (2) identify bacterial infections early in patients clinically suspected of viral or
noninfectious inflammatory conditions (i.e., ‘rule-in’ bacterial infection); (3) avoid extensive
diagnostic workup in patients without viral infections (i.e., ‘rule-out’ COVID-19 and other
severe viral infections); (4) determine the optimal level of care (e.g., observation instead
of admission or discharge instead of observation) for a patient with lower severity (de-
escalate); and (5) predict organ dysfunction and decompensation over a short period to
decide on closer monitoring and possibly intensive care unit (ICU) transfer (escalate).

The InSep™ test for acute infections and sepsis is designed explicitly to meet these
needs. As previously described [13], InSep quantifies 29 host-mRNAs on a specialized
platform from whole blood sample in less than 30 min and reports results on (1) likelihood
of a bacterial infection, (2) likelihood of a viral infection, and (3) severity of the condition
(risk of need for ICU-level care within seven days). The two core components of sepsis
(an acute infection and a dysregulated host response leading to organ dysfunction) can
thus be separately identified within the same test. A panel of clinical experts concluded
that innovative diagnostic solutions such as the InSep test could improve management of
patients with suspected acute infections and sepsis in the ED, thereby lessening the overall
burden of these conditions on patients and the healthcare system [13].

InSep and its core algorithms, IMX-BVN (InflamMatiX Bacterial-Viral-Noninfected)-3,
which produces the bacterial and viral scores and IMX-SEV (InflamMatiX SEVerity)-3,
which produces the severity score, use machine learning to interpret the levels of 29 host
immune mRNAs [14]. The 29 mRNAs were initially selected from three nonoverlapping
mRNA-based scores, consisting of (1) 11 mRNAs diagnosing the presence or absence of
an acute infection [15], (2) 7 mRNAs for distinguishing an infection between bacterial and
viral [16], and (3) 12 mRNAs for determining the risk of 30-day mortality from sepsis [17],
all using a well-established multi-cohort analysis approach [18]. The public and private
databases mined for the purposes above included heterogeneous cohorts from diverse
geographies, ethnicities, age groups, diagnoses, and settings of care, including outpatient,
emergency department, inpatient wards, and intensive care units.

Previous research-based (non-clinical) versions of InSep utilized the NanoString
nCounter™ platform for quantitative high-multiplex mRNA measurements. However, the
nCounter platform returns results in about 24 h, making it unsuitable for use for rapid
workflows. Inflammatix thus developed the Myrna™ platform for rapid cartridge-based
isothermal quantitative reverse-transcribed loop-mediated amplification (qRT-LAMP) pro-
filing of mRNA [13]. Our analytical assay studies showed that some mRNA targets in
early versions of InSep [19] were not easily quantified using LAMP, and so the 29 markers
for InSep had to be partially reselected to ensure adequate analytical performance on the
rapid cartridge.

Here, we report the analytical and bioinformatics basis for the marker swap, the new
InSep 29-mRNA set, and an analysis of the final 29 genes and their biological significance.
Understanding the pathobiology underpinning the clinical accuracy of InSep is key to its
generalizability to clinical use.

2. Methods
2.1. Gene Expressopm Quantification with qRT-LAMP Platform

The InSep system performs relative quantification of multiple mRNAs through a
split-well spatial multiplex approach, where each of 64 wells measures a single target. The
qRT-LAMP system has been shown to have a 5-orders of magnitude dynamic range with
single-fold-change resolution and 50-fold improved limit of detection vs. off-the-shelf
LAMP systems. While this assay system works for any target, the LAMP primer system
is complex and requires optimization to limit off-target amplification and primer-dimers.
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Optimization is also required for efficiency, speed, and tight inter-sample correlation with
gold standard techniques.

2.2. Marker Swap Rational, Procedures, and Candidates

In addition to our 29 genes initially selected for InSep (Supplemental Table S1), we
first compiled a list of 64 genes from prior studies that were shown to be diagnostic
or prognostic in sepsis (Supplemental Table S2) and then profiled them together across
Inflammatix’s sample bank using a single NanoString nCounter SPRINT Profiler capture
and reporter code set. For each of the 64 alternative biomarkers, the median, 5th, and 95th
percentiles of abundance were calculated. Markers with fewer than 400 copies (minimum
100 copies × 4 fold-change) at 95th percentiles were first excluded to ensure that sufficient
abundance could be detected by RT-LAMP in different cohorts. Next, markers with lower
than 4-fold dynamic change between the 95th and 5th percentiles were further excluded to
minimize the number of markers with limited resolution.

Using this two-step exclusion selection method, we evaluated the original 29 markers
(Supplemental Table S1) and found that 23 markers had both 95th percentile > 400 copies
and 95th/5th fold change > 4. From this two-step exclusion selection method, 27 additional
markers were identified out of 64 alternative candidates (Supplemental Table S2). Of
these 27 markers, 19 had five-fold or high dynamic change and were ranked as Tier 1,
while the remaining 8, with dynamic change lower than five-fold, were ranked as Tier 2.
Subsequently, two markers in Tier 1 and 2 (CD24 and SUCLG2) failed genomic DNA
screening (amplified DNA in addition to mRNA) and were removed. Hence, the process
resulted in the final list of 25 Tier 1 and Tier 2 candidate markers (Supplemental Table S2).
We then combined 23 from the original 29 genes (Supplemental Table S1) and 25 new
LAMP-compatible markers to form a pool of 48 markers for feature downselection via the
selected machine learning approach (Supplemental Table S3). See Supplemental Methods
for more information.

2.3. Selecting Best Alternative Marker Set Using Machine Learning

Constrained by the Myrna cartridge, we needed to downselect from a total of
48 LAMP-compatible targets to 29 genes (plus 3 housekeeping genes). The selection
of 29 markers proceeded in two phases:

Phase I: We used a forward selection method [20], a logistic regression (LOGR) model,
and a random hyperparameter search to choose the initial set of markers.

Phase II: We used a forward selection method, a multi-layer perceptron model, and
Bayesian hyperparameter optimization, with expert judgement to choose the additional
markers for a total of 29.

The rationale for this approach and the descriptions of steps are provided in the
Supplemental Methods.

2.4. Bioinformatics Analysis of the New 29-Marker Set

To understand the biology of the final selected marker set, we used several online
tools to investigate the genes both individually and as a group [21]. A complete description
of the software tools is in the Supplemental Methods.

For gene set enrichment analyses with Gene Ontology (GO) [22], KEGG [23], and
REACTOME [24], we estimated the significance of over-representation of the input genes
belonging to a term in the chosen system. In all tests, human transcriptome reference
was used but only annotated genes were counted as background in the hyper-geometric
test. The p-value from the test was then adjusted as false discovery rate (FDR) or q-value
using the g:SCS method [25,26] which is a better correction than the Bonferroni adjustment
method and the Benjamini–Hochberg correction method. See Supplemental Methods for
more information.

For network, upstream regulator, bioprofiler analyses with IPA [27], we included
edges represented by various types of relationships including protein-protein interaction,
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activation, binding, transcription, gene expression correlation, or protein–DNA binding.
See Supplemental Methods for more information.

3. Results
3.1. Selection of LAMP-Optimized the InSep 29-Marker Set

We established training and validation datasets from Inflammatix’s biobank to be
roughly balanced across our diagnostic classes of interest (Table 1). In addition to number
of samples summarized in Table 1 used for each class in training and validation, patient
characteristics and composition were also tabulated for 44 training datasets in Table 2 and
Figure 2 validation datasets in Table 3, respectively. Using performance criteria established
to select the new LAMP-optimized set of markers (see Methods and Supplemental Meth-
ods), we first estimated the ‘baseline’ diagnostic performance metrics for the 29 original
markers (columns of A in Table 4).

Table 1. Number of samples used in datasets for training and validation to assess the performance of
the original and swapped marker sets.

Dataset
Class

Bacterial Viral Noninfected

Training 1028 1049 1082

Validation 240 119 18

The number of intended final markers remained 29, given the spaces for 29 markers
and 3 housekeeping genes each in duplicates were already allotted in the InSep cartridge
design. Having established a basis for performance evaluation, we moved on to the marker
swap. Phase I yielded 19 genes listed in Supplementary Table S4. Phase II used Bayesian
optimization and expert assessment to select additional markers (Figure 1). The process
yielded 10 additional markers, for a total of 29 combined with Phase I (Table 5). The
diagnostic performance metrics of a neural network classifier developed using the new
29 markers is shown in columns of B in Table 4. Comparison to the results from the original
29 markers shows that the new biomarker set was better or at least noninferior in its overall
predictive performance of the InSep bacterial/viral/noninfected classifier, judged by a
combination of the clinically relevant metrics. Thus, the goal of the marker swap was
achieved, and these 29 markers were “locked” for further development.

3.2. Key Biological Functions and Hallmarks of the 29 InSep Genes

The directionality and nominal magnitude of relative changes of the final 29 InSep
biomarkers are shown in three comparisons: bacterial infection vs. uninfected control, viral
infection vs. uninfected control, and bacterial infection vs. viral infection, together with
entrez gene ID, location, and type (Table 5).

Overall, the central themes of the underlying biological functions behind the InSep 29
gene set can be summarized in the following somewhat overlapped hallmarks of human
immune response:

• Immune cell interaction represented by HLA-DM, CEACAM1, and JUP
• Inflammatory mediators represented by TGFB1, DEFA4, S100A12, and ISG15
• Cellular metabolism and homeostasis represented by HK3, NMRK1, ZDHHC19,

ARG1, CTSB, CTSL, PSMB9, KCNJ2, FURIN, and GADD45A
• Immune receptors represented by LY86, C3AR1, and CD163
• Intracellular signaling and antiviral response represented by GNA15, RAPDEG1,

PDE4B, BATF, OLFM4, IFI27, and OSAL
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Table 2. Patient characteristics and composition of datasets used in training for the marker swap optimization. ID = Infectious Disease; COPD = Chronic Obstructive Pulmonary Disease;
ICU = Intensive Care Unit; CAP = Community-Acquired Pneumonia; SIRS = Systemic Inflammatory Response Syndrome; TB = Tuberculosis; SJIA = Systemic Juvenile Idiopathic Arthritis;
HRV = Human Rhinovirus; RSV = Respiratory Syncytial Virus.

Study First Author Description a N Median Age
(IQR) Female (%) b Platform Country Bacteria (%) Virus (%) Noninfected

(%)

E-MEXP-3589 Almansa Patients hospitalized with
COPD exacerbation 23 70.1 5 (22) Agilent Spain 4 (17) 5 (22) 14 (61)

E-MTAB-1548 Almansa Surgical patients with sepsis
(EXPRESS) 140 72 (61–78) 44 (31) Agilent Spain 82 (59) 0 58 (41)

E-MTAB-3162 van de Weg Patients with dengue 21 20 (17–28) 10 (48) Affymetrix Indonesia 0 21 (100) 0

E-MTAB-5273/5274 Burnham Sepsis due to faecal
peritonitis or pneumonia 227 69 (54–77) 99 (44) Illumina UK 227 (100) 0 0

E-MTAB-5638 Almansa
ICU patients

w/ventilator-associated
pneumonia

17 68 (± 26) 7 (41) Agilent Spain 0 0 17 (100)

GlueBuffyHCSS c Multiple Trauma patients 320 33 (25–43) 43 (36) Affymetrix USA 46 (14) 0 274 (86)

GSE13015
(GPL6102) Pankla Sepsis, many cases from

burkholderia 45 54 (48–61) 19 (42) Illumina Thailand 45 (100) 0 0

GSE13015
(GPL6947) Pankla Sepsis, many cases from

burkholderia 15 49 (44–60) 9 (60) Illumina Thailand 15 (100) 0 0

GSE21802 Bermejo-
Martin Pandemic H1N1 in ICU 10 unknown unknown Illumina Canada 0 10 (100) 0

GSE29385 Naim Patients with influenza and
other respiratory infections 80 unknown unknown Illumina Vietnam 0 80 (100) 0

GSE61821 Hoang Febrile patients positive for
H1N1, H3N2 48 40 (20–51) unknown Illumina Vietnam 0 48 (100) 0

GSE42026 Herberg Children with H1N1/09, RSV
or bacterial infection 59 unknown 26 (44) Illumina UK 18 (31) 41 (69) 0

GSE72810 Herberg Febrile children with
bacterial or viral infection 15 unknown 7 (47) Illumina UK 5 (33) 10 (67) 0

GSE103842 Rodriguez-
Fernandez Children with RSV infection 62 3 (2–5.3) 23 (37) Illumina USA 0 62 (100) 0
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Table 2. Cont.

Study First Author Description a N Median Age
(IQR) Female (%) b Platform Country Bacteria (%) Virus (%) Noninfected

(%)

GSE77087
de

Steenhuijsen
Piters

Children with RSV infection 41 5.4 (1.7–8.3) 16 (39) Illumina USA 0 41 (100) 0

GSE22098 Berry Patients with active TB and
other IDs 193 16 (11–26) 134 (69) Illumina UK 52 (27) 0 141 (73)

GSE30119 Banchereau Patients w/Staphylococcus
aureus infection 59 6.5 (2–11) 25 (42) Illumina USA 59 (100) 0 0

GSE25504
(GPL13667) Smith Neonatal sepsis 12 0 4 (33) Affymetrix UK 9 (75) 3 (25) 0

GSE25504
(GPL6947) Smith Neonatal sepsis 21 0 10 (48) Illumina UK 20 (95) 1 (5) 0

GSE27131 Berdal Severe H1N1 7 38 (33–50) 1 (14) Affymetrix Norway 0 7 (100) 0

GSE28750 Sutherland Sepsis, post-surgical SIRS 21 unknown 10 (48) Affymetrix Australia 10 (48) 0 11 (52)

GSE28991 Naim Acute dengue 11 unknown unknown Illumina unknown 0 11 (100) 0

GSE32707 Dolinay Critically ill patients in
Brigham\& Women’s ICU 44 56 (45–59) 8 (18) b Illumina USA 0 0 44 (100)

GSE40012 Parnell Bacterial or influenza A
pneumonia or SIRS 36 59 (46.5–67) 16 (44) Illumina Australia 16 (45) 8 (22) 12 (33)

GSE40165 Nguyen Children and adolescents
with dengue 123 12 (10–14) 38 (31) Illumina Vietnam 0 123 (100) 0

GSE40396 Hu Febrile young children 30 1 (0.3–1.6) 13 (43) Illumina USA 8 (27) 22 (73) 0

GSE40586 Lill Community-acquired
bacterial meningitis 15 57 (53–71) unknown Affymetrix Estonia 15 (100) 0 0

GSE42834 Bloom Bacterial pneumonia or
sarcoidosis 82 unknown 40 (49) Illumina UK, France 14 (17) 0 68 (83)

GSE47655 Stone Acute anaphylaxis 6 unknown unknown Affymetrix Australia 0 0 6 (100)

GSE51808 Kwissa Dengue patients 28 unknown unknown Affymetrix Thailand 0 28 (100) 0

GSE57065 Cazalis Septic shock 28 62 (54–76) 9 (32) Affymetrix France 28 (100) 0 0
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Table 2. Cont.

Study First Author Description a N Median Age
(IQR) Female (%) b Platform Country Bacteria (%) Virus (%) Noninfected

(%)

GSE57183 Senoi SJIA patients 11 4 (3–7) 6 (55) Illumina USA 0 0 11 (100)

GSE60244 Suarez Lower respiratory tract
infections 93 63 (50–77) 56 (60) Illumina USA 22 (24) 71 (76) 0

GSE63881 Hoang Kawasaki disease 171 3 (1.4–4.3) 69 (40) Illumina USA 0 0 171 (100)

GSE64456 Mahajan Febrile infants (60 days of age
and younger) 200 0.1 (0.06–0.13) 94 (47) Illumina USA 89 (44) 111 (56) 0

GSE65682 Scicluna Suspected but negative for
CAP 33 59 (48–67) 11 (33) Affymetrix Netherlands 0 0 33 (100)

GSE66099 Sweeney Pediatric ICU (sepsis, septic
shock, or SIRS) 150 2.5 (1–3) 56 (37) Affymetrix USA 109 (73) 11 (7) 30 (20)

GSE67059 Heinonen Children with HRV infection 80 0.8 (0.3–1.3) 27 (34) Illumina USA 0 80 (100) 0

GSE68310 Zhai Outpatients with acute
respiratory viral infections 104 21 (20–23) 54 (52) Illumina USA 0 104 (100) 0

GSE69528 Khaenam Sepsis, many cases from
burkholderia 83 unknown 44 (53) Illumina Thailand 83 (100) 0 0

GSE73461 Wright Children with various IDs 308 3 (1–9) 143 (46) Illumina UK 52 (17) 94 (31) 162 (52)

GSE77791 Plassais Severe burn shock 30 48 (40–55) 9 (30) Affymetrix France 0 0 30 (100)

GSE82050 Tang Moderate and severe
influenza infection 24 65 (49–74) 10 (42) Agilent Germany 0 24 (100) 0

GSE111368 Dunning Adults hospitalized with
influenza 33 38 (29–49) 18 (55) Illumina UK 0 33 (100) 0

Notes for Table 2: a Study description is taken from the study’s corresponding publication and includes some patients that were excluded from the training set. b Numbers and percentages shown reflect the fact
that some patients in the study had unknown/unreported sex. c Total study sample size (N) and statistics of bacterial infection and non-infected composition are based on 320 patient samples used for marker
swap (including temporal replicates from non-infected patients) while age and sex information are based on the 119 unique patients.
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Table 3. Patient characteristics and composition of datasets used in validation for marker swap optimization. All samples were profiled on the NanoString platform. ICU = intensive care
unit; ED = emergency department.

Study Description Ethical Committee Approval N Median Age
(IQR) Female (%) Country Bacteria (%) Virus (%) Noninfected

(%)

INF-03
Patients with viral

infection; collected by
nasal swab

Ethics Committee Jehangir
Clinical Development Centre Pvt.

Ltd., Nov 1, 2019
27 28 (24–37) 10 (37) India 0 (0) 27 (100) 0 (0)

INF-IIS-03
Adult ED patients

with suspected sepsis
or acute infection

IRB and Ethical Committee of
“ATTIKON” University Hospital,

Athens, Greece, 163/05-06-08
76 61 (37–77) 45 (59) Greece 36 (47) 39 (51) 1 (1)

INF-IIS-10 Bacterial-infected
patients from ICU

Community Medical Center,
Toms River, NJ, IRB # 17-004 42 69 (60–80) 24 (57) USA 42 (100) 0 (0) 0 (0)

INF-IIS-11
Adult ED patients

with suspected sepsis
or acute infection

Ethical Board approval Charite
Universitaetsmedizin Berlin

EA4/167/18
191 72 (57–81) 83 (43) Germany 151 (79) 32 (17) 8 (4)

INF-IIS-19 Patients with septic
arthritis infection IRB 6 Stanford University, #4947 20 59 (42–66) 6 (30) USA 11 (55) 0 (0) 9 (45)

INF-IIS-21 Outpatient viral
infections

Comite Etico de Investigacion
con Medicamentos, Instituto de

Investigacion Biomedica
de Salamanca (IBSAL) (code PI

2018 11 138)

21 81 (75–86) 8 (38) Spain 0 (0) 21 (100) 0 (0)
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Table 4. Clinical diagnostic performance metrics for the 29 original markers (A) and the 29 final
markers (B). The classifier used for original 29 markers was Support Vector Machine (SVM) with
non-linear (RBF) kernel. The classifier used for new 29 markers was an assemble of multi-layer
perceptron neural networks. The classifiers were selected on the basis of the best trade-off between
mAUROC in training data (cross-validation) and validation.

A: Original 29 Markers B: New 29 Markers

Metric Training (Cross-
Validation) Validation Training (Cross-

Validation) Validation

Bacterial AUROC 0.817 0.926 0.903 0.925

Bacterial LR- 0.059 0.000 0.075 0.044

Bacterial fraction 1 (%) 7.9 2.1 18.2 14.9

Bacterial band 1 sensitivity (%) 99.3 100 98.1 98.3

Bacterial LR+ 7.5 Inf 7.5 14

Bacterial fraction 4 (%) 15.6 22.8 24.3 40.8

Bacterial band 4 specificity (%) 95.0 100 92.2 95.6

Viral AUROC 0.856 0.927 0.913 0.921

Viral LR- 0.075 0.05 0.074 0.071

Viral fraction 1 (%) 23.0 35.3 25.0 33.4

Viral band 1 sensitivity (%) 97.5 97.5 97.3 96.6

Viral LR+ 10.0 14.8 10 16

Viral fraction 4 (%) 26.5 24.9 28.6 22.5

Viral band 4 specificity (%) 93.4 95.3 92.8 96.1
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Figure 1. Intermediate snapshot of the Phase II of the marker selection by machine learning. X-axis is
the cross-validation AUC in training for best model found by Bayesian Hyperparameter Optimization
using features comprising current marker set plus one marker at a time. Y-axis is the AUC of that
model applied to validation set. For example, the blue dots represent training and validation AUCs
for feature sets consisting of the 19 markers found in Phase I, plus one of the markers in the remaining
set of markers. KCNJ2 was added to current marker set and the process repeated for the remaining
set of markers (green dots), etc.
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Table 5. Key information of the 29 mRNAs used in InSep test. Gene symbol, full names, aliases, entrez gene ID, location,
and type are given for each of the 29 mRNAs, together with the directionality and relative change in three comparison
pairs: bacterial infection vs. uninfected control (BI vs. UC), viral infection vs. uninfected control (VI vs. UC), and bacterial
infection vs. viral infection (BI vs. VI).

Gene Symbol Full Name Aliases Entrez
Gene ID Location Type BI vs.

UC
VI vs.
UC BI vs. VI

ARG1 Arginase 1 383 Cytoplasm Enzyme ↑↑ ↑ ↑

BATF Basic leucine zipper ATF-like
transcription factor 10538 Nucleus Transcription

regulator ↑↑ ↑ ↑

C3AR1 Complement C3a receptor 1 719 Plasma
membrane

G-protein
coupled
receptor

↑↑ ↑ ↑

CD163 CD163 molecule 9332 Plasma
membrane

Transmembrane
receptor ↑↑ ↑ ↑

CEACAM1 CEA cell adhesion molecular 1 634 Plasma
membrane Transporter ↑↑ ↑ ↑

CTSB Cathepsin B 1508 Cytoplasm Peptidase ↑↑ ↑ ↑

CTSL Cathepsin L CTSL1 1514 Cytoplasm Peptidase ↑↑ ↑ ↑

DEFA4 Defensin alpha 4 HP4, HNP4 1669 Extracellular
space Other ↑↑ ↑ ↑

FAM214A Family with sequence similarity 214
member A KIAA1370 56204 Other Other ↓↓ ↓ ↓

FURIN Furin, paired basic amino acid
cleaving enzyme 5045 Cytoplasm Peptidase ↑↑ ↑ ↑

GADD45A Growth arrest and DNA damage
inducible alpha DDIT1 1647 Nucleus Other ↑↑ ↑ ↑

GNA15 G protein subunit alpha 15 2769 Plasma
membrane Enzyme ↑↑ ↑ ↑

HK3 Hexokinase 3 3101 Cytoplasm Kinase ↑↑ ↑ ↑

HLA-DMB Major histocompatibility complex,
class II, DM beta RING7 3109 Plasma

membrane
Transmembrane

receptor ↓↓ ↓ ↓

IFI27 Interferon alpha inducible protein 27 3429 Cytoplasm Other ↑ ↑↑ ↓

ISG15 ISG15 ubiquitin like modifier 9636 Extracellular
space Other ↓ ↑ ↓

JUP Junction plakoglobin 3728 Plasma
membrane Other ↓ ↑ ↓

KCNJ2 Potassium inwardly rectifying
channel subfamily J member 2 3759 Plasma

membrane Ion channel ↑↑ ↑ ↑

LY86 Lymphocyte antigen 86 9450 Plasma
membrane Other ↓ ↑ ↓

NMRK1 Nicotinamide riboside kinase 1 NRK1,
O9orf95 54981 Cytoplasm Kinase ↑↑ ↑ ↑

OASL 2′-5′-oligoadenylate synthetase like 8638 Cytoplasm Enzyme ↑ ↑↑ ↓

OLFM4 Olfactomedin 4 GW112,
HGC1, OLM4 10562 Extracellular

space Other ↑↑ ↑ ↑

PDE4B Phosphodiesterase 4B 5142 Cytoplasm Enzyme ↓↓ ↓ ↓

PER1 Period circadian regulator 1 HPER1,
KIAA0482 5187 Nueleus Transcription

regulator ↑↑ ↓ ↑

PSMB9 Proteasome 20S subunit beta 9
RING12,
LMP2,

PRAAS3
5698 Cytoplasm Peptidase ↓ ↑ ↓

RAPGEF1 Rap guanine nucleotide exchange
factor 1 GRF2, C3G 2889 Cytoplasm Other ↓↓ ↓ ↓

S100A12 S100 calcium binding protein A12 CAAF1 6283 Cytoplasm Other ↑↑ ↑ ↑

TGFBI Transforming growth factor beta
induced

CDGG1,
CDB1,

RDD-CAP
7045 Extracellular

space Other ↓↓ ↓ ↓

ZDHHC19 Zinc finger DHHC-type
palmitoyltrasferase 19 DHHC19 131540 Cytoplasm Enzyme ↑↑ ↑ ↑

and two additional categories: circadian rhythm represented by PER1 [28] and hypoxia
stress represented by FAM214A. Importantly, although the above categories are quite
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broad, nearly every gene has published associations with host response to bacterial or viral
infections, infection severity, or inflammation. An interesting side note is that frequently
studied targets (e.g., TNF or IL-6) are not represented in the final gene panel because they
never ranked high enough in individual sub-analyses for inclusion in our panel [15–17].
This is likely because ‘typical’ cytokines are broadly induced by multiple inflammatory
pathways, and so may not be informative in a parsimonious signature [15–17].

3.3. In-Depth Descriptions and Discussion of the Members of the 29 mRNA InSep Set

ARG1, arginase 1, catalyzes the hydrolysis of arginine to ornithine and urea. Relevant
pathway involvement includes innate immune system, neutrophil degranulation, CDK-
mediated phosphorylation and removal of Cdc6, and NgR-p71 (NTR) signaling. ARG1 is
strongly upregulated by cytokine signaling and following toll-like receptor stimulation,
both of which are important for antimicrobial defense [29].

BATF, basic leucine zipper ATF-Like transcription factor, belongs to the AP-1/AFT
superfamily of transcription factors that (1) mediate dimerization with members of the
Jun family of proteins, (2) control the differentiation of lineage-specific cells in the im-
mune system, and (3) specifically mediate the differentiation of T-helper 17 cells, follicular
T-helper cells, CD8(+) dendritic cells, and class-switch recombination (CSR) in B-cells.
Other pathways involved in BATF are cytokine signaling and T cell receptor signaling.
Functional studies showed that defects in BATF induced multiple defects in T and B cell
communication network and significantly impaired antibody responses [30].

C3AR1, complement C3a receptor, is a receptor of an anaphylatoxin released during
activation of the complement system. Binding of C3a by the encoded receptor activates
chemotaxis, granule enzyme release, superoxide production, and bacterial opsonization.
Among its related pathways and activities are signaling by G protein-coupled receptor,
peptide ligand-binding receptors, innate immune system, complement receptor immune re-
sponse activity, chemotaxis, and lectin induced complement pathway. Animal models have
shown that this gene is important for protection against invasive bacterial infections [31].

CD163, also known as macrophage-associated antigen, is a member of the scav-
enger receptor cysteine-rich (SRCR) superfamily. CD163 is expressed in monocytes and
macrophages. It functions as an acute phase-regulated receptor involved in the clearance
and endocytosis of hemoglobin/haptoglobin complexes by macrophages, and it thereby
protects tissues from free hemoglobin-mediated oxidative damage [32]. It also plays a role
in dendritic cells developmental lineage pathway and vesicle-mediated transport pathway.
More importantly, it acts as an innate immune sensor for bacteria and inducer of local
inflammation [33].

CEACAM1, CEA cell adhesion molecular 1, encodes a member of the carcinoembry-
onic antigen (CEA) gene family, which belongs to the immunoglobulin superfamily. It was
found to be a cell-cell adhesion molecule detected in leukocytes, epithelia, and endothelia.
It mediates cell adhesion via homophilic as well as heterophilic binding to other proteins
of the subgroup. CEACAM1 was shown to be essential for immune synapse formation
in CD8+ T cells during infection [34]. It causes negative regulation of T cell mediated
cytotoxicity and is upregulated in many bacterial diseases. Receptor upregulation exposes
the host to a range of bacterial infections in the respiratory tract [34,35].

CTSB, cathepsin B, encodes a member of the C1 family of peptidases. Relevant path-
ways include: bacterial infections in CF airways, degradation of the extracellular matrix,
innate immune system, collagen chain trimerization, neutrophil degranulation, apoptosis
and autophagy, and trafficking and processing of endosomal TLRs. CTSB has been shown
to interact with bacterial proteins during legionella infection of macrophages, contain-
ing infection through programmed cell death [36]. Antigen-presenting cell expression of
CTSB has been shown to downregulate Th1 cytokine responses in response to intracellular
parasite infection [37].

CTSL, Cathepsin L, is a lysosomal enzyme that participates in numerous physiological
processes, including apoptosis, antigen processing, and extracellular matrix remodeling,
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all relevant to host response. Pathological conditions implicated in CTSL are viral or
bacterial infection and others such as invasion and metastasis of tumors, atherosclerosis,
renal diseases, and diabetes. CTSL expression is important for production of perforin in
NK cells and CD8 T cells [38]. The expression of CTSL is upregulated during inflammation
and fibrosis [39,40].

DEFA4, defensin alpha 4, is one of defensin family members that are antimicrobial
and cytotoxic peptides that are involved in host defense and the innate immune system.
Abundant in the granules of neutrophils, they are also found in the epithelia. Members of
the defensin family are highly similar in protein sequence and distinguished by a conserved
cysteine motif. Defensin 4 has important antiviral and antibacterial activity [41,42]. Relative
to other defensins, DEFA4 was found to have the highest antibacterial activity against
Gram-negative organisms [42].

FAM214A, family with sequence similarity 214 member A, has limited annotations.
The GWAS catalog includes C-reactive protein measurement and monocyte count. Differ-
ential expression of this gene may be related to hypoxia-stress [43].

FURIN, also known as proprotein convertase subtilisin/Kevin type 3 (PCSK3), is
a member of the subtilisin-like proprotein convertase family, which includes proteases
that process protein and peptide precursors trafficking through regulated or constitutive
branches of the secretory pathway. FURIN is known to be co-opted by bacteria and
viruses to enhance their virulence and spread [44]. It is thought to be one of the proteases
responsible for the activation of HIV envelope glycoproteins gp160 and gp140; and may
play a role in tumor progression. The spike protein of SARS-CoV-2 can be cleaved by this
protease, leading to enhanced viral infectivity [45]. Diseases related to FURIN include
avian influenza.

GADD45A, growth arrest and DNA damage inducible alpha, is a member of a group
of genes whose transcript level are increased following stressful growth arrest conditions
and treatment with DNA-damaging agents, as well as other cellular stress. The encoded
protein responds to environmental stress by mediating activation of the p38/JNK pathway
via MTK1/MEKK4 kinase. The DNA damage-induced transcription of this gene is medi-
ated by both p53-dependent and -independent mechanisms. GADD45A is important for
neutrophil and macrophage function in response to lipopolysaccharide (LPS), a bacterial
toxin, specifically modulates innate immune functions of granulocytes and macrophages
by differential regulation of p38 and JNK signaling [46].

GNA15, G-protein subunit alpha 15, is involved in GPCR super pathway. Noticeably,
the GWAS catalog for GNA15 gene are all relevant: counts of myeloid white cells, neu-
trophils, leukocytes, eosinophils, and monocytes. Macrophage GNA15 is involved with
immune signaling related to hematopoiesis and inflammatory response [47].

HK3, hexokinase 3, is an enzyme that catalyzes the phosphorylation of hexose, such as
D-glucose and D-fructose, to hexose 6-phosphate, the first step in most glucose metabolism
pathways. It plays a role in innate immune system and neutrophil degranulation in
addition to galactose metabolism and glucose metabolism. Hexokinases have been shown
to serve as innate immune receptors for bacterial cell wall peptidoglycan [48] and are
upregulated during mycobacterial infections [49].

HLA-DMB, major histocompatibility complex, class II, DM beta, belongs to the HLA
class II beta chain paralogues. This class II molecule is a heterodimer consisting of an
alpha (DMA) and a beta (DMB) chain, both anchored in the membrane. It is located
in intracellular vesicles. DM plays a central role in the peptide loading of MHC class
II molecules by helping to release the class II-associated invariant chain peptide (CLIP)
molecule from the peptide binding site. Class II molecules are expressed in antigen
presenting cells (APC): B lymphocytes, dendritic cells, macrophages. In addition to its
important role in antigen presentation, HLA-DMB has been shown to decrease viral protein
expression through modulation of the autophagosome [50].

IFI27, interferon alpha inducible protein 27, plays a critical role in induction of cell
apoptosis and known for an antiviral activity. Upregulated by type I interferons, it is
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involved in innate immune response and interferon signaling in immune system. Interferon
alpha is a principal component of antiviral host defense, inducing cell signaling and
subsequent production of several antiviral proteins [51]. IFI27 may also play a role in the
vascular response to injury. In the innate immune response, it is known to have antiviral
activity against a number of viruses [52–55]. Upregulation of IFI27 has been observed after
Toll-like receptor (TLR) 7 stimulation and occurred primarily in plasmacytoid dendritic
cells and NK cells. TLR7 is the innate immune receptor for single stranded RNA, a common
feature of many viral genomes. In respiratory infections, IFI27 expression has been shown
to discriminate bacterial from viral illness [55].

ISG15, ISG15 ubiquitin like modifier, is also known as interferon-induced 17 KDa
protein (IP17) or ubiquitin cross-reactive protein (UCRP). The protein encoded by this
gene is conjugated to intracellular target proteins upon activation by interferon-alpha
and interferon-beta. Its functions are relevant–chemotactic activity towards neutrophils,
direction of ligated target proteins to intermediate filaments, cell-to-cell signaling, and
antiviral activity during viral infections. It plays a key role in the innate immune response
to viral infection either via its conjugation to a target protein (ISGylation) or via its action
as a free or unconjugated protein. ISGylation involves a cascade of enzymatic reactions
involving E1, E2, and E3 enzymes which catalyze the conjugation of ISG15 to a lysine
residue in the target protein. It exhibits antiviral activity towards both DNA and RNA
viruses. The secreted form of ISG15 can induce natural killer cell proliferation, act as a
chemotactic factor for neutrophils, and act as a IFN-gamma-inducing cytokine playing an
essential role in antimycobacterial immunity. The secreted form acts through the integrin
ITGAL/ITGB2 receptor to initiate activation of SRC family tyrosine kinases including LYN,
HCK, and FGR which leads to secretion of IFNG and IL10; the interaction is mediated by
ITGAL [56].

JUP, junction plakoglobin, encodes a major cytoplasmic protein which is the only
known constituent common to sub-membranous plaques of both desmosomes and interme-
diate junctions. It plays a critical role in the arrangement and function of the cytoskeleton
and the cells within the tissue. Its functions include innate immune response, cell junction
organization, and cell adhesion. Plakoglobin expression has been shown to be affected by
exposure to inflammatory cytokines and viral proteins [57,58].

KCNJ2, potassium inwardly rectifying channel subfamily J member 2, encodes an inte-
gral membrane protein, inward-rectifier type potassium channel. This gene is upregulated
during tissue repair, including in fibrotic lung and heart disease [59]. KCNJ2 modulates cell
growth and apoptosis, and overexpression has been associated with inflammatory cytokine
expression [60]. Furthermore, KCNJ2 upregulation has been shown to be a biomarker of
cardiomyocyte death and hypoxia [61,62].

LY86, lymphocyte antigen 86, also known as myeloid differentiation-1 (MD-1), is
involved in innate immune system, and activated TLR4 signaling. LY86 has been shown
to cooperate with CD180 and TLR4 to mediate the innate immune response to bacterial
LPS [63]. Expression of this gene has also been shown to be important for preventing
pathological cardiac remodeling after injury [64].

NMRK1, previously known as C9orf95, is nicotinamide riboside kinase 1. NMRK1
is important for nicotinamide adenine dinucleotide (NAD) metabolism and metabolism
of water-soluble vitamins and cofactors. Expression of this gene has been shown to be
upregulated in virally infected cells, including those infected with SARS-CoV-2 [65].

OASL, 2′-5′-oligoadebylate synthetase like, is also known as TR-interacting protein
15 (TRIP15). OASL is an interferon stimulated gene (ISG) that is directly and rapidly
induced upon viral infection [66]. It complexes with cellular RNA and DNA sensors
and acts as a molecular rheostat for modulating interferon response to RNA and DNA
virus infection [67]. Among its related pathways are innate immune system, interferon
alpha/beta signaling, interferon gamma signaling, cytokine signaling in immune system,
immune response, and PI3K-Akt signaling pathway. OASL is important for antiviral innate
immunity, helping overcome viral evasion by RNA viruses [68].
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OLFM4, olfactomedin 4, is also known as antiapoptotic protein GW112. Initially
cloned from human myeloblasts, this gene is found to be selectively expressed in inflamed
colonic epithelium. The encoded protein is an antiapoptotic factor that promotes tumor
growth and is an extracellular matrix glycoprotein that facilitates cell adhesion [69]. Among
its related pathways are innate immunity, cell adhesion, and neutrophil degranulation. It
may also promote proliferation of pancreatic cancel cells by favoring the transition from
the S to G2/M phase. Expression of OLFM4 has been associated with respiratory viral
infection severity in children [70].

PDE4B, phosphodiesterase 4B, is a member of the type IV, cyclic AMP-specific, cyclic
nucleotide phosphodiesterase (PDE) family. The encoded protein regulates the cellular
concentrations of cyclic nucleotides and thereby play a role in signal transduction. Among
its related pathways are signaling by GPCR and myometrial relaxation and contraction
pathways, as well as T cell activation [71].

PER1, period circadian regulator 1, is one of a few well-studied circadian regulators. It
is expressed in a circadian pattern in the suprachiasmatic nucleus as the primary circadian
pacemaker in the mammalian brain. PER1 has also been shown to have an important role
in limiting the excessive innate immune response to bacterial LPS [28].

PSMB8, proteasome 20S subunit beta 8, is an essential component of the immuno-
proteasome, needed for the processing of class I major histocompatibility complex (MHC)
peptides. Located in the class II region of the MHC, the expression of PSMB8 is induced by
gamma interferon [72]. It is important for T cell antigen presentation, especially for viral
antigens [73]. PSMB8 also plays a role in apoptosis via the degradation of the apoptotic
inhibitor MCL1.

RAPGEF1, rap guanine nucleotide exchange factor 1, encodes a human guanine
nucleotide exchange factor. Among related pathways include common cytokine recep-
tor gamma-chain family signaling pathways and integrin-mediated cell adhesion HGF
pathway. It transduces signals from CRK by binding the SH3 domain of CRK and acti-
vating several members of the Ras family of GTPases. This gene is involved in apoptosis,
integrin-mediated signal transduction, and cell differentiation [74].

S100A12, S100 calcium binding protein A12, also known as neutrophil S100 protein,
is a calcium-, zinc-, and copper-binding protein which plays a prominent role in the
regulation of inflammatory processes and immune response. Its proinflammatory activity
involves recruitment of leukocytes, promotion of cytokine and chemokine production,
and regulation of leukocyte adhesion and migration. It acts as a monocyte and mast cell
chemoattractant. It can stimulate mast cell degranulation and activation which generates
chemokines, histamine, and cytokines inducing further leukocyte recruitment to the sites
of inflammation. Furthermore, it can inhibit the activity of matrix metalloproteinases:
MMP2, MMP4, and MMP9 by chelating Zn(2+) from their active sites. S100 proteins are
localized in the cytoplasm and/or nucleus of a wide range of cells and is also involved
in the regulation of a number of cellular processed such as cell cycle progression and
differentiation. Relevantly, the protein is involved in specific calcium-dependent signal
transduction pathways and its regulatory effect on cytoskeletal components may modulate
various neutrophil activities. The protein includes an antimicrobial peptide which has
antibacterial activity [75].

TGFBI, transforming growth factor beta induced, encodes an RGD-containing protein
that binds to type I, II, and IV collagens. The RGD motif is found in many extracellular
matrix proteins modulating cell adhesion and serves as a ligand recognition sequence for
several integrins. This protein plays a role in cell-collagen interactions and may be involved
in endochondral bone formation in cartilage. The protein is induced by transforming
growth factor-beta and other cytokines, and acts to inhibit white blood cell adhesion [76],
including after macrophage ingestion of apoptotic cells [77].

ZDHHC19, zinc finger DHHC-type palmitoyltrasferase 19, is known to be associated
with some viral infections. Its annotations include protein-cysteine S-palmitoyltrasferase
activity and mediation of palmitoylation of RRAS, leading to increased cell viability. A
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major immune function of ZDHHC19 is to facilitate activation of STAT3 upon cytokine stim-
ulation [78], which is important for immune signaling in infection and inflammation [79].
Interestingly, GWAS studies identified several phenotypes associated with ZDHHC19
variants include erythrocyte count, red blood cell distribution width and mean corpuscular
hemoglobin concentration. Expression of ZDHHC19 has been associated with sepsis and
septic shock in previous human studies [80].

3.4. Results from Pathway Enrichment Analyses of The InSep 29-mRNA Set

The final 29 biomarkers in Table 5 were subjected to multiple gene set enrichment
analyses using various methods: GO terms of biological process (BP), cellular compartment
(CC), and molecular function (MF); pathways in KEGG; and reactions in REACTOME
(summaries of these techniques and databases are in the Supplemental Methods). Figure 2
summarizes results from this analysis with FDR < 0.01 in the first five columns. It also
illustrates the membership of these significant terms in our 29 genes (the last 29 columns in
Figure 2) as heatmap.
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3.4.1. InSep 29 mRNAs in Gene Ontology

For GO BP, we found that 28 terms enriched significantly, and the majority were
associated with immune and inflammatory responses such as: (1) immune effector process;
(2) leukocyte, neutrophil, myeloid cell, granulocyte, and cell activation in involved in
immune response; (3) neutrophil and leukocyte degranulation; and (4) cellular response to
organic substance and chemical stimulus. Other processes such as exocytosis play a role in
transporting vesicles. First, 11 of the 29 genes (CEACAM1, ARG1, DEFA4, S100A12, C3AR1,
CTSB, JUP, OLFM4, HK3, HLA-DMB, and BATF) are commonly involved in four GO BPs:
(1) immune response, (2) immune effector process, (3) leukocyte activation involved in
immune response, and (4) cell activation involved in immune response. These pathway
terms have members largely overlapped (see heatmap in Figure 2). Unlike CEACAM1,
C3AR1, OLDM4, and HK4 that are mainly involved in neutrophil activities; ARG1, DEFA4,
JUP, S100A1, and CTSB are also known to play roles in other biological processes relevant
to host response such as pathogen defense (ARG1, DEFA4, S100A12) and response to
type I interferon (JUP). Second, IFI27, OASL, and ISG15 are all involved in viral life cycle,
regulation of symbiosis, encompassing mutualism through parasitism, regulation of viral
genome replication, regulation of striated muscle contraction, type I interferon signaling
pathway, and response to type I interferon. Third, the contributing genes to regulation of
immune effector process include ARG1, CEACAM1, C3AR1, HLA-DMB, and RAPGEF1.

Overall, the GO BP term analysis of the 29 InSep genes revealed major biological
processes relevant to its diagnostic purpose–via immune response to bacterial or viral
invasion by host cells. The number of GO BP terms to which a gene belongs can be very
high for some well-known and extensively studied genes (e.g., 246 for CTSB and 224 for
ARG1) or very low for others, depending on the omnibus or unique role of these genes
can play or simply the biases of our genome research [82], an interesting topic beyond the
scope of this work.

Significant terms in GO CC include granule and vesicle (specific and secretory) and
their lumen for their obvious roles in host response. Extracellular vesicles (EV), the most
common exosomes, consistently produced by viral-infected cells, play crucial roles in
mediating communication between infected and uninfected cells. Recent studies [83,84]
have revealed pathophysiological roles for EV in various viral infections, including human
immunodeficiency virus, coronavirus, and human adenoviruses. Critically, viruses can
exploit EV formation, secretion, and release pathways to promote infection, transmission,
and intercellular spread [24]. Consequently, EV production has been investigated as a
potential tool for the development of improved viral infection diagnostics and therapeutics.
In a recent review on EV–virus relationships, Ipinmoroti and Matthews [85] summarized
the roles of EVs in pathophysiological pathways, immunomodulatory mechanisms, and
utility for biomarker discovery. They also discussed the potential for EVs to be exploited as
diagnostic and treatment tools for viral infection.

For GO MF terms, no significant terms were found in the enrichment analysis; and
the top one with FDR of 0.06 is collagen binding due to their three member CTSB, CTSL,
and TGFBI.

3.4.2. InSep 29 mRNAs in KEGG Pathways

In the KEGG analysis, we found one significant pathway for our 29 gene set, antigen
processing and presentation, due to three member genes: CTSB, CTSL, and HLA-DMB via
their roles in MHC II pathway that leads to CD4 T cell receptor signaling pathway for
cytokine production and activation of other immune cells. It is known that the members of
antigen processing and presentation overlap with those of the T cell exhaustion signaling
pathway, MSP-RON signaling in macrophages pathway, and the role of NFAT in regulation
of the immune response.

The second-ranked pathway (though non-significant) was Staphylococcus aureus in-
fection, represented by DEFA4, C3AR1, and HLA-DMB. Next is apoptosis–Cathepsin B
and L, together with GADD45A are involved in apoptosis among other processes. More-
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over, HLA-DMB, GADD45A, and ISG15 are reported to be involved in Epstein–Barr virus
infection, one of the most common human viruses in the world, causing infectious mononu-
cleosis and other illnesses. Additionally, autophagy is found more in viral than in bacterial
infection, likely because a subset of viruses and bacteria subvert the autophagic pathway
to promote their own replication [86].

3.4.3. The InSep 29 mRNAs in Reactome

Three terms in Reactome analysis were found significant (all with FDR < 0.0005):
immune system, innate immune system, and neutrophil degranulation due to contribu-
tions of 18, 13, and 9 members respectively from the 29 input genes as shown in Figure 2.
Marginally significant ones (not shown) with contributing members ranging from 2 to 4
include trafficking and processing of endosomal toll-like receptor (TLR), collagen degrada-
tion, TLR cascades, interferon alpha/beta signaling, CD163 mediating anti-inflammatory
response, cytokine signaling in immune system, MHC class II antigen presentation, degra-
dation of the extracellular matrix, extracellular matrix organization, interferon signaling,
all relevant to immune response.

3.5. Networks and Subnetworks Involving the InSep 29 mRNAs

With the 29 InSep genes as input seed nodes using knowledge base captured in the
IPA system for humans, we recovered three networks labelled A–C as shown in Figure 3.
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Network A has a total of 35 nodes; of the 29 InSep genes, 20 are found in this network,
either over-expressed (red) or under-expressed (green) in viral infection in comparison
with uninfected controls. Top diseases and functions involved in this network include
immunological disease, inflammatory response, and organism injury and abnormalities.
The first one is the MHC class II molecules, found on antigen-presenting cells. As MHC
class II protein complex is encoded by the human leukocyte antigen complex (HLA), HLA-
DMB is under-expressed in both viral and bacterial infection, but by a greater magnitude
in bacterial than viral infection. CSTL(Cathepsin L) is involved in MHC-mediated antigen
processing and presentation, also shown in the network. In addition, CTSL plays a major
role in intracellular protein catabolism. Its substrates include collagen and elastin, as well
as alpha-1 protease inhibitor, a major controlling element of neutrophil elastase activity.
CTSL is also known to be associated with Middle East Respiratory Syndrome and bacterial
infections in CF airways. The second key driver is IFN beta as well as IFN alpha (interferon
type I) for upregulating the expression of IFI27, with greater magnitude in viral than in
bacterial infection; type I interferons are produced by fibroblasts and monocytes when
a viral infection is recognized [87]. C3AR1, Complement C3a Receptor 1, is impacted
by several pathways and is upregulated by MHC class II, type I interferons, interleukin
12 complex, immunoglobulin G, and TNF via various mechanisms.

Network B involves 6 of the 29 InSep markers with 3 upregulated (red) and 3 down-
regulated (green) among its 35 nodes. Top diseases and functions of them are involved
in cardiac arrythmia, cardiovascular system development and function in general, and
organism development via cellular matrix. TGFBI, transforming growth factor beta in-
duced, is associated with many diseases via its pathway involvement in metabolism of
proteins, Wnt, Hedgehog, and Notch signaling. It plays an important role in cell adhesion,
cell-collagen interaction, and extracellular matrix binding. BATF, basic leucine zipper
ATF-like transcription factor, regulates expression of multiple interleukins, IL2, IL4, IL5,
IL10, and IL13, proliferates CD8+ T lymphocytes, and plays a role in cytokine signaling in
immune system.

Network C has only six nodes but includes a key gene from the 29 markers, DEFA4,
and a close family member, DEFA1 (also known as HNP-1). These defensins, a family of
antimicrobial and cytotoxic peptides, are known to be involved in host defense and are
abundant in the granules of neutrophils, localizing with pro-inflammatory cytokines. Top
diseases and functions associated with this network include drug metabolism, molecular
transport, and tissue morphology. Together, this network reveals the relevant biology of
DEFA4 as a biomarker for bacterial vs. viral infection as well as for severity.

One can grow a network by connecting additional nodes to the existing nodes already
in the networks according to their relationships such as protein–protein interaction, acti-
vation, binding, transcription, gene expression correlation, or protein–DNA binding. As
an example, in Figure 3 we expanded the network in (A) by connecting more genes to the
genes of interest, resulting in the final network in (D). Interestingly, some genes (ISG15,
PSMB9, CEACAM1, CADD45A) are highly interconnected based on current knowledge,
and others (OASL, PDE4B, BATF, GNA15, HK3) have fewer connections. For example,
ISG15 is regulated by many including STAT1, STAT2, TP53, HDAC4, HDAC11, IRF3, and
IRF8. No extension was found for three genes: LY86, OLFM4, and FAM214A. However,
OLFM4 has recently been tied to sepsis severity [88], meaning the lack of nodes may simply
reflect poor knowledge in some networks.

3.6. Upstream Regulators Impacting the InSep 29 mRNAs

The upstream regulator analysis using the IPA tool takes into account the directionality
and magnitude changes of 29 input genes. We used effect size from bacterial infection vs.
uninfected control (Table 5) to show a regulator network derived for bacterial infection
in a cellular view in Figure 4. Evidently, the effect on impacting expression of many
biomarkers were found to be mediated through a few key drivers such as TNF (tumor
necrosis factor), a cytokine that contributes to the acute phase reaction, and modulates
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type 1 immune responses to infections [89]. Interleukin 6 (IL-6) is not in our gene set but
connects to several of genes either upstream or downstream (Figure 4), and also acts as
both a pro-inflammatory cytokine and an anti-inflammatory myokine [90]. Smooth muscle
cells in the tunica media of many blood vessels also produce IL-6 as a pro-inflammatory
cytokine. Conversely, TGM2 mediates effect directly on targets DEFA4, OLFM4, HK4, and
indirectly on other biomarkers via other targets.
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3.7. Connection of 29 mRNAs to Relevant Phenotypes

The knowledge base in IPA also allowed us to link the 29 markers to phenotypes. Here
we highlight such connections in four subnetworks in Figure 5, showing their connections
to (A) cell proliferation of T lymphocytes, (B) organismal death, (C) infection by RNA virus,
and (D) viral infection. Figure 5A shows 5 genes (ARG1, BATF, CEACAN1, GADD45A, and
HLA-DMB) linking to cell proliferation of T lymphocytes, either via activation or inhibition.
Presumably, these five mRNAs provide the InSep algorithms with a partial measure of
T lymphocyte proliferation as part of host response to infection. We found 11 genes to
be connected to organismal death (Figure 5B), an important phenotype but tested to
be insignificant in enrichment analyses due to relatively large number of genes whose
annotations share the term ‘organismal death’. Respectively 13 and 16 genes were found
to be linked to infection by RNA virus and viral infection through various mechanisms
(Figure 5C,D).
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4. Discussion

We here show an effective optimization of our 29-mRNA panel to allow for transition
to a rapid qRT-LAMP-based test, and provide a biological understanding of the final panel.
During the assay development process and a new generation classifier training, 13 of the
original 29 genes were replaced in the final locked-in model for InSep due to the model
optimization primarily for isothermal amplification process used on our chosen platform
of loop-mediated isothermal amplification (LAMP). This list of 13 genes: C11orf74, CIT,
GPAA1, HIF1A, HLA-DPB1, LAX1, MTCH1, OR52R1, RGS1, RPDRIP1, SEPP1, TNIP1, and
TST were replaced collectively by a new list of 13 other genes: ARG1, C9orf95 (NMRK1),
CTSL1, FURIN, GADD45A, HLA-DMB, ISG15, OASL, OLFM4, PDE4B, PSMB9, RAPDEF1,
and S100A12. We show that the classifiers based on the final 29 markers produce an overall
equal or better performance than the classifiers based on the previous 29 markers, but now
can be measured using a rapid assay (qRT-LAMP) to fit into workflow [14].

The 29 biomarkers were selected based on their analytical performance with qRT-
LAMP and their significance in predicting the classes to be tested: viral infection, bacterial
infection, or 30-day mortality. In building for clinical effectiveness, our data-driven ap-
proach chose genes which we have here shown to be biologically plausible as highly linked
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to relevant immune functions. While some genes are not well-studied in infections yet, this
is likely due to the ‘streetlamp effect’ of biological research–well-studied genes become
more and more well-studied, and pathways/knowledge databases only reflect known
associations [82]. Thus, for instance, OLFM4 was included strictly because of its apparent
ability to estimate sepsis severity, but knowledge bases may not yet have incorporated its
early linkage with sepsis [88].

There are limitations in this type of biological interpretation research in general. First,
the analysis depends on annotations found in the databases that are available, such as gene
set membership in pathways, pathway topology, presence of genes in certain biological
processes, and the backbone network constructed based on available literature. These
annotations and knowledge base in general, however, are far from being complete and
have highly variable degrees of reliability. In addition, many terms for molecular functions
or biological processes are general, deprived of cell type, compartment, or developmental
context. Therefore, interpretation of pathway analysis results for biomarkers as those
reported in this work should be used with caution. Second, the knowledge base upon
which we rely for the analysis is highly biased–we know what we know, but are not able to
make connections based on yet-undiscovered biology [82]. That said, this work not only
helped us to gain an initial understanding of biological processes, pathway participation,
and cellularity switches reflected by the transcriptional changes we measure in the 29 InSep
biomarkers, but also will help us to design and conduct targeted studies to further elucidate
their individual and coordinated roles in reporting bacterial and viral infection together
with its severity in the future.

It should be emphasized that here we are not pursuing biomarker discovery for bi-
ological mechanisms underlying a biological condition or disease state, as is the case in
mechanistic studies. Rather, we are developing a diagnostic and prognostic test for acute
infections and sepsis with the 29 biomarkers using a data-driven approach [18,91]. Namely,
we rely on the readout of the 29 mRNAs to collectively provide a molecular portrait of
the physiological state of the immune response for purposes of clinical diagnostics and
prognostics. The classifier, trained by machine learning algorithms, integrates the measure-
ments of all 29 mRNAs in its totality and outputs well-calibrated scores to help clinicians
to take the correct clinical actions for patients in need, as discussed by Ducharme et al. [13].
In the long run, rapid host-response diagnostics may also prove valuable for identifying
other infection types, such as fungal or malarial infections.

5. Conclusions

Diagnostic or prognostic tests based on multi-gene signatures must be both clinically
effective and biologically significant in order to find broad clinical use. We here optimized a
29-mRNA set for rapid measurement using qRT-LAMP on the disposable, cartridge-based
Myrna platform. We further demonstrated the biological plausibility of the final chosen
29-mRNA set, with multiple linkages at the gene, pathway, and network level to leukocyte
biology and infection response. A prospective study of the rapid LAMP-based 29-mRNA
panel is underway as part of a registrational trial.
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