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Abstract: Hepatocellular carcinoma (HCC) is a relatively chemo-resistant tumor. Several multi-
kinase inhibitors have been approved for treating advanced HCC. However, most HCC patients
are highly refractory to these drugs. Therefore, the development of more effective therapies for
advanced HCC patients is urgently needed. Stathmin 1 (STMN1) is an oncoprotein that destabilizes
microtubules and promotes cancer cell migration and invasion. In this study, cancer genomics data
mining identified STMN1 as a prognosis biomarker and a therapeutic target for HCC. Co-expressed
gene analysis indicated that STMN1 expression was positively associated with cell-cycle-related gene
expression. Chemical sensitivity profiling of HCC cell lines suggested that High-STMN1-expressing
HCC cells were the most sensitive to MST-312 (a telomerase inhibitor). Drug–gene connectivity
mapping supported that MST-312 reversed the STMN1-co-expressed gene signature (especially
BUB1B, MCM2/5/6, and TTK genes). In vitro experiments validated that MST-312 inhibited HCC cell
viability and related protein expression (STMN1, BUB1B, and MCM5). In addition, overexpression of
STMN1 enhanced the anticancer activity of MST-312 in HCC cells. Therefore, MST-312 can be used
for treating STMN1-high expression HCC.

Keywords: bioinformatics; cancer genomics; cell cycle; hepatocellular carcinoma; stathmin 1

1. Introduction

Hepatocellular carcinoma (HCC) is one of the major causes of cancer-associated death
in the world [1]. The main curative treatments for HCC are surgical resection and liver
transplantation, which only benefits 15–25% of HCC patients. In addition, there is no
reliably effective therapy for advanced or metastatic HCC patients [2,3]. Molecular tar-
geted agents have been viewed as new treatment options, such as multi-kinase inhibitors,
sorafenib, regorafenib, and lenvatinib [4–6]. However, these drugs only provide a short
increase of median overall survival in HCC patients [4–7]. Thus, there is an urgent need to
design more effective therapeutic strategies for HCC.

Stathmin 1, encoded by the human STMN1 gene, was first cloned in 1989 [8]. STMN1 is
a cytosolic phosphoprotein that regulates microtubule dynamics by promoting microtubule
destabilization and preventing tubulin polymerization [9]. Mechanistically, the unphospho-
rylated form of STMN1 (through the stathmin-like domain) interacts with two molecules of
dimeric α/β-tubulin to form a tight ternary complex called the T2S complex, thereby limit-
ing the availability of free tubulins [10,11]. In contrast, phosphorylation of STMN1 on mul-
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tiple serine residues (Ser16, Ser25, Ser38, and Ser63) reduces its microtubule-destabilizing
activity [12].

STMN1 is also known as Oncoprotein 18 (Op18). Increased STMN1 expression has
been observed in numerous human tumors including HCC, which is associated with
aggressive tumor phenotypes and poor prognosis [13–17]. Therefore, STMN1 has been
viewed as a therapeutic target for cancer treatment [18–20]. In HCC, the anticancer effects
of the lentivirus-mediated RNA interference (RNAi) targeting enhancer of zeste homolog
2 (EZH2), gambogic acid, and thyroid hormone are found through downregulation of
STMN1 [21–23]. In addition, STMN1 expression can determine the sensitivity to apoptosis
in HCC cells during hepatitis C viral (HCV) replication [24]. The oncogenic mechanism
of STMN1 overexpression is largely dependent on its ability to destabilize microtubules,
leading to the promotion of cancer cell division, migration, and invasion [9,25].

In this study, we employed bioinformatics approaches and identified MST-312, a telom-
erase inhibitor, as an effective treatment for high-STMN1-expressing HCC. Mechanistically,
MST-312 could reverse the co-expressed gene network that was related to cell cycle alter-
ation in HCC. MST-312 may serve as a precision treatment for HCC in the future.

2. Materials and Methods
2.1. Cancer Genomics Data Mining

The cancer genomics data in HCC were analyzed on the cBioPortal and GEPIA
websites (https://www.cbioportal.org/ and http://gepia2.cancer-pku.cn/, respectively;
accessed on: 29 July 2019) [26–28]. For cBioPortal analysis, the liver hepatocellular car-
cinoma (LIHC) PanCancer Atlas dataset from The Cancer Genome Atlas (TCGA) was
used [29]. Complete samples (n = 348) with mutation, copy number alteration (CNA),
and mRNA expression data were used for cBioPortal data mining. For GEPIA data mining,
tumors (n = 369) and the matched normal (n = 50) samples in LIHC dataset were considered.
Kaplan–Meier survival plots were also created using the cBioPortal and GEPIA databases.
Three microarray datasets containing the normal and HCC tissues were analyzed on the
Oncomine database (https://www.oncomine.org/; accessed on: 29 July 2019), includ-
ing Chen Liver (normal = 76 and HCC = 104) [30], Roessler Liver 2 (normal = 220 and
HCC = 225) [31], and Wurmbach Liver (normal = 10, cirrhosis = 13, dysplasia = 17, and
HCC = 35) [32].

2.2. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis

The STMN1-co-expressed genes with a correlation score of more than 0.7 were ob-
tained from the GEPIA and Oncomine websites (Table S1). KEGG pathway enrichment
was conducted using the WebGestalt online tool [33] at http://www.webgestalt.org/ (ac-
cessed on: 29 July 2019) or the compareCluster function in the clusterProfiler R-package [34].

2.3. Cancer Drug Sensitivity Analysis

The relationship between STMN1 mRNA expression and drug sensitivity was obtained
from the Cancer Therapeutics Response Portal (CTRP) database [35–37] at https://portals.
broadinstitute.org/ctrp/ (accessed on: 29 July 2019). The correlation between STMN1
mRNA expression and MST-312 drug activity was visualized using the CellMinerCDB
online tool [38] at https://discover.nci.nih.gov/cellminercdb/ (accessed on: 29 July 2019).
The correlation between MST-312 drug activity from the area under the curve (AUC) and
STMN1 gene dependency based on clustered regularly interspaced short palindromic
repeat (CRISPR) screening was obtained from the DepMap online tool [39] at https://
depmap.org/ (accessed on: 29 July 2019). Lower AUC values indicate higher drug activity.

2.4. Connectivity Map (CMap) Analysis

The CMap analysis was performed online via https://clue.io/ (accessed on: 9 April
2021) [40]. The 57 STMN1-co-expressed genes were queried for drugs and gene knock-
downs that could reverse the queried gene signature. The “Touchstone” tool was used
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to explore the relationship between MST-312 and gene knockdowns. The results were
interpreted from the connectivity scores (from −100 to 100). Positive or negative scores
indicate similarity or dissimilarity between two gene signatures, respectively.

2.5. Cell Culture, Stable Transfection, and Cell Viability Assay

The human hepatocellular carcinoma (HCC) cells, PLC/PRF/5 (PLC5) and HepG2,
were purchased from the Bioresource Collection and Research Center (BCRC) of the Food
Industry Research and Development Institute (Hsinchu, Taiwan). Cells were maintained
in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% fetal bovine serum and
cultured in a 37 ◦C humidified incubator with 5% CO2. For the establishment of STMN1-
overexpressing clones, PLC5 and HepG2 cells were transfected with p-EGFP-STMN1 or
its control vector (p-EGFP) and then selected with 1 mg/mL G418 for at least 3 months.
The STMN1-EGFP plasmid was a gift from Lynne Cassimeris (Addgene plasmid #86782;
http://n2t.net/addgene:86782 accessed on: 29 July 2019; RRID: Addgene_86782) [41].
The cell viability was determined with Alamar Blue reagent (Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s instruction.

2.6. Western Blotting

Western blotting was performed as described previously [42]. STMN1 (GTX104707
and GTX113341), MCM5 (GTX114090), BUB1B (GTX111289), and GAPDH (GTX100118)
antibodies were purchased from GeneTex (Hsinchu, Taiwan). The PARP1 antibody (#9542)
was purchased from Cell Signaling Technologies (Beverly, MA, USA). The caspase 3 anti-
body (19677-1-AP) was purchased from ProteinTech Group (Chicago, IL, USA).

3. Results
3.1. STMN1 Overexpression Is Associated with Poorer Prognosis in HCC

In recent years, increasing large-scale cancer genomics data and related analytic tools have
become publicly available, making it possible to re-evaluate the role of a specific gene in cancers.
Although STMN1 has been cloned since 1989 [8], investigation of its role in HCC is still limited.
In this study, we queried the HCC cancer genomics data via the cBioPortal website to determine
the genetic alterations (mutations and copy number variations) of the STMN1 gene in HCC.
As shown in Figure 1A, only 2 of 372 (0.54%) and 1 of 372 (0.27%) HCC patients harbored
STMN1 gene mutation and deep deletion, respectively, in the TCGA-LIHC dataset, and no
alteration was found in the other five datasets. The STMN1 mRNA expression in HCC was
further investigated using the TCGA-LIHC dataset (Figure 1B). We found that 54 of 366 (15%)
HCC patients had higher STMN1 mRNA expression. When compared with the adjacent normal
tissues, HCC tumor tissues indeed displayed higher STMN1 mRNA expression (Figure 1C, the
left part). In addition, a stage-dependent increase of STMN1 mRNA in HCC tissues was found
(Figure 1C, the right part).

http://n2t.net/addgene:86782
http://n2t.net/addgene:86782
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Figure 1. STMN1 overexpression was associated with poor prognosis in HCC: (A) Genetic alterations of the STMN1 gene 
in five HCC datasets were analyzed through the cBioPortal database. CNA, copy number alteration. The “+” symbol in-
dicates that the used dataset contains mutation or CNA data; (B) A bar code plot (OncoPrint) for STMN1 mRNA expres-
sion in HCC (TCGA-LIHC, PanCancer Atlas). The cases highlighted in red grids (mRNA high) had mRNA expression z-
score higher than 1. The mRNA expression z-score means the relative expression of a gene in a tumor sample to the gene’s 

Figure 1. STMN1 overexpression was associated with poor prognosis in HCC: (A) Genetic alterations of the STMN1 gene in
five HCC datasets were analyzed through the cBioPortal database. CNA, copy number alteration. The “+” symbol indicates
that the used dataset contains mutation or CNA data; (B) A bar code plot (OncoPrint) for STMN1 mRNA expression in
HCC (TCGA-LIHC, PanCancer Atlas). The cases highlighted in red grids (mRNA high) had mRNA expression z-score
higher than 1. The mRNA expression z-score means the relative expression of a gene in a tumor sample to the gene’s
expression distribution in a reference population (diploid tumor samples); (C) The STMN1 mRNA expressions in normal
and cancerous liver tissues (the left part) and in different tumor stages (the right part) were analyzed through the GEPIA
website (TCGA-LIHC). * p < 0.05 compared with the normal group using one-way ANOVA; (D) The STMN1 mRNA
expression in normal and cancerous liver tissues in three cohorts was analyzed through the Oncomine database. *** p < 0.01
compared with the normal group using the Student’s t-test. FC, fold change; (E) The impact of STMN1 mRNA expression
on the overall and disease-free survival of HCC patients was analyzed through the GEPIA website. The group cutoff value
was the median STMN1 mRNA expression.
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To confirm the above observation, microarray gene expression profiles of normal and
HCC tissues were obtained from the Oncomine database to compare STMN1 mRNA ex-
pression. As shown in Figure 1D, STMN1 mRNA was frequently overexpressed in HCC
tissues in three microarray datasets. In addition, a slight increase of STMN1 mRNA was
found in precancerous liver tissues (cirrhosis and dysplasia), suggesting that STMN1 may
play an early role during hepatocarcinogenesis. Previous studies consistently suggest that
protumorigenic overexpression of STMN1 is associated with hepatocarcinogenesis [16,43,44].

Previous studies have shown that STMN1 is frequently overexpressed in HCC, which
is associated with tumor progression, early recurrence, and poor prognosis [15–17,45]. To
ascertain the prognostic impact of STMN1 overexpression, Kaplan–Meier survival plots for
overall and disease-free survival in HCC patients (TCGA-LIHC dataset) with higher and
lower STMN1 mRNA expression were created using the GEPIA web-based tool. As shown
in Figure 1E, HCC patients with high STMN1 mRNA expression had poorer overall and
disease-free survival. Similarly, the top 15% of HCC patients with higher STMN1 mRNA
expression (Figure 1B) also had lower overall and disease-free survival (Figure S1).

3.2. STMN1 Co-Expresses with Genes Related to Cell Cycle Regulation

To investigate the impact of STMN1 overexpression, STMN1-co-expressed genes
were retrieved from the TCGA-LIHC dataset via the cBioPortal website (Table S1). KEGG
pathway enrichment for these genes was performed using the WebGestalt online tool.
As shown in Figure 2A, STMN1 overexpression was correlated with pathways related to
cell cycle regulation such as cell cycle, DNA replication, oocyte maturation/meiosis, and
cellular senescence. The KEGG cell cycle (hsa04110) pathway was mapped to STMN1-
co-repressed genes as a representative (Figure 2B). We found that components for DNA
replication (CDC6, CDC45, ORC1/6, MCM2/5/6/7), G2/M transition (CDC25A/B/C,
CDK1, PLK1, Cyclins A/B), and mitosis (TTK/MPS1, MAD2, BUB1B/BUBR1, BUB1, PTTG1,
CDC20) were upregulated, suggesting the active cell proliferation rate in high-STMN1-
expressing HCC cells.
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To confirm the above analysis, an additional microarray dataset (Roessler Liver 2) con-
taining 220 normal tissues and 225 HCC tissues was used to prepare STMN1-co-expressed
genes via the Oncomine database (Table S1). The heat map for the top 20 co-expressed
genes is shown in Figure 3A. Similarly, cell cycle and DNA replication pathways were the
most enriched pathways (Figure 3B). KEGG cell cycle (hsa04110) mapping (Figure 3C) also
showed the upregulation of genes related to DNA replication (CDC6, MCM2/3/4/5/6/7,
CDC7, DBF4), G2/M transition (CDC25B/C, CDK1, Cyclins A/B), and mitosis (TTK/MPS1,
MAD2, BUB1B/BUBR1, BUB1, PTTG1, CDC20). Consistently, a cross-comparison of KEGG
pathway enrichment among four datasets (TCGA-LIHC, Chen Liver, Roessler Liver 2,
and Wurmbach Liver) showed that cell-cycle-related genes were the most common genes
co-expressed with STMN1 in HCC (Figure S2).
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Figure 3. Co-expression of STMN1 with cell-cycle regulatory genes in HCC (Oncomine): (A) Genes
co-expressed with STMN1 were obtained from the Oncomine database (Roessler Liver 2). This heat
map showed the related expression levels for the top 20 genes with STMN1 gene; (B) STMN1-co-
expressed genes were analyzed by GSEA using the WebGestalt web tool; (C) STMN1-co-expressed
genes were mapped with KEGG cell cycle (hsa04110) pathway using the WebGestalt web tool.
The mapped genes are highlighted in red.

3.3. HCC Cells with Higher STMN1 Expression Are Sensitive to A Telomerase Inhibitor MST-312

STMN1 has been considered a therapeutic target for cancers [18–20]. To identify
therapeutic drugs to selectively kill high-STMN1-expressing HCC cells, we mined the
CTRP database and found that HCC cells with high STMN1 mRNA expression were
sensitive to MST-312 (a telomerase inhibitor) and GMX-1778 (a competitive inhibitor of
nicotinamide phosphoribosyltransferase) but resistant to BRD-K34099515 (unknown func-
tion) and Tacrolimus/FK506 (an immunosuppressive drug) (Figure 4A). We focused on
investigating the most sensitive drug MST-312 (its chemical structure is shown in the
embedded diagram of Figure 4B). A scatter plot showed the positive correlation between
STMN1 mRNA expression and MST-312 drug activity (Figure 4B). To further confirm
that the MST-312 drug activity was dependent on STMN1 downregulation, the STMN1-
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CRISPR-knockdown dependency data of HCC cells were obtained from the DepMap
website. As shown in Figure 4C, MST-312 drug activity was highly correlated with the
STMN1 dependency in 19 liver cancer cell lines.
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tion between STMN1-co-expressed gene signature and MST-321 was visualized as a heat 
map (Figure 5A). As expected, the STMN1-co-expressed gene signature can be reversed 
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STMN1-expressing HCC cells on STMN1 gene expression. 

Figure 4. The correlation between STMN1 mRNA expression and MST-312 drug sensitivity in HCC
cell lines: (A) The drug response profiles correlated with STMN1 mRNA expression in HCC cell
lines were analyzed using the CTRP database; (B) A scatter plot for the correlation between STMN1
mRNA expression and the MST-312 drug activity in HCC cell lines was generated through the
CellMinerCDB website. The chemical structure of MST-312; (C) A scatter plot for the correlation
between the MST-312 drug activity (AUC) and STMN1 gene dependency was generated through
the DepMap website. CERES is a computational method to estimate gene dependency score levels
from CRISPR screening. A lower CERES score indicates that a cell has a higher probability of gene
dependency. A lower AUC means higher drug activity. CTRP, Cancer Therapeutics Response Portal.

According to the above analyses, we hypothesized that the efficacy of MST-312 against
high-STMN1-expressing HCC cells may be due to its ability to downregulate and/or inactivate
STMN1 and then reverse STMN1-co-expressed gene signature. To demonstrate this possibility,
a CMap analysis was performed. The 57 STMN1-co-expressed genes were submitted and
queried by the CMap database, and then the connection between STMN1-co-expressed gene
signature and MST-321 was visualized as a heat map (Figure 5A). As expected, the STMN1-co-
expressed gene signature can be reversed by MST-321 treatment. Interestingly, the STMN1-co-
expressed gene signature was also reversed by STMN1-knockdown (Figure 5A), supporting
the dependency of high-STMN1-expressing HCC cells on STMN1 gene expression.

Because the CMap database contains gene signatures from drug-treated or shRNA/cDNA-
transfected cancer cell lines [40], it can be used to explore the connections between drugs and
genetic knockdown/overexpression. When querying the CMap database for the relationships
between MST-312 and knockdown of STMN1-co-expressed gene signature, we found that MST-
312 treatment was similar to knockdown of BUB1B, MCM2/5/6, TTK, and STMN1 (Figure
5B). Therefore, the anticancer potential of MST-321 against high-STMN1-expressing HCC cells
may result from its inhibitory effect on DNA replication (MCM2/5/6) and mitosis (BUB1B,
TTK, STMN1).



J. Pers. Med. 2021, 11, 332 9 of 14

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 8 of 13 
 

 

Because the CMap database contains gene signatures from drug-treated or 
shRNA/cDNA-transfected cancer cell lines [40], it can be used to explore the connections 
between drugs and genetic knockdown/overexpression. When querying the CMap data-
base for the relationships between MST-312 and knockdown of STMN1-co-expressed gene 
signature, we found that MST-312 treatment was similar to knockdown of BUB1B, 
MCM2/5/6, TTK, and STMN1 (Figure 5B). Therefore, the anticancer potential of MST-321 
against high-STMN1-expressing HCC cells may result from its inhibitory effect on DNA 
replication (MCM2/5/6) and mitosis (BUB1B, TTK, STMN1). 

 
Figure 5. Connectivity mapping for the STMN1-co-expressed genes: (A) Connections of STMN1-
co-expression genes (57 common genes in TCGA-LIHC and Roessler Liver 2 datasets) with the 
MST-321 and STMN1 knockdown were analyzed through the CMap website; (B) Connections of 
MST-312 and the selective gene-knockdown signatures were obtained from the CMap website. 

To validate our bioinformatics analyses, two HCC cell lines (PLC5 and HepG2) were 
used. The cell viability assay indicated that MST-312 was an effective anticancer drug 
against HCC cells (Figure 6A), which were associated with the induction of apoptosis as 
indicated by the cleavage of PARP1 (Figure 6B). MST-312 indeed inhibited the protein 
expression of STMN1, BUB1B, and MCM5 (Figure 6C). To further confirm the role of 

Figure 5. Connectivity mapping for the STMN1-co-expressed genes: (A) Connections of STMN1-co-expression genes (57
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through the CMap website; (B) Connections of MST-312 and the selective gene-knockdown signatures were obtained from
the CMap website.

To validate our bioinformatics analyses, two HCC cell lines (PLC5 and HepG2) were
used. The cell viability assay indicated that MST-312 was an effective anticancer drug
against HCC cells (Figure 6A), which were associated with the induction of apoptosis as
indicated by the cleavage of PARP1 (Figure 6B). MST-312 indeed inhibited the protein
expression of STMN1, BUB1B, and MCM5 (Figure 6C). To further confirm the role of
STMN1 in the anticancer activity of MST-312, stable STMN1-overexpressing HCC cells
were established (Figure 6D). STMN1 overexpression enhanced the apoptosis-inducing
activity of MST-312 as indicated by the cleavages of PARP1 and caspase 3 (Figure 6E),
further supporting these findings. Taken together, MST-312 exhibits high anticancer activity
against high-STMN1-expressing HCC cells.
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doses of MST-312 for 72 h, and then cell viability was determined with Alamar Blue cell viability assay; (B) PLC5 and
HepG2 cells were treated with the indicated concentrations of MST-312 for 72 h, and protein expression was determined
by Western blotting; (C) PLC5 and HepG2 cells were treated with various doses of MST-312 for 24 h, and then protein
expression was determined by Western blotting; (D) PLC5 and HepG2 cells were transfected with pcDNA3-STMN1-EGFP
or pcDNA3-EGFP plasmid for 48 h and then selected with 1 mg/mL G418 for at least 3 months. The GFP fluorescence and
cell morphology were observed under a fluorescence (Fluo) or bright-field (BF) microscope, respectively; (E) STMN1- and
EGFP-overexpressing PLC5 and HepG2 cells were treated with 5 µM MST-312 for 72 h, and then protein expression was
determined by Western blotting.

4. Discussion

We found that STMN1 overexpression in HCC was highly correlated with the over-
expression of genes related to cell cycle progression, especially the mitosis stage. As a
microtubule-destabilizing protein, fine-tuning of STMN1 activity controls spindle forma-
tion during mitosis, and both STMN1 overexpression and downregulation cause the failure
of correct mitosis [18]. STMN1 is highly expressed in mitotic hepatocytes and promotes
hepatocyte proliferation [46]. Because hepatocytes are the prime cells of origin for malig-
nant transformation during HCC development [47], STMN1 upregulation may occur early
during hepatocarcinogenesis.

MST-312 is synthesized as a telomerase inhibitor that can induce telomerase shorten-
ing and then inhibit cancer cell growth [48]. Telomerase, which is required for telomere
synthesis, consists of telomerase RNA component (TERC) and telomerase reverse tran-
scriptase (TERT). Telomerase activation due to TERT promoter mutation or TERT gene
amplification is one of the earliest events during HCC development [49]. The oncogenic
addiction of HCC cell lines to TERT was recently identified [50], suggesting that telomerase
is an actionable therapeutic target of MST-312 for treating HCC.
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The mechanism of STMN1 overexpression in HCC is still largely unclear. Previous
studies demonstrate that the E2F transcription factor 1 (E2F1) is involved in STMN1
transactivation in HCC [51,52]. The E2F transcription factor family (E2F1-E2F8) plays a key
role in cell cycle progression and proliferation and also integrates cell cycle progression with
DNA repair, replication, and G2/M checkpoint via the coordination of related genes [53].
In addition, the overexpression of the E2F family, especially E2F1, and its oncogenic roles
in HCC have been reported [54]. We speculated that the E2F family may contribute
to the upregulation of STMN1 and its co-expressed genes. To confirm this possibility,
the 57 STMN1-co-expressed genes commonly in TCGA-LIHC and Roessler Liver 2 datasets
(Figure S3a) were analyzed for the upstream transcription factors using the WebGestalt
online tool. Indeed, these genes contained the potential binding sites for the E2F family
(Figure S3b).

Several limitations existed in this study. First, only bioinformatics and in vitro exper-
imental analyses were performed. Further in vivo validation using animal models were
required. Second, HepG2 is also referred to as a hepatoblastoma cell line [55], although the
original publication indicates that it is derived from a liver hepatocellular carcinoma of
a 15-year-old Caucasian male [56]. An additional HCC cell line would increase the data
robustness. Third, this study only considered the STMN1-co-expressed genes. We could
not exclude the potential roles of the genes negatively associated with STMN1 expression.
Fourth, CMap database was employed to predict the effect of MST-312 on reversing the
STMN1-co-expressed gene signature. Because signatures derived from multiple cancer cell
types are usually conversed [40], the CMap database has been widely used for searching
for drugs to treat various disease types in addition to cancers [57]. However, cell-type
selective gene signatures still exist in 43% of compounds [40], which may be an additional
limitation in this study.

In conclusion, this study integrated bioinformatics analysis to explore the role of
STMN1 in HCC. We found that STMN1 overexpression is associated with the upregulation
of genes related to cell cycle regulation. A telomerase inhibitor MST-312 was found to
inhibit high-STMN1-expressing HCC cells via the reversal of the STMN1-co-expressed
gene signature. Altogether, this study offers an insight into the therapeutic strategy for
STMN1-overexpressing HCC patients.
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S3: Prediction of the upstream transcription regulators for STMN1-co-expressed genes.
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