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Abstract: The aim of this study was to investigate the relationship between image patterns in
cephalometric radiographs and the diagnosis of orthognathic surgery and propose a method to
improve the accuracy of predictive models according to the depth of the neural networks. The
study included 640 and 320 patients requiring non-surgical and surgical orthodontic treatments,
respectively. The data of 150 patients were exclusively classified as a test set. The data of the
remaining 810 patients were split into five groups and a five-fold cross-validation was performed.
The convolutional neural network models used were ResNet-18, 34, 50, and 101. The number in
the model name represents the difference in the depth of the blocks that constitute the model. The
accuracy, sensitivity, and specificity of each model were estimated and compared. The average
success rate in the test set for the ResNet-18, 34, 50, and 101 was 93.80%, 93.60%, 91.13%, and 91.33%,
respectively. In screening, ResNet-18 had the best performance with an area under the curve of 0.979,
followed by ResNets-34, 50, and 101 at 0.974, 0.945, and 0.944, respectively. This study suggests the
required characteristics of the structure of an artificial intelligence model for decision-making based
on medical images.

Keywords: artificial intelligence; deep learning; orthognathic surgery diagnosis; convolutional neural
network; cephalometric analysis

1. Introduction

Diagnosis is the definition of a patient’s problem; treatment planning is the process
of eliminating the problem [1]. If the clinician does not properly diagnose a patient’s
skeletal problems and simply performs orthodontic treatment to improve the dentition, the
patient’s fascial profile may worsen. Therefore, it is first necessary to accurately diagnose a
patient’s problem using various diagnostic clinical data [2,3]. Whether orthognathic surgery
is necessary or a compromise orthodontic treatment is feasible is an important issue for
dental patients who visit a hospital for treatment [1]. Orthognathic surgery can be effective,
but it requires general anesthesia and is expensive and risky. Therefore, patients tend to
prefer orthodontic treatment. However, there are cranial problems that cannot be resolved
with orthodontic treatment alone. Prominent jaw, retruded mandible, and jaw asymmetry
can only be corrected with orthognathic surgery. Orthognathic surgery is also chosen when
there is a limit to the esthetic improvement through orthodontic treatment. Clinicians
should consider orthognathic surgery if it is impossible to achieve adequate occlusion with
orthodontic treatment alone, or if it is impossible to resolve the patient’s chief complaint.
In order to maximize the effect of orthognathic surgery, it is necessary to plan appropriate
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presurgical orthodontic treatment and correct dental compensations. In many cases, pre-
surgical orthodontic treatment proceeds in the opposite direction to camouflage orthodontic
treatment. For example, an irreversible plan, such as extraction, should not be determined
prematurely without the determination that orthognathic surgery is necessary. Therefore,
deciding on whether orthognathic surgery is needed is the most important decision when
establishing a treatment plan. Along with various clinical data, the clinician’s judgment
plays an important role in identifying patients’ needs and establishing treatment plans.
These surgery decisions may vary between clinicians due to differences in experience with
procedures; in particular, clinicians with limited experience have difficulty making such
judgments. As currently there is no standardized criterion for decision-making regarding
the need for orthognathic surgery, a predictive statistical model or method is needed to
support such decision-making [4–6]. The process of establishing a treatment plan by an
expert is a process involving a wide variety of diagnostic data, background knowledge,
and clinician experience, which are comprehensively and elaborately organized so that
they cannot be formulated using a kind of formula. A system that imitates this judgment
process will be of great help to inexperienced orthodontists. For example, a system wherein
diagnostic values are input to a built artificial intelligence system, and the output is the
treatment plan.

There are two important and irreversible decisions in orthodontics. One is deciding
which tooth to extract and the other is whether to perform orthognathic surgery [7–10].
The most important factor in such decisions is to identify a patient’s skeletal problem and
this diagnosis is made by identifying the patient’s skeletal pattern using cephalometric
radiographs. In determining whether the orthognathic surgery is necessary; whether the
difference between the maxillary and mandible can be overcome only with orthodontic
treatment is also important.

In the past, an anatomical landmark was traced manually on a cephalometric radio-
graph and the measurements were numerically analyzed as the basis for a decision. When
considering orthognathic surgery in the treatment plan, a surgical treatment objective
(STO) or a visual treatment objective (VTO) should be determined in advance to specifically
plan the direction of orthognathic treatment and the method of orthognathic surgery. At
this time, the analysis of the measurements of the lateral cephalometric radiograph are
helpful in establishing presurgical correction and an orthognathic surgery plan for skeletal
malocclusion patients. Various measurement values quantitatively express the location of
the jaw, teeth, and soft tissue, providing a criterion for each suitable location. In general,
about 50 landmarks are used for a lateral cephalogram; various measurements, such as the
length and angle of a line using these landmarks, are used for judgment. Each clinician
has their own opinion on which measurements are important and thus make judgments in
light of their own experience. However, measurements may also be unreliable based on
the value. Even the SNA angle and SNB angle, which are measurements of the anterior
and posterior positions of the maxilla and mandible, may have different values even in the
same skeletal pattern due to changes in the position of the nasion.

The development of artificial intelligence has profoundly impacted image analysis,
particularly the analysis of medical images [11–14]. In image classification, the advances
in deep learning has been remarkable and, in 2015, the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) went beyond human perception. Since dentistry is no
exception, many algorithms have been developed that automatically detect these anatomi-
cal landmarks using diverse artificial intelligence models [15–19]. These algorithms have
made consistent the detection of landmark points and the analysis of measurement values
possible for less-experienced clinicians. Among the methods for constructing an artificial
intelligence system, the machine learning method is one that forms a rule by repeatedly
learning input and output values. This is similar to how humans learn rules through repet-
itive learning, but computers can implement these rules remarkably fast. There have been
many studies using various AI models in orthodontics. In the extraction decision problem,
there have been studies that applied machine learning models to construct neural networks
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using landmark measurements to predict outcomes. These studies have drawbacks. To
apply the neural network model, they needed to manually measure the landmark points,
calculate the measurements, and then put them in the input node. Another downside is
that some information may be missing. Only the specific measurements selected by the
person who configured the neural network may be entered.

In addition, a previous study was conducted to diagnose with an X-ray image us-
ing convolutional neural networks (CNNs), going beyond analysis using measured val-
ues [20,21]. A previous study already demonstrated an accuracy that exceeded methods
that used measured values. This reduced errors arising from the accuracy of a clinician’s
tracing skills or the accuracy of an automatic artificial intelligence landmark-detection
model, and allows for easy and intuitive decision-making for less experienced clinicians.

In a previous study, the difference in the performance of the diagnostic model was
compared with the difference in the CNN model and the reasons for these differences
were analyzed. One of the reasons was the complexity of the CNN model, which possi-
bly degraded its diagnostic performance using medical images. In a previous study, a
Modified-AlexNet with moderate complexity exhibited the best performance [21,22]. For a
more precise analysis of the conclusions of these previous studies, the same model with
neural networks of different depths should be studied; therefore, the differences in the
predictive ability according to the depth of the neural network can be compared without
the confounding effect of any other differences in the models.

Therefore, this study aimed to investigate the relationship between image patterns in
cephalometric radiographs and the need for orthognathic surgery, and report on a method
for improving the accuracy of predictive models according to the depth of the neural
network. The null hypothesis is that there is no difference in predictive ability depending
on the depth of the neural network.

2. Materials and Methods

In this study, 960 patients who visited the Seoul National University Dental Hospi-
tal for orthodontic treatment were included. All patients had radiographs and clinical
photographs taken for routine clinical examination and all patients were diagnosed by an
orthodontic specialist. The patient group included 640 patients who needed non-surgical
orthodontic treatments and 320 patients who needed orthognathic surgery. The study was
conducted according to the guidelines of the Declaration of Helsinki and approved by the
Institutional Review Board of Seoul National University Dental Hospital (ERI21009).

Of the total patients, data of 150 patients were classified as the test set and excluded
from training. The data of the remaining 810 patients were split into five groups and 5-fold
cross-validation was performed (Figure 1) [23]. At each step, a model was constructed and
its performance was evaluated by calculating its success rate for identifying the need for
surgery in the training, validation, test, and total sets.
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The landmarks of the patients’ cephalometric radiographs were automatically detected
with a software program using a gradient boosting algorithm (WebCeph, AssembleCircle,
Seoul, Korea). WebCeph has been used for landmark detection in several studies [24,25].
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The minimum box, including all the landmarks, was selected with an external margin of
5% and the lower part of the box was selected by square cropping. The image was resized
to 256 × 256 pixels.

The CNN models used were ResNet-18, 34, 50, and 101 (Figure 2) [26]. The number
was determined by the difference in the depth of the blocks that constitute the model. As
ResNet models use an image of 224 × 224 pixels as the default input image, the input
image was selected by randomly cropping the 256 × 256 image (Figure 3).

Through this process, overfitting was prevented, and random horizontal flipping,
dropout, and batch normalization were performed for the same reason [27]. The number
of epochs was set to 150, and the batch size of the training and validation sets was set to 32.
A stochastic gradient descent (SGD) optimizer was used with the learning rate set to 0.002,
the decay to 1 × 10−6, and the momentum to 0.9 [28,29]. The learning rate was adjusted
by a factor of 0.1 if the validation loss did not improve above 1 × 10−6 during 30 epochs.
Training accuracy, training loss, validation accuracy, and validation loss were checked,
and the predictive ability was measured for each of the four models. Subsequently, the
accuracy, sensitivity, and specificity of each model were measured and compared. The
receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) for
each model were calculated. All models were trained on a 64 bit Windows 10 system, with
32 GB memory and an NVIDIA GeForce RTX GPU. Implementation of the deep learning
models was performed using the Python Keras library and TensorFlow backend engine.
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3. Results
3.1. Clinical and Demographic Characteristics of the Subjects

The patients consisted of 468 men and 492 women with an age range from 15 to
37 years (mean age of 24.6 years). There were 640 patients (mean age 23.7 years) who
needed orthodontic treatment only and 320 patients (mean age 26.3 years) who needed
orthognathic surgery treatments. The clinical characteristics of the dataset used in this
study are summarized in Table 1.

Table 1. Demographic characteristics of the samples used in this study.

Orthodontic
Treatment

Orthognathic
Surgery Total

Number of patients 640 320 960
Number of men/women 311/329 157/163 468/492

Mean age (SD), years 23.7 (5.3) 26.3 (4.2) 24.6 (4.9)
SD, standard deviation.

3.2. Prediction Performance

The results of this study showed that the average success rate for diagnosis of orthog-
nathic surgery for the ResNet-18 model was 99.86% in the training dataset, 93.58% in the
validation dataset, and 93.80% for the test dataset; it had a total predictive ability of 97.85%
for the total dataset. The Resnet-34 model had an accuracy of 99.81%, 93.89%, and 93.60%
in the training, validation, and test datasets, respectively, and a total predictive ability of
97.84% for the total dataset. The Resnet-50 model’s accuracy was 99.21% in the training
dataset, 90.86% in the validation dataset, and 91.13% for the test dataset; it had a total
predictive ability of 96.54% for the total dataset. The Resnet-101 model’s accuracy was
99.34%, 90.25%, and 91.33% in the training, validation, and test datasets, respectively, with
a total predictive ability of 96.55% for the total dataset (Figure 4). The models of ResNet-18
and 34 showed higher prediction performance than the ResNet-50 or 101 models. We
rejected the null hypothesis that there is no difference in predictive ability depending on
the depth of the neural network.



J. Pers. Med. 2021, 11, 356 6 of 11

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 6 of 11 
 

 

3.2. Prediction Performance 
The results of this study showed that the average success rate for diagnosis of orthog-

nathic surgery for the ResNet-18 model was 99.86% in the training dataset, 93.58% in the 
validation dataset, and 93.80% for the test dataset; it had a total predictive ability of 97.85% 
for the total dataset. The Resnet-34 model had an accuracy of 99.81%, 93.89%, and 93.60% 
in the training, validation, and test datasets, respectively, and a total predictive ability of 
97.84% for the total dataset. The Resnet-50 model’s accuracy was 99.21% in the training 
dataset, 90.86% in the validation dataset, and 91.13% for the test dataset; it had a total 
predictive ability of 96.54% for the total dataset. The Resnet-101 model’s accuracy was 
99.34%, 90.25%, and 91.33% in the training, validation, and test datasets, respectively, with 
a total predictive ability of 96.55% for the total dataset (Figure 4). The models of ResNet-
18 and 34 showed higher prediction performance than the ResNet-50 or 101 models. We 
rejected the null hypothesis that there is no difference in predictive ability depending on 
the depth of the neural network. 

 
Figure 4. Prediction accuracy of the four models: success rate of total set (blue line), validation set 
(red line), and test set (green line). 

3.3. Screening Performance 
Figure 5 shows the ROC curves. The ROC curve is a graph showing the performance 

of the model through the relationship between the true positive rate and the false positive 
rate at all classification thresholds. AUC refers to the area under the ROC curve. AUC 
values range from zero to one. A model with 100% incorrect prediction has an AUC of 0.0 
and a model with 100% accurate prediction has an AUC of 1.0. The AUC is not an absolute 
value, but rather a measure of how well the prediction is evaluated. The AUC measures 
the predictive quality of a model regardless of which classification threshold is selected. 
In screening performance, based on the AUCs evaluated for sensitivity and specificity, 
ResNet-18 had the best performance at 0.979, followed by ResNet-34 at 0.974, ResNet-50 
at 0.945, and ResNet-101 at 0.944 (Table 2). Figure 6 shows the screening performance of 
the four models used in this study. When determining the overall performance, the dif-
ference in specificity was not large, but there was a difference in sensitivity that led to the 
difference in accuracy. 

Figure 4. Prediction accuracy of the four models: success rate of total set (blue line), validation set
(red line), and test set (green line).

3.3. Screening Performance

Figure 5 shows the ROC curves. The ROC curve is a graph showing the performance
of the model through the relationship between the true positive rate and the false positive
rate at all classification thresholds. AUC refers to the area under the ROC curve. AUC
values range from zero to one. A model with 100% incorrect prediction has an AUC of 0.0
and a model with 100% accurate prediction has an AUC of 1.0. The AUC is not an absolute
value, but rather a measure of how well the prediction is evaluated. The AUC measures
the predictive quality of a model regardless of which classification threshold is selected.
In screening performance, based on the AUCs evaluated for sensitivity and specificity,
ResNet-18 had the best performance at 0.979, followed by ResNet-34 at 0.974, ResNet-50
at 0.945, and ResNet-101 at 0.944 (Table 2). Figure 6 shows the screening performance
of the four models used in this study. When determining the overall performance, the
difference in specificity was not large, but there was a difference in sensitivity that led to
the difference in accuracy.
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Table 2. Screening performance of the four models used in this study.

Model AUC
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

ResNet-18 0.979 (±0.008) 0.938 (±0.014) 0.882 (±0.021) 0.966 (±0.010)
ResNet-34 0.974 (±0.009) 0.936 (±0.015) 0.876 (±0.021) 0.966 (±0.010)
ResNet-50 0.945 (±0.014) 0.911 (±0.017) 0.806 (±0.027) 0.964 (±0.011)
ResNet-101 0.944 (±0.014) 0.913 (±0.017) 0.824 (±0.026) 0.958 (±0.012)

AUC, area under the curve; CI, confidence interval.
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4. Discussion

Much of the existing AI research related to orthodontic diagnosis was performed by
selecting landmark points and calculating measurements. Artificial neural network (ANN)
machine learning (ML) is a representative method of artificial intelligence and is used to
guess and approximate a veiled function that depends on many input values. This method
can be affected by the input of the measured value. In the process of detecting landmark
points, errors can occur. In addition, there is a disadvantage: overfitting is likely to occur
when measured values with similar meanings are input into a machine learning model.

The deep learning algorithm is an algorithm that extracts features of an image using
a convolutional filter and a pooling layer, and analyzes a pattern in them. Many deep
learning models have been refined and developed based on filter sizes, types, locations,
combinations, and different ideas. Deep learning is an advanced form of the existing ANN,
made possible due to the development of computing ability and easier access to big data.
The convolutional neural network is a deep neural network, with multiple hidden layers,
which has a structure suitable for learning 2D image data. The cephalograph or clinical
photo image can be used as an input value. If the diagnostic image data are analyzed using
deep learning, it is expected that the empirical knowledge gained from viewing the image
data can be better reflected.

The null hypothesis was rejected. For the same CNN model, the ResNet-18 and
ResNet-34 models performed better than the ResNet-50 and ResNet-101 models. The
latter number indicates the depth of the residual blocks [26]. In general, deep learning
performance degrades when the depth of the network increases overfitting becomes severe,
backpropagation is poorly performed, and the feedback of the result does not properly
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affect the initial weight value [27,30]. The ResNet model was developed to address this
problem. The most prominent feature of the ResNet model is that by adding the initial value
to the result obtained by passing through the filter of the convolutional neural network,
the input value can be well-reflected even if the network is deep; therefore, the weight
can be properly adjusted. This results in improved performance despite the network’s
tremendous depth.

In addition, in the case of ResNet-50 and 101 models, which have deeper neural
networks than those of ResNet-18 and 34 models, the biggest difference is that the residual
block has a bottleneck structure [26]. Unlike the ResNet-18 and 34 models that pass through
the 3 × 3 filter twice, ResNet-50 and 101 models are called bottleneck structures because
they sequentially pass through a 1 × 1 convolution filter, a 3 × 3 filter, and again through
a 1 × 1 filter (Figure 7). This structure is adopted because as the network deepens, the
number of weights increases tremendously and the burden of computation increases. By
adopting a bottleneck structure, the speed of calculation increases by reducing the amount
of computation required without causing a loss of key information. The deeper model
showed better performance in the ImageNet classification than the existing ResNet-18 and
34 models and ResNet-50 is one of the most popular state-of-the-art models [31].

1 
 

 
Figure 7. Comparison between models’ residual block structures: 3 × 3 structure for ResNet-18 and 34 and bottleneck
structure for ResNet-50 and 101.

Unlike the results of the ImageNet classification, the experimental results of this study
showed that the ResNet-18 and 34 models produced better performance than the ResNet-
50 and 101 models. This means that unlike the ImageNet model, which has to classify
thousands of kinds of images, in a relatively simple model for identifying the need for
orthognathic surgery, excessive complexity may degrade performance [31]. In the ILSVRC,
it was able to learn based on millions of data, but with medical data, it is not easy to obtain
a large enough data size. This study provides strategies to use when learning with a limited
amount of data.

In addition, we showed that the linear structure provides better performance than
the bottleneck structure, which is advantageous for capturing the characteristics of an
image. This shows that a linear structure can be better for prediction regarding the need
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for orthognathic surgery as it allows a comprehensive judgment based on the entire image,
unlike the image classification problem in which a specific area is identified to determine
classification. In other words, minimizing the distortion or loss of information can be more
beneficial for prediction and confirms that the neural network should not be too deep to
use a linear structure effectively.

These results are similar to those of a previous study in which a Modified-AlexNet,
a relatively simple model, produced superior performance [21,22]. This confirms that
structural differences in artificial intelligence models can lead to differences in predictive
ability. This study suggests that prediction using medical images may be better with an
artificial intelligence model that contains complete information and a neural network of
appropriate depth. Therefore, this study proposes a new direction of research focused on
model structure for the development of artificial intelligence models for prediction using
medical images.

A limitation of this study was that it was conducted at a single center; if the analysis
was conducted with multi-center data, it may have helped create a more general model. In
future research, it would be beneficial to employ multi-center data and thereby improve the
model’s performance. However, it is a strength that a more generalized model was created
and that its performance was analyzed using a larger sample size than previous studies.

The decision regarding the treatment plan reflects the clinician’s experience and
preferences. There is no right answer with a treatment plan. The purpose of this study was
to create an artificial intelligence system that could imitate the philosophy and decisions of
experienced professionals rather than finding the right answer. We analyzed and evaluated
the ability, according to the depth and structure of a neural network, of models to predict
the need for orthognathic surgery. If a clinician performs tracing of a landmark point
on a cephalogram, the precision or the measurements value may vary depending on the
clinician’s ability. Diagnosis by the image reduces such inconsistencies. In addition, with
the entire image, information can be considered and it reduces the likelihood of the loss
of information. This paper provides suggestions on the characteristics of an artificial
intelligence model for prediction using medical images.

5. Conclusions

The difference in several models’ ability to diagnose whether to conduct orthognathic
surgery was analyzed and evaluated according to the depth and structure of their neural
networks. The ResNet-18 and 34 models attained 93.80% and 93.60% success rates, respec-
tively, in the test set; this confirmed the performance superiority compared with that of
ResNet-50 and 101 models, which showed rates of 91.13% and 91.33%, respectively.
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