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Abstract: Accurate segmentation of the mandible from cone-beam computed tomography (CBCT)
scans is an important step for building a personalized 3D digital mandible model for maxillofacial
surgery and orthodontic treatment planning because of the low radiation dose and short scanning
duration. CBCT images, however, exhibit lower contrast and higher levels of noise and artifacts due
to extremely low radiation in comparison with the conventional computed tomography (CT), which
makes automatic mandible segmentation from CBCT data challenging. In this work, we propose
a novel coarse-to-fine segmentation framework based on 3D convolutional neural network and
recurrent SegUnet for mandible segmentation in CBCT scans. Specifically, the mandible segmentation
is decomposed into two stages: localization of the mandible-like region by rough segmentation and
further accurate segmentation of the mandible details. The method was evaluated using a dental
CBCT dataset. In addition, we evaluated the proposed method and compared it with state-of-the-art
methods in two CT datasets. The experiments indicate that the proposed algorithm can provide more
accurate and robust segmentation results for different imaging techniques in comparison with the
state-of-the-art models with respect to these three datasets.

Keywords: mandible segmentation; cone-beam computed tomography (CBCT); computed tomog-
raphy (CT); metal artifacts; 3D virtual surgical planning (3D VSP); convolutional neural networks

1. Introduction

Three-dimensional (3D) virtual surgical planning (VSP) technique is commonly used
for orthodontic diagnosis, orthognathic diagnosis and surgery planning because it allows
for pre- or post-operative simulation of surgical options [1]. Accurate mandible segmenta-
tion plays a critical role in the 3D VSP. 3D mandible surface models in 3D VSP are created
and superimposed to demonstrate the orthodontic changes both visually and quantitatively
(including pre- and post- operation). Cone-beam computed tomography (CBCT) is widely
applied in 3D VSP because of its low radiation doses and short scanning duration. How-
ever, teeth, tooth fillings, and dental braces in orthodontic treatment and metal implants
in orthognathic treatment are high attenuation materials which cause high noise and low
contrast in visual impressions of CBCT images. Specifically, weak and false edges in parts
of condyles and teeth often appear in the CBCT images. Furthermore, it is difficult to
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identify the boundaries of mandibles since the dental braces and metal implants negatively
affect the image quality in CBCT, as shown in Figure 1. Therefore, it is challenging for
orthodontic or orthognathic VSP to accurately perform mandibular segmentation in CBCT.
Consequently, a large amount of manual work is required to reconstruct 3D mandible
models. The patient-specific orthodontic or orthognathic treatment planning is restricted
and delayed by this time-consuming procedure.

Figure 1. Example of manual annotation of the mandible in a CBCT image with strong metal artifacts.

To reduce the workload of mandible segmentation, a number of traditional segmen-
tation methods have been developed in the past, including statistical shape model [2] as
well as machine learning methods [3-6]. Sebastian et al. [2] presented a statistical shape
model (SSM) based mandible segmentation approach. They introduced an optimized cor-
respondence to their SSM model. Wang et al. [3] employed a majority voting method and
combined it with random forest for mandible segmentation. Rarasmaya et al. [4] proposed
a method based on histogram thresholding and polynomial fitting to segment mandibular
cortical bone in CBCT scans. Oscar et al. [5] used super-voxels and graph clustering for
mandible segmentation in CBCT images. Fan et al. [6] proposed an automatic approach for
segmenting mandibles from CBCT using a marker-based watershed transform. However,
some of these traditional techniques require mandible shape prior to initialization, and the
performances of these methods are often affected by noise or metal artifacts. Furthermore,
it is difficult to adjust the model parameters according to the overall characteristics of the
target contour [7].

With the development of convolutional neural networks (CNN), many approaches
have introduced the CNN for mandible segmentation. Ibragimo et al. [8] presented the
first attempt of using the deep learning concept of CNN to segment organs at risk (OARs)
in head and neck CT scans. The AnatomyNet [9] is built upon the popular 3D Unet
architecture using residual blocks in encoding layers and a new loss function combining
Dice score and focal loss in the training process. A fully CNN (FCNN) method with a
shape representation model for segmentation of organs at risk in CT scans was presented
in [10]. Qiu et al. [11] developed a novel technique, RSegUnet, for mandible segmentation
in conventional CT scans. This kind of network architecture combines the recurrent unit
and the normal segmentation network. RSegUnet has been proven able to accurately
segment the mandible parts with weak boundaries, such as condyles and ramus, since the
network considers the continuity of neighborhood slices for the scans [11]. The recurrent
segmentation network relies on the spatial connections between pixels of the mandible.
However, this approach is vulnerable to spatial discontinuities such as metal artifacts
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in the tooth region and can suffer from oversegmentation once the upper and lower
teeth are connected in the scans. Although these methods have led to some performance
improvements, they still exhibit some disadvantages such as missing parts of the ramus
when metal artifacts are present.

As mentioned in the literature, automatic mandible segmentation is still far from a
solved problem, especially for CBCT scans, and post-processing for the mandible often
requires significant manual interaction to achieve useful results for clinical practice. In this
work, we aim to develop an accurate mandible segmentation algorithm to overcome the
inaccurate prediction for 3D VSP in CBCT.

Motivated by the concept of curriculum learning [12], we propose a novel mandible
segmentation approach based on a coarse-to-fine learning framework to solve the aforemen-
tioned challenges in mandible segmentation of CBCT. Curriculum learning draws upon
a learning idea that follows a learning order from easy to difficult tasks [12]. Specifically,
a complex task can be solved by dividing it into simple sub-tasks, then starting from the
simplest sub-task and progressing to the more difficult sub-tasks. In this study, we propose
a hybrid method which consists of a coarse stage and fine stage, in which the coarse stage
makes use of 3D CNN for predicting the mandible-like organ and the fine stage utilizes
the recurrent segmentation CNN for fine mandible segmentation in CBCT images which
are mostly affected by metal artifacts. The proposed approach aims at overcoming the
oversegmentation in some parts of the tooth regions and undersegmentation in the weak
edges of the ramus and condyles. The coarse segmentation from the coarse stage guides
the segmentation of the mandible in the fine stage, and therefore decreases the difficulty of
segmenting the mandible from CBCT. Along with this coarse-to-fine segmentation (named
as C2FSeg) task, we design a network by stacking a 3D SegUnet and a recurrent SegUnet.
In addition, we extend the proposed segmentation network with a hybrid loss proposed by
Taghanaki et al. [13], which has been demonstrated to offer superior performance in many
visual applications.

This paper proposes a novel mandible segmentation approach for artifact-affected
CBCT/CT with two main contributions:

e  First, we apply the concept of curriculum learning to split the mandible segmenta-
tion into two sub-tasks. We extract the mandible-like organ using a 3D Unet in the
coarse stage and then apply the mandible-like organ into the recurrent segmentation
network in the fine stage. In comparison with other CNN approaches, the proposed
segmentation approach is robust against metal artifacts.

®  Second, the proposed model achieves promising performance on the dataset of CBCT
scans of dental braces. Furthermore, the proposed model achieves a promising
performance on the conventional CT dataset and Public Domain Database of the
Computational Anatomy (PDDCA) dataset.

2. Methodology

From the perspective of the framework, a coarse-to-fine mandible segmentation
approach (C2FSeg) is proposed according to curriculum learning [12]. The C2FSeg consists
of two main components: coarse stage and fine stage, in which the coarse stage obtains the
mandible-like organs, while the fine stage reduces the false positive rate by embedding the
overall information of the mandible-like organs and the neighboring information. In the
coarse stage, potential mandible candidates are first identified, and then reduction of the
false positives (FPs) within the candidates is performed in the fine stage. The coarse model
identifies potential mandible candidates, and the fine model reduces the false positives
(FPs) within the candidates. The overview of the mandible segmentation framework is
given in Figure 2.
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Figure 2. Overview of the proposed method consisting of (a) a 3D CNN for rough mandible segmentation and (b) a 2D
recurrent segmentation network for further accurate mandible segmentation. The implementation of stage (a) is as follows:
input scan — 3D patch extraction — 3D CNN (3D SegUnet based) — 3D patch segmentation — reconstruct the 3D patches
into 3D segmentation of the scan. (b) The implementation of stage (b) is as follows: fusion with the coarse mask, the output
probability maps and input data — RSegCNN (recurrent SegUnet) — accurate mandible prediction.

2.1. Curriculum Learning in Mandible Segmentation

Curriculum learning describes a type of learning in which tasks can start with simple
tasks before the number of difficult tasks is gradually increased. This learning method is
proposed by [12]. It assumes that the curriculum learning can improve the convergence
speed of the training process and find a better local minimum [12]. To elaborate upon
the proposed C2FSeg approach, we first formulate a segmentation model that can be
generalized to both coarse stage and fine stage; we will customize the segmentation model
to these two stages in Sections 2.2 and 2.3, respectively.

Let X = {xl, ..., xt, ..., x"} be the head and neck scan volume, where X belongs to the
CBCT image domain, X € Q) = R™<wxh where n, w and h represent slice number, width
and height, respectively. The corresponding ground truthis Y = {y!,...,y!,...,y"} €
{0, 1}”””’1, where t denotes the t-th slice of the CT scan. Let Y = {y71, I L (L <
S € [0,1)"@*" denote the predicted segmentation (O — S). We denote a segmentation
task by an operator F, i.e., Y = F(X,0), where 6§ indicates model parameters. Specifi-
cally, in a CNN model with L layers and parameters § = {wl, w?, ..., wk b2, ..., bL},
{w!,w?,...,wl} is a set of weights and {b',b2,...,b"} is a set of biases. According to
the concept of curriculum learning, in which a task can be divided into several sim-
ple sub-tasks, the task is defined as F = Fy,...,F;, where s represents the number of
sub-tasks. Therefore, the predicted segmentation Y = F(X, ) can be rewritten as Y =
Fs(Fs—1,..., B(Fi(X,61),X,62),...,X,05_1), X, 6s). Although this structure can improve
the performance of the task and reduce the difficulty of the task, this model exponentially
increases required computing resources, resulting in low efficiency. A small s is sufficient
to handle the problem of mandible segmentation. We use s = 2 in this study; i.e.,

Y =FR(F(X 6:1),X,6), 1)

where F; and F, denote the models from coarse stage and fine stage, respectively.
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2.2. Coarse Stage: Mandible-Like Organ Prediction

One of the obstacles to training 3D deep networks is the problem of “insufficient
memory”. A common solution is to train a 3D CNN from smaller sub-volumes (3D patches)
and test it by sliding window [14]: that is, to perform 3D segmentation on densely and
uniformly sampled sub-volumes. In the coarse stage, the input of the coarse stage is
cropped from the whole CBCT scan volume X denoted by X¢, X¢ = Crop(X) € sub(Q)) =
R Xwixhe (n® < n,w® < w,h® < h), where n, w° and h° represent the depth, width
and height of the cropped volume, respectively. The coarse segmentation model can be
formulated as:

Y{ = Fi(XE,0,). )

The goal of this stage is to efficiently produce the rough mandible segmentations
Y¢ from the complex background, which can remove regions that are segmented as non-
mandible with high confidence in order to obtain an approximate mandible volume. To be
used in the following fine stage, we need to map the sub-volume predictions Y¢ back to
exactly the same location given by X¢ = Crop(X) after all the positions are traversed. The
mathematical definition is Y; = UnCrop(Y{).

As illustrated in Figure 3a, the coarse stage of our proposed C2FSeg network for
capturing the mandible-like candidates is based on the 3D SegUnet, which is the original
SegUnet [15] expanded from 2D to 3D. The 3D SegUnet consists of an encoder and a
decoder, each of which has four convolutional blocks follwed by 3D maxpooling or 3D
uppooling layers. The 3D convolutional block includes two convolution operations with a
kernel of 3 x 3 X 3, each of which is followed by a batch normalization [16] and a rectified
linear unit (ReLLU) [17] activation function. The number of filters in the encoder starts at
32 and increases by a factor of 2 after every 3D convolutional block, while it declines by
a factor of 2 in the decoder path. The number of feature maps is listed on the left of each
convolutional block, and the convolutional layers are represented in Figure 3. In addition
to the encoder and the decoder, we also use a cross connection to bridge the short-cut
connection between the low-level and high-level layers, and we use a cross connection
to transfer coordinates from maxpooling to uppooling. In the forward phase, the low-
level feature maps extracted from the encoder are directly concatenated to the high-level
feature maps, which can improve fine-scaled segmentation [18]. As for the backward phase,
the high-level feature maps can be propagated backward through the connections. This
approach can prevent the network from enduring gradient vanishing, which will hinder
the convergence of the network in the training process [19]. The output of the 3D SegUnet
is obtained by applying a convolutional layer with a kernel of 1 x 1 x 1 followed by the
sigmoid function.

2.3. Fine Stage: False Positive Reduction

In the fine stage as shown in Figure 2b, a recurrent SegUnet (RSegUnet) is utilized
to predict the segmentation map. SegUnet [15] is used as a basic element in the recurrent
network. The network setting is the same as 3D SegUnet on the coarse stage and is
performed by using a 2D kernel instead of using a 3D kernel, as illustrated in Figure 3b.
RSegUnet adopts the structure of the recurrent neural network, which forms a directed
acyclic graph, so that the recurrent connection between adjacent nodes can maintain its
connectivity. Furthermore, RSegUnet can further learn the shape of the mandible based on
its anatomical connectivity by using the spatial information from neighboring predictions.
The coarse network spotted the potential mandible candidates, and we further refine the
segmentation results by reducing the FPs of the coarse predictions.
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Figure 3. The detailed architecture setting of the proposed method consists of a 3D CNN (a) and a 2D recurrent segmentation

network (b).

To further utilize the information obtained from the prediction of the previous neigh-
borhood slice, we use RSegUnet [11] to accurately segment the mandible in the fine stage.
The sequential design of RSegUnet allows the network to learn anatomical structure conti-
nuity in 3D form. In the fine stage, RSegUnet, F,, processes each slice sequentially. The
input of RSegUnet is sampled from the scan volume X and the rough predictions from Y;
of the coarse stage. Here, Yo = {#},...,95,..., 04} € Sy € {0,1}"*®*! is the binary seg-
mentation map generated from the fine stage ({Q2, 51} — S). In general, Y,=F (Yl, X, 0,).
In this task, RSegUnet maps a sequence input slice (x/, 7}, yAéfl) to a sequence output 75 of
the same length, i.e., the output of the unfolded RSegUnet after t steps is represented as:

N A(f—1 A
7 =Egy Y, 9h). ®3)

Allin all, the fine stage of the proposed C2FSeg framework is illustrated in Figure 3b.

2.4. Loss

These two stages are trained separately using the same unified loss function. The loss
function of each stage is a combination of Dice and binary cross entropy (BCE) loss. These
loss functions are selected due to their potential to deal with imbalanced data.

L = w1 X Lpcg + w2 X Lpice, 4)
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where w; and w; are the hyperparameters which adjust the amounts of BCE and Dice
contribution in the loss function £. Lgcg and Lp;., are defined as follows:

A 1Y A R
Lpce(@,y) = N Y yilog(7:) + (1 —yi) log(1 — i), (5)
i=

250 yidi
v+ i

Here, y; and #j; represent the ground truth and the predicted probability of pixel i,
respectively, and N is the number of pixels.

According to Equation (5), the term (1 — y;) log(1 — §;) penalizes false positives (FPs),
as it is 0 when the prediction probability is correct, and y; log(1;) penalizes false negatives
(FNs) [13]. Therefore, the BCE term is able to control the trade-off between FPs and FNs
in the pixelwise segmentation task. In spite of that, the networks with only BCE as loss
function are often prone to generate more false positives in the segmentation [20]. The study
from [21] has proven that Dice loss yields better performance for one-target segmentation
and is able to predict the fine appearance features of the object. Dice loss is based on the
Dice coefficient metric, which measures the proportion of overlap between the resulting
segmentation and the ground truth. Thus, the combination of loss functions can control
the penalization of both FPs and FNs by the BCE term and simultaneously boost the model
parameters out of local minima via Dice term.

The training procedure of RSegCNN is the same as that of the traditional CNN,
where the trainable weights are updated with the backpropagation through time (BPTT)
algorithm [22]. According to Equation (4), the loss for the t-th step with prediction 7 with
respect to ground truth y is:

*CDice(.]?/ .1/) =1- (6)

L@ y") = w1 x Lece(@,y") + w2 x Lpice (9, y"), @)

in which each £! is used only at step £.

a i, t,1s as follows:

The gradient -

0L oy Rnce 0y | Foield ')

A W1 "
o o
__M<%_1—%>_ 2y,
N ﬁ; 1_?; 21 lyz+ (8)
wy Zz 1y1y1
(Ez 1]/1 + )

2.5. Evaluation Metrics

For quantitative analysis of the experimental results, four performance metrics are
used, including Dice coefficient (Dice), average symmetric surface distance (ASD) and 95%
Hausdorff distance (95HD).

Dice coefficient is widely used to assess the performance of image segmentation
algorithms [23]. It is defined as:

2y N yidi 9

Dice = N —.
Yis1Yit+ Ui
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The average symmetric surface distance (ASD) is a measure for computing the average
distance between the boundaries of two object regions [10]. It is defined as:

d(A,B) +d(B,A)

ASD(A,B) = > , (10)

1
d(A,B) = — inlla—bl, 11
(A,B) Nﬂggggl\a [ (11)

where ||| represents the Ly norm. 4 and b are corresponding points on the boundary of A
and B.

Hausdorff distance (HD) measures the maximum distance of a point in a set A to the
nearest point in the other set B [24]. It is defined as:

HD(A, B) = max(h(A, B),h(B, A)) (12)
h(A, B) = maxmin |2 — b| (13)

where (A, B) denotes the directed HD. The maximum HD is sensitive to contours. When
the image is contaminated by noise or occluded, the original Hausdorff distance is prone to
mismatch [25,26]. Thus, Huttenlocher proposed the concept of partial Hausdorff distance
in 1933 [24]. The 95HD metric is similar to maximum HD. In brief, 95HD selects 95% of the
closest points in set B to the point in set A in Equation (13) to calculate (A, B):

95HD = max(h*>” (A, B), hi*>” (B, A)) (14)

1% (A, B) = max min |la —b)| (15)
acA pe B95%
The purpose of using 95HD is to reduce the impact of a small subset of inaccurate
prediction outliers on the overall assessment of segmentation quality.

3. Experiments

We evaluate our method on three datasets and compare our performance with state-
of-the-art methods.

3.1. Datasets
3.1.1. CBCT Dataset

A total of 59 orthodontic CBCT scans that had been heavily affected by metal artifacts
were used in this study. All the CBCT scans were obtained on a Vatech PaXZenith3D
(or Planmeca promax). Each scan consists of 431 to 944 slices with size of 992 x 992 to
495 x 495 pixels. The pixel spacing varies from 0.2 to 0.4 mm and the slice thickness varies
from 0.2 to 0.4 mm. Of these CBCT scans, 38 are used for training, 1 is used for validation
and 20 are used for testing. To train a CNN for bone segmentation in these CBCT scans,
gold standard segmentation labels were required. These gold standard labels were created
by the manual segmentation of all CBCT scans by three experienced medical engineers
using Mimics software 20.0 (Materialise, Leuven, Belgium).

3.1.2. CT Dataset

In addition, we also compare the proposed method with several state-of-the-art
methods on two CT datasets. The collection of the patient datasets for medical research
purposes was approved by the local medical ethical committee. The dataset contains 109
CT scans reconstructed with a kernel of Br64, I70h(s) or B70s. Each scan consists of 221 to
955 slices with size of 512 x 512 pixels. We randomly choose 52 cases as training, 8 cases
as validation and 49 cases as test. The images have axial dimensions of 512 by 512 with
slice numbers varying from 221 to 955. The pixel spacing varies from 0.35 to 0.66 mm, and
the slice thickness varies from 0.6 to 0.75 mm. The manual mandible segmentation was
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performed using Mimics software version 20.0 (Materialise, Leuven, Belgium) by a trained
researcher and confirmed by a clinician.

We also test the proposed strategy on the public dataset PDDCA [25]. This dataset
contains 48 patient CT scans from the Radiation Therapy Oncology Group (RTOG) 0522
study, a multi-institutional clinical trial, together with manual segmentation of left and right
parotid glands, brainstem, optic chiasm and mandible. Each scan consists of 76 to 360 slices
with size of 512 x 512 pixels. The pixel spacing varies from 0.76 to 1.27 mm, and the slice
thickness varies from 1.25 to 3.0 mm. According to the Challenge description, we follow
the same training and testing protocol [25]. Forty of the 48 patients in PDDCA with manual
mandible annotations are used in this study [25,27], in which the dataset is split into the
training and test subsets, each with 25 (0522c¢0001-0522c0328) and 15 (0522c0555-0522c0878)
cases, respectively [25].

3.2. Implementation Details

We implement all the experiments based on the PyTorch [28] platform developed by
Facebook. The experiments are trained on a workstation equipped with an Nvidia P6000 or
Tesla V100 GPU. For the data pre-processing, we simply truncated the raw intensity values
to be within [—1000,2000], and then normalized each raw CT case to [0, 1] to decrease
the data variance caused by physical considerations of the medical device. Note that
different CBCT/CT cases have different physical resolutions. As described in Section 3.1,
we maintain their resolutions in a unified resolution of 512 x 512. The weights of the BCE
loss term wy and the Dice loss term w5 in the loss function are both set to 0.5. We use Adam
optimization with a learning rate of r = 1074,

For the coarse stage, we randomly sampled n® x w® x h® = 64 x 128 x 128 sub-
volumes from the whole CT scan in the training phase. In this case, a sub-volume can either
cover a portion of mandible voxels or be cropped from regions with non-mandible voxels,
which acts as a hard negative mining to reduce the false positives. In the testing phase,
a sliding window is carried out for the entire CT volume with a coarse step size that has
small overlaps within each neighboring sub-volume. Specifically, for a testing volume with
a size of (64,128,128), we have a total number of sub-volumes to be fed into the network
and then combined to obtain the final prediction. For the fine stage, we sequentially sample
the slices from the medical scan, the coarse predictions from the coarse stage and apply the
mask from the previous unit.

3.3. Results
3.3.1. Experiments on the CBCT Dataset

We compare our methods with numerous standard segmentation architectures such
as Unet [18], Segnet [29], SegUnet [15], AttUnet [30] and RSegUnet [11]. Table 1 shows the
performance comparison as well as the corresponding standard deviation for the mandible
segmentation. The average Dice, D ssp and Dgsyp values of the proposed method are
95.31%, 1.2827 mm and 3.1258 mm, respectively. From the Table 1, it can be observed that
the proposed method outperforms the existing approaches with respect to Dice, D gsp
and Dgspp. These experimental results indicate that our proposed model with the C2FSeg
learning method performs significantly better and achieves the highest overall Dice scores
compared to other segmentation methods. According to Table 1, the proposed method also
outperforms most other methods, with the second-lowest ASD and 95HD scores.
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CBCT slices

Table 1. Quantitative comparison of segmentation performance for the CBCT dataset between the
proposed method and the state-of-the-art methods.

Methods Dice (%) Djsp (mm) Dysgp (mm)
Unet [18] 94.79 (£1.77) 2.0698 (+0.6137) 32.6401 (£22.0779)
SegNet [29] 94.93 (+1.74) 1.7762 (£1.5937) 15.9851 (4+26.5286)
SegUnet [15] 91.27 (4£5.13) 3.1436 (+3.6049) 26.3569 (+34.9539)
AttUnet [30] 93.34 (£3.79) 3.9705 (+4.6460) 35.1859 (+42.3474)
RSegUnet [11] 92.26 (45.66) 1.3133 (£0.7276) 7.2442 (+8.9275)
Ours 95.31 (+1.11) 1.2827 (£0.2780) 3.1258 (+3.2311)

To better demonstrate the performance of the presented approach, several 2D and 3D
view examples of the different algorithms are depicted in Figures 4 and 5. Figure 4 shows
some examples of ground truth (GT), Unet [18], Segnet [29], SegUnet [15], AttUnet [30],
RSegUnet [11] and the proposed method. As shown in the first two rows of Figure 4,
the other methods fail to obtain satisfactory results for the main mandible body, while
the results from our proposed approach are much better. The third row in Figure 4 show
that the proposed algorithm achieves better performances when the upper jaw teeth and
lower jaw teeth appear within the same slice. The final row in Figure 4 illustrates that the
proposed method can deal with the ambiguity and blurred boundaries common to CBCT
scans of the condyles area.

Unet Segnet SegUnet AttUnet RSegUnet Our

Figure 4. 2D examples from CBCT dataset. From left to right: Original CT slice, Ground truth (GT), Unet, Segnet, SegUnet,
AttUnet, RSegUnet, and the proposed method.

Figure 5 illustrates two 3D view examples (the 1st, and 3rd rows) with the correspond-
ing post-processed examples (the 2nd, and 4th rows) obtained from Unet [18], Segnet [29],
SegUnet [15], AttUnet [30], RSegUnet [11] and the proposed method, respectively. The first
case shown in Figure 5 demonstrate that the proposed method can effectively segment
the angle area of the mandible. The second examples shown in Figure 5 show that the
ramus, the coronoid process area and the teeth are missed by the other methods while
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the proposed method can tackle the thin parts of the mandible, which are almost always

challenging mandible segmentation tasks.

Table 1, Figures 4 and 5 indicate that the proposed approach is quite accurate in

segmenting mandibles affected by metal artifacts in CBCT.

Segnet SegUnet AttUnet RSegUnet

Our

Figure 5. Visual 3D examples of final segmentations from the CBCT dataset. From left to right: Ground truth (GT), Unet,

Segnet, SegUnet, AttUnet, RSegUnet, and the proposed method.

3.3.2. Experiments on the CT Dataset

We also test the proposed method on a CT dataset. To quantitatively compare the
proposed approach with other methods, we compute the Dice scores, ASD and 95HD
values of the five methods. Table 2 lists the average Dice, ASD and 95HD, as well as the
corresponding standard deviation. In general, the average values of these metrics obtained
from our proposed method are better than those of the other methods. As shown in Table 2,
it can be observed that our method yields the highest mean Dice score and the smallest

mean errors in 95HD.

Table 2. Quantitative comparison of segmentation performance for the CT dataset between the

proposed method and the state-of-the-art methods.

Methods Dice (%) Dasp (mm) Dgsgp (mm)
Unet [18] 87.61 (4+5.13) 1.8779 (£0.7407) 9.2152 (+17.0825)
SegNet [29] 86.11 (£7.69) 1.6028 (£0.7194) 7.6235 (+15.1696)
SegUnet [15] 83.14 (+12.65) 2.4753 (+£1.9507) 15.4372 (+25.1890)
AttUnet [30] 86.11 (£11.63) 1.6033 (£1.4386) 16.7041 (+24.2038)
RSegUnet [11] 86.48 (£ 7.98) 1.3907 (£ 0.7566 ) 7.6591 (£16.7968)
Ours 88.62 (+4.98) 1.2582 (£0.4102) 4.9668 (+5.0592)

Figure 6 shows some examples from the original CT slice, the ground truth (GT) and
the results obtained from Unet, Segnet, SegUnet, AttUnet, RSegUnet, and the proposed



J. Pers. Med. 2021, 11, 560

12 of 17

CT slices

method. As shown in the first two rows of Figure 6, the other methods fail to obtain
satisfactory results for the main mandible body and some parts of teeth, while the results
from our proposed approach are much better. The three row in Figure 6 shows that the
proposed algorithm achieves better performances when the upper jaw teeth and lower jaw
teeth appear within the same slice. The final row in Figure 6 illustrates that the proposed
method can process the condyles area, which is often ambiguous due to blurred boundaries
in CT scans.

Unet Segnet SegUnet AttUnet RSegUnet Our

Figure 6. 2D examples from CT dataset. From left to right: Original CT slice, Ground truth (GT), Unet, Segnet, SegUnet,
AttUnet, RSegUnet, and the proposed method.

Moreover, two cases of the automatic segmentation (the 1st, and 3rd rows) and
the corresponding post-processed examples (the 2nd, and 4th rows) in the 3D views of
Unet, Segnet, SegUnet, AttUnet, RSegUnet and the proposed method are displayed in
Figure 7. The first case shown in Figure 7 indicate that the proposed method can effectively
segment the ramus area and body of the mandible. The second examples shown in Figure 7
show that the angle area and the teeth in the case are missed by the other methods,
while the proposed method can tackle the thin parts of the mandible, which are almost
always challenging mandible segmentation tasks. The conventional methods usually
lead to erroneous segmentation within the whole mandible, as shown in Figure 7. The
visual comparison of the automatic segmentation with manual segmentation demonstrates
the effectiveness of our method with respect to automatic mandible segmentation. To
summarize, Figures 6 and 7 and Table 2 indicate that the proposed approach also works
well with respect to the other datasets.
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SegUnet

AttUnet RSegUnet

Figure 7. Visual 3D examples of final segmentations from the CT dataset. From left to right: Ground truth (GT), Unet,

Segnet, SegUnet, AttUnet, RSegUnet, and the proposed method.

To further investigate the proposed method, it is preferable to test it with respect to
a public dataset and measure the performance of the proposed method on the dataset.
Here, we compare our proposed method with several state-of-the-art methods with respect
to the PDDCA dataset. Table 3 also lists Dice, ASD and 95HD used in the Challenge
paper [10,25]. According to Table 3, the performance of the proposed model surpasses the
majority of the other methods. The proposed method outperforms other methods, with the
third-highest mean Dice score, the lowest ASD and the lowest 95HD. For Dice score results,
the segmentation result of our method is only slightly worse than RSegUnet [10], while it
is better than RSegUnet in terms of ASD and 95HD.

Table 3. Quantitative comparison of segmentation performance for the PDDCA dataset between the

proposed method and the state-of-the-art methods.

Methods Dice (%) Djsp (mm) Dysgp (mm)
Multi-atlas [31] 91.7 (+2.34) - 2.4887 (+0.7610)
AAM [32] 92.67 (£1) - 1.9767 (4+0.5945)
ASM [33] 88.13 (+5.55) - 2.832 (+1.1772)
CNN [8] 89.5 (+3.6) - -
NLGM [34] 93.08 (+2.36) - -
AnatomyNet [9] 92.51 (£2) - 6.28 (+2.21)
FCNN [10] 92.07 (+1.15) 0.51 (£+0.12) 2.01 (40.83)
FCNN+SRM [10] 93.6 (+1.21) 0.371 (+0.11) 1.5 (£0.32)
CNN+BD [35] 94.6 (+0.7) 0.29 (£0.03) -

HVR [36] 94.4 (+ 1.3) 0.43 (+ 0.12) -
Cascade 3D Unet [37] 93 (+1.9) - 1.26 (£0.5)
Multi-plana r [7] 93.28 (+1.44) - 1.4333 (4+0.5564)
Multi-view [38] 94.1 (+£0.7) 0.28 (40.14) -
RSegUnet [11] 95.10 (+1.21) 0.1367 (+0.0382) 1.3560 (4-0.4487)
SASeg [39] 95.29 (+1.16) 0.1353 (£0.0481) 1.3054 (+0.3195)
Our 94.57 (+1.21) 0.1252 (+0.0275) 1.1813 (4-0.4028)
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4. Discussion

In this paper, we present a novel C2FSeg method for mandible segmentation that
utilizes the curriculum learning strategy [12] of separating the task into two simpler
sub-tasks (coarse-to-fine). We apply 3D SegUnet to look for mandible-like organs in the
coarse stage. In the fine stage, recurrent SegUnet is then employed to finely segment
the mandible based on the results from the coarse stage. Quantitative evaluation results
shown in Tables 1-3 demonstrate that our proposed approach outperforms the state-of-
the-art methods for mandible segmentation. In addition, qualitative visual inspection
in Figures 4-7 illustrates that our automatic segmentation approach performs quite well
in comparison with the ground truth. The direct comparison in PDDCA, as shown in
Table 3, illustrates that the proposed method significantly improves mandible segmentation.
Remarkably, we found that this segmentation architecture is very robust for weak and
blurry edge segmentation. For instance, the networks can segment both condyles and
ramus of the mandible quite well, even under the influence of strong metal artifacts. In
addition, the results based on the two CT datasets indicate that our proposed approach
offers excellent generalization ability, since the images in the two datasets were produced
by different imaging technologies.

This method takes advantage of the concept of curriculum learning to simplify the
difficult task to several easy sub-tasks. Therefore, the proposed approach can help to learn
the rough mandible structure in the coarse stage. Furthermore, the proposed approach
utilizes a recurrent network in the fine stage to extract spatial information of objects based
on mandible-like candidates from the first stage. The experimental results show that the
proposed approach is feasible and effective in 3D mandible segmentation and that it can
also be applied to other segmentation tasks. This method can support further research
on the 3D image segmentation. It can also help overcome the disadvantage of cropping
volume for the 3D network due to the high memory consumption, as well as accomplish
3D segmentation tasks. Furthermore, in this study, 3D SegUnet is used for searching
mandible-like organs, and many other networks which have the similar ability for seeking
mandible candidates can be used to replace the 3D SegUnet in the coarse stage.

Despite the promising results, there are a few limitations in this study. First, in
the experiment, we use 59 orthodontic CBCT scans, 109 CT scans and a public dataset
(PDDCA) for the training and the validation of the proposed approach. This is because the
collection of CBCT scans is limited. For future work, we will focus on the validation of the
C2FSeg approach to experiment on a large number of CBCT scans in order to prove the
feasibility of the approach in the clinical setting of 3D VSP. Second, the proposed C2FSeg
is a two-stage approach in which the two stages are trained separately. This increases the
training duration of the model. In the future, we also aim at improving the efficiency of
the approach.

5. Conclusions

In this paper, we attempt to address the problem of mandible segmentation using the
coarse-to-fine approach. The coarse stage of our algorithm attempts to obtain probable
mandible-like candidates in 3D volume. The fine stage of our approach attempts to reduce
the false positives detected from the estimated mandible-like organs. First, we employ a
patch-based mandible detector, wherein scans are divided into overlapping patches which
are classified as mandible or non-mandible. Second, we utilize the recurrent CNN to finely
segment the mandible following the coarse stage. The proposed algorithm is evaluated on
three datasets: an orthodontic CBCT dataset polluted by metal artifacts, a CT dataset and a
PDDCA dataset. Experimental results show that our method can achieve high accuracy
for mandible segmentation in comparison with ground truth. The method overcomes the
problem of weak mandible boundaries caused by low radiation and strong metal artifacts.
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