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Abstract: Poor study reproducibility is a concern in translational research. As a solution, it is
recommended to increase sample size (N), i.e., add more subjects to experiments. The goal of
this study was to examine/visualize data multimodality (data with >1 data peak/mode) as cause
of study irreproducibility. To emulate the repetition of studies and random sampling of study
subjects, we first used various simulation methods of random number generation based on preclinical
published disease outcome data from human gut microbiota-transplantation rodent studies (e.g.,
intestinal inflammation and univariate/continuous). We first used unimodal distributions (one-
mode, Gaussian, and binomial) to generate random numbers. We showed that increasing N does
not reproducibly identify statistical differences when group comparisons are repeatedly simulated.
We then used multimodal distributions (>1-modes and Markov chain Monte Carlo methods of
random sampling) to simulate similar multimodal datasets A and B (t-test-p = 0.95; N = 100,000), and
confirmed that increasing N does not improve the ‘reproducibility of statistical results or direction of
the effects’. Data visualization with violin plots of categorical random data simulations with five-
integer categories/five-groups illustrated how multimodality leads to irreproducibility. Re-analysis
of data from a human clinical trial that used maltodextrin as dietary placebo illustrated multimodal
responses between human groups, and after placebo consumption. In conclusion, increasing N
does not necessarily ensure reproducible statistical findings across repeated simulations due to
randomness and multimodality. Herein, we clarify how to quantify, visualize and address disease
data multimodality in research. Data visualization could facilitate study designs focused on disease
subtypes/modes to help understand person–person differences and personalized medicine.

Keywords: violin plots; random sampling; analytical reproducibility; microbiome; fecal matter
transplantation; data disease subtypes; personalized medicine; maltodextrin; dip test

1. Introduction

Multimodal diseases are those in which affected subjects can be divided into subtypes;
for instance, “mild” vs. “severe” disease, based on (known/unknown) modifiers of disease
severity. Data subtypes, also known as “data modes”, can be visualized as “peaks” and
“valleys” within a violin or Kernel plot. There is emerging interest in understanding dataset
multimodality and identifying strategies to address such source of variability in disease
and medical research (brain [1,2], biobanking [3], genomics [4,5], and orthopedics [6]).
In animals, for example those that receive human gut/fecal microbiota transplantations
(hGM-FMT) or animals administered special diets or treatments may also exhibit “high”,
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“middle”, or “low reactivity” (e.g., gut inflammation) in response to the intervention.
Although high/low ranging responses often appear in study datasets (biological and
nonbiological) as multimodal distributions, little is known about how these could affect
rodent research reproducibility or how to address such multimodal and random variance.
Herein, we illustrate how multimodality via random sampling affects study reproducibility
in research using, as an example, fecal microbiota transplantation studies in rodents as a
way to exemplify variability and randomness resulting from data multimodality

To establish the causal connection between human diseases and the microbiome, ani-
mal models, primarily germ-free models transplanted with hGM, have been widely used
as tools in translational research. Unfortunately, despite efforts to help scientists improve
their studies (e.g., ARRIVE guidelines), there are still concerns on poor study reproducibil-
ity, in part owing to microbiome variability [7,8]. Novel sources of artificial microbiome
heterogeneity that could explain variable hGM study results have been described [8–12].
Recently, we also illustrated how scientists often lack appropriate methods for the analysis
of cage-clustered data, and with examples, we showed how to use study power (p = 1 − β)
to help investigators monitor their study validity and sample size (N) [8].

With respect to N, published recommendations often include to increase N, i.e., adding
more subjects (e.g., human, mice, cells) to improve research reproducibility. The objective of
our study was to illustrate via simulations (using as an example hGM rodent disease data
dispersion/variability) the impact of repeated random sampling from a population of sub-
jects (at various N) on (i) the data distribution, (ii) the shape of said data distribution, and
(iii) the cumulative probability of generating a statistically significant result for simulated
repeated hGM-transplanted group comparisons for a hypothetical disease outcome. By
using various methods of random number generation, encompassing unimodal and multi-
modal distributions, we illustrate that randomness alone introduces large-scale ‘random
analytical–statistical irreproducibility’ patterns, regardless of number type (continuous or
integer/categorical), especially for multimodal data distributions.

After examining the statistical content of 38 high-quality studies [13–50] assessed in a
recent systematic review [51], herein, we found that scientists who increased N, concur-
rently reduced the number of mice/donor (MxD), indicating that statistically, scientists
replace the disease variance in mice by the disease variance in humans in their hGM-FMT
studies. Furthermore, supporting our previous report [8,52], studies lacked proper statistics
methods to control for animal density, and most importantly with respect to data modality,
we found that none of the studies considered data multimodality/violin plots. Herein, we
clarify how to visualize, quantify and address disease data multimodality in human and
animal research.

2. Materials and Methods
2.1. Overall Approach

To verify our hypothesis using, as an example, the context of hGM rodent studies
and N, we used published (observed) preclinical rodent univariate data (e.g., intestinal
inflammation) to make simulations with randomly generated numbers to then conduct
repeated standard statistical and visualization analyses. Simulations were conducted using
(i) integer data that could represent, for instance, categories of disease severity varying
on scoring scale systems made of positive whole numbers categories (categorical), names
(nominal), or orders (ordinal data), and (ii) continuous data that could represent, for in-
stance, body weight or inflammation severity outcomes given in positive decimal numbers,
or transmembrane electric resistance which oscillate around zero between negative and
positive decimal numbers. Across multiple scenarios (details below), we used various
number generator software and methods encompassing at least three major statistical
probability distribution classes. The first, having no data modes with equal probability of
sampling numbers across a min and max range bounds (uniform, rectangle shape); the
second, having one data mode where the probability of sampling a number is higher when
it is closer to the center of the data set (mean) and decreases away from the center (Gaus-
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sian unimodal and bell shape); and the third, having at least two data modes where the
probability of sampling a number resulted from the combined joint probabilities of at least
two Gaussian probability distributions interconnected using Markov chain principles of
sampling dependency (mixed Gaussian Markov chain, multimodal, and partly overlapping
bell shapes). In doing so, we generated a wide array of dataset possibilities, with varying
N (from 3 to 100,000/group), which we then compared statistically as treatment/subject
groups using standard tests (t-test, or ANOVA; see Methods and sections below for justifi-
cation and nonparametric alternatives). Therein, we monitored and quantified the extent
to which data analysis reproducibility was influenced by randomness alone during the
sampling of subjects from hypothetical populations within varying N, as well as dataset
shapes numerically restricted nonarbitrarily around published means ± SD, or upper and
lower values. Lastly, we used random arbitrary range parameters for additional validation.

2.2. Published Preclinical hGM-FMT Rodent Data Used for Simulations

To facilitate the visualization of how random sampling and disease variability influ-
ence study conclusions (significant vs. nonsignificant p-values) in the context of N, we
conducted a series of simulations based on existing statistical methods (see simulations
described below), using, as an example, preclinical hGM-FMT disease phenotyping data
estimates from our own IBD studies (Basson et al.) [52] and that of Baxter et al. [21] (a study
listed in a recent systematic review [7]). In brief, by transplanting feces from inflammatory
bowel disease (IBD), namely Crohn’s disease (“Dis1”) and ulcerative colitis (“Dis2”), and
“Healthy” donors (n = 3 donors for each “disease/healthy” state) into a germ-free sponta-
neous mouse model of cobblestone/ileal Crohn’s disease (SAMP1/YitFc) [52,53], Basson
et al. [52] observed with ~90% engraftment of human microbial taxa after 60 days, that the
hGM-FMT effect on mouse IBD-phenotype was independent of the disease state of the
donor. Specifically, samples from some IBD patients and some healthy donors did not affect
the severity of intestinal inflammation in mice, while the remaining donors exacerbated
inflammation, indicating the presence of disease data multimodality in animal models.
Comparably, Baxter et al. [17] found that differences in the number of tumors resulting in a
hGM-FMT mouse model of chemically induced colorectal cancer (CRC) were independent
of the cancer status of the human donors (n = 3 colorectal cancer, n = 3 healthy individuals).

In addition to published parameters, actual data points inferred from published
plots, or the dataset itself were used to define the data distribution using histograms and
normality density plots using Wessa.net [54]. Inspection of the distribution of observed
experimental data was performed using Excel or R software, as described in [55], which
uses R code, as described in [56]. To further assist in the examination of which distribution
fit the data best, the R-interface implementation of the Tukey Lambda PPCC plot was used
to distinguish normal, u shape, uniform, Cauchy, and logistic distributions, as described
in [54,57], using R code based on [58]. To identify the best fitting distribution function
that the observed data has, we used the Excel functions (TRENDLINE and Equation) and
examined the R2 for the linear, exponential, and logarithm function (unimodal distributions)
or used polynomial functions with two or more terms to describe the shape of the data
distribution. Each term approximately corresponds to a mode/peak in the dataset. Model
fitting used the same interface as that used for model fitting of a normal distribution to
observed data, as described by [59], which used R code as described in [56].

For clarity, the purpose of this study was to illustrate the effect of randomness as an
analytical component in preclinical research datasets and not to examine the validity of
rodents as models of human diseases. As such, we used simulated data generated within
the data distribution parameters of published data or used completely random number
sets drawn from various distributions within arbitrary number ranges, e.g., common to
gut inflammation scores in rodents. Factors such as batch effect, gender, and cage density,
among others, were not considered in the simulations, because the main objective was
to examine ‘random sampling’ and because such factors are not often reported in rodent
publications or are inherently part of the data distribution of the published datasets [8].



J. Pers. Med. 2021, 11, 234 4 of 24

2.3. Simulation of Hypothetical Disease Outcome Sets Using Random Numbers

Iteration of random number generation [60] was conducted to illustrate the effect of
random sampling on the reproducibility of analysis of mouse preclinical datasets generated
using established software. In sequence, we first defined and used the published (observed)
rodent disease outcome parameters when available (e.g., mean and SD, or the min and max
data ranges, for at least two “subject/treatment groups”). We then used such parameters
as input for random generation software (Excel, GraphPad, R software, wessa.net, and
random.org), which for each iteration, generated sets of “randomly sampled treatment
groups” of random numbers, which were then statistically compared using standard
methods and software to determine (i) to what extent the differences were significant, (ii)
the difference in magnitude between the compared groups (treatment effect difference),
and (iii) which group was higher mean (direction of the effect). Each set of random
numbers (a subject/treatment group) used for statistical analysis was generated at various
sample sizes N to examine the effect of N on statistical reproducibility for the simulated
published datasets. Results were monitored manually for each iteration and plotted to
illustrate effects in manuscript figures, recorded using Excel functions by creating an
analysis template simulator for readers use, or used Monte Carlo simulations in statistical
software (GraphPad, or R) to compute thousands of iterations and summarize the statistical
results for cumulative reproducibility and compute Monte Carlo adjusted p-values.

2.4. Group Simulations Using Pseudorandom Integer and Continuous Numbers

To enable the visualization of the simulation strategy and analytical comparisons
across integers and continuous data over various Ns, and to visualize the impact of
adding three subjects to each group for each statistical simulation, we used Excel with
the embedded formulas and functions (see Supplementary File 1). The supplementary
file contains two spreadsheets. One sheet shows the layout for the generation of random
integer numbers in increments of 3, as well as the cumulative statistics using t-test functions
to compare pairs of data with N ranging from 3 to 63, expandable to ~1 million rows, and
for uniform and Gaussian (based on inverse Gaussian functions as described below).
The other sheet follows the same format, based on the same distributions, but it generates
continuous random numbers, instead of integers. Pre-set bar plots with standard deviations
and line plots with the cumulative summary of statistical results illustrate there is no
difference between uniform or Gaussian distribution-based simulations. To allow for
reproducibility, statistical analyses were completed with a suited two-group parametric (t
test) statistical functions available in Excel, because corresponding nonparametric tests are
not available in the software, and their performance is similar to parametric in numerous
scenarios, especially with large N. Nonparametric statistical functions are available for
Excel using third-party open-access macros and extensions that vary in implementation
across platforms (e.g., Real Statistics Using Excel [61]).

As laid out in Supplementary File 1, random numbers were generated using uniform
distributions, which is the standard function for Excel RAND (continuous) and RANDBE-
TWEEN (integer) functions. However, for the generation of numbers, based on a Gaussian
distribution (not readily available in Excel), we nested the RAND formula inside of the
NORMINV formula for the probability input, which, in turn, returns the inverse of the
normal cumulative distribution for the specified mean and standard deviation. Additional
options available in Excel were not used in this study. To constrain the data range within
positive numbers, since inflammation scores are not negative, we used the formula = MIN
(MAX(NORM.INV(RAND(), C$16, C$17), 0),80) to limit numbers between 0 and 80, which
is beyond the absolute probability of 1 of having the maximum possible inflammatory
score within the expectations of the published parameters (i.e., maximum inflammation is
unlikely to be 80) [62,63].
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2.5. Visualization of Randomly Generated Numbers

In all depicted illustrations, the randomly generated numbers used computer-software/
automated-pseudorandom (seeded and unseeded) methods [64,65]. Unless described oth-
erwise, the numbers generated (generated using uniform and Gaussian distributions)
were restricted to be confined within biologically meaningful data boundaries based on
published data (for example, 0 as minimum for normal histological score or intestinal
inflammation and 80 as arbitrary ~3-fold the maximum possible histological score) as
described. For illustration purposes, the x- or y-axes in plots were generically labeled as
outcome disease severity. Simulating a situation where a scientist would recruit a trio of
donors (three donors) per group at a time and was interested in conducting interim statisti-
cal analysis following the addition of every trio of donors to the study, we summarized
the pairwise group analysis for the simulated disease comparisons, for various N, and for
consecutively added donors as an aggregate “cumulative probability of being a significant
simulation” statistic. Comparisons were deemed significant if at least one p-value was
<0.05 across simulations.

2.6. Parametric vs. Nonparametric Group Statistics and Monte Carlo p-Value Estimates

Because parametric and nonparametric statistical methods often produce interchange-
ably/similar p-values, especially when data have normal distribution, and also as the
group sample size N increases, as previously described, herein, for illustrative purposes,
we used, unless otherwise described, primarily parametric tests to conduct the statistical
analysis because in most cases N was larger than 3–6, with simulations conducted with N =
6, 9, 18, 21, and additional increments of 3 up to 63, or with N = 100, 200, 600, 1000, 10,000,
or 100,000. When applicable for further validation of the data generation and specific
simulations datasets in Excel, the data was exported to GraphPad, a statistical software
widely used in the literature, to conduct Student’s unpaired t-test and/or one-way ANOVA
with Tukey statistical comparisons (or the nonparametric in some scenarios with low N < 6,
or as needed see below) to calculate adjusted p-values using Monte Carlo simulations for
decimal numbers with Gaussian distribution, and to determine the % of simulations that
were significant or not. For post hoc analysis, nonseeded Monte Carlo simulation function
was used.

2.7. Markov Chain Monte Carlo Multimodal Simulations of Continuous Data

To illustrate the major role of random sampling across multiple N from multimodal
data distributions, we used Markov chain Monte Carlo multimodal simulation functions
and R software to obtain groups of numbers from such distributions for statistical com-
parisons using two-group statistics. The scripts are available in Supplementary Figure
S5. Specifically, to illustrate the effect of random sampling from data simulations from
multimodal distribution functions, unconstrained-parameter simulations of two mixed,
yet separate, normal distributions were performed using the random walk Metropolis–
Hastings algorithm [66,67], a form of dependent sampling from a proposed posterior
distribution, as a well-established method of Markov chain Monte Carlo (MCMC) sim-
ulations [68], using R and STATA (v15.1). In the latter, the MCMC sampling of a new
individual is dependent on the prior probability of being part of a mode within a multi-
modal distribution, instead of being completely random from a unimodal distribution,
using a log-likelihood correction to prevent negative sigma values and also allow for
asymmetrical distributions. This method is beneficial as it asymptotically converges to
the true proposal distribution and so represents a more robust method of data simulation
compared to other alternatives of simulating sampling from multimodal distributions (i.e.,
binomial and mixed normal distributions).

2.8. Multimodality Tests and Variability of Statistical Results

The test of multimodality was conducted using the dip test (which measures the
departure of a sample from unimodality, using the uniform distribution as the worst
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case as a reference) and STATA [69], with packages available in R [70]. The tabulation of
modes from a variable in a dataset was computed using the modes and hsmode function in
STATA [71,72]. Statistical and simulation analyses were conducted or plotted with Excel, R,
Stata, and GraphPad.

To determine the sources of statistical methods variability in hGM-FMT rodent studies,
we reviewed the content of 38 studies listed in ref [51]. For computation purposes, we
searched each article for the following keywords: “cage,” “stat*”, “housed”, “multiple”,
“multivariable”, “cluster”, “mixed”, “individual*”, and “random*”, and appropriately
extracted details to additional inserted columns of an excel file. Detailed statistical tests and
software used, focused on assessing the effect of the hGM in the rodent phenotypes, were
extracted to determine if studies used proper cluster statistical analysis and/or controlled
for random effects introduced by caging, when needed, that is, if more than one mouse was
housed per cage. Data including descriptions of animal density (numbers, e.g., 1–5) were
assigned to the sourced keywords to allow for statistical analysis. If a range was provided
for N or animal density, estimations were computed using the median value within the
range, as well as the minimum and maximum values. The average of estimated center
values was used for analysis and graphical summaries

3. Results
3.1. “. Disease Data Subtypes” (Modes) Occur with Uniform and Gaussian Random Sampling

In microbiome rodent studies, the selection of a sufficient number of human donors,
as well as the number of mice/group which required the testing of each human donor
(MxD), is critical to account for the effects of random sampling, which exist when the hGM
induces variable disease severity in humans and rodents. Thus, to visualize the variability
of disease severity (data subtypes/modes) in hGM-FMT rodents and the effect of N on
the reproducibility of said pairwise statistical comparisons from, hypothetically, randomly
selected human donors, we first conducted a series of simulations using as input, the mean
± SD (disease outcome, continuous data) from hGM-FMT mice in Basson et al. [52] to
generate random numbers (Figure 1a; note dispersed overlapping data). We also generated
separate random datasets of integer and decimal numbers using functions designed to
draw numbers from a uniform and Gaussian distribution (see details in Methods, and
formulas and visualization strategy in Supplementary File 1 and Supplementary Figure
S1). We showed that under the conditions simulated, the integer-uniform dataset is
statistically similar to the one generated using decimal-Gaussian methods (Figure 1b),
and we demonstrated how the random selection of N (sampled as groups for each of
three iterative datasets) influences the direction and significance in pairwise comparative
statistics.

Simulations showed that the number of MxD is important because mice have various
response patterns to the hGM (i.e., disease severity and disease data subtypes/modes),
which can be consistently detected depending on the MxD and thus the variability in-
troduced by random sampling. Simulations showed that for the three hGM-FMT group
datasets (plotted as Dis1, Dis2, and Healthy), it was possible to reproducibly identify from
two to three unique donor disease severity subtypes (data modes) in mice induced by the
hGM (“high”, “middle”, and “low” disease severity).

Simulation plots made it visually evident that testing <4–5 MxD yielded mean values
more likely to be affected by intrinsic variability of random sampling, thus making studies
with >6 MxD more stable and preferable. Conversely, studies with 1–2 MxD are at risk
of being strongly dependent on randomness. Iterative simulations showed that the mean
effect (e.g., ileal histology) in transplanted mice varies minimally (i.e., stabilizes) after 7 ±
2 MxD, depending on the random dataset iterated. Beyond that, increasing MxD becomes
less cost-effective/unnecessary if the focus is the human donors (Figure 1c).
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Figure 1. Random sampling from overlapping datasets yield unexpected “linear patterns of cumulative statistical irrepro-
ducibility”. Simulations on observed data from Basson et al. [52] to visualize disease vs. healthy datasets. (a) Method 
overview to generate pseudorandom numbers and simulations from published (observed) data (see details/formulas in 
Supplementary File 1 and Supplementary Figure 1). (b) Visualization of simulated outcomes using random decimal and 
integer numbers datasets generated based on 3 donors/group for Disease 1 (“Dis1”), Disease 2 (“Dis2”), and “Healthy” 
groups. Bar plot of N = 21 mice/donor, notice no differences between integer and decimal datasets group pattern, or abso-
lute differences, superscript letter “a”, paired-t p > 0.05. (c) Simulation of human gut/fecal microbiota transplantations 
(hGM-FMT) mice data yields reproducible simulated “disease data subtypes” from 6 mice/group. (d) Cumulative line 
plots depicting patterns of statistical irreproducibility and pairwise statistical directions of effect estimates (n.s.:signif., 
signif.:signif., signif.:n.s., and n.s:n.s.). Representative simulations comparing two groups of donors, with N ranging from 
three (trio) donors/group to 63, in multiples of three (cumulative addition of new trios per group). Note Y-axis, p-value of 
differences using two-group Student’s t-test. Notice as N increases, the cumulative significance (red line) exhibit different 
linear patterns due to variance introduced by random sampling. (e) Percentage of simulated analysis with significant or 
nonsignificant pairwise difference (blue; significant, black; non-significant; and parentheses, SD). Comparison deemed 
significant, if at least one p-value < 0.05 across simulations with N between 3 and 63 donors/group. (f) Visualization of 
simulated outcome using observed data from Baxter et al. [21]. No differences between integer and decimal datasets, 
superscript letter “a”, paired-t p > 0.05. (g) Random simulations illustrate “erratic” statistical patterns. Notice as N in-
creases, group differences become more significant, until an inflection point, where adding more donors makes the signif-
icance disappear. See Supplementary Figure S2 for additional examples and computed R2 value to illustrate the linearity 
of the correlation between N and statistical significance. 

Figure 1. Random sampling from overlapping datasets yield unexpected “linear patterns of cumulative statistical irre-
producibility”. Simulations on observed data from Basson et al. [52] to visualize disease vs. healthy datasets. (a) Method
overview to generate pseudorandom numbers and simulations from published (observed) data (see details/formulas in
Supplementary File 1 and Supplementary Figure S1). (b) Visualization of simulated outcomes using random decimal and
integer numbers datasets generated based on 3 donors/group for Disease 1 (“Dis1”), Disease 2 (“Dis2”), and “Healthy”
groups. Bar plot of N = 21 mice/donor, notice no differences between integer and decimal datasets group pattern, or
absolute differences, superscript letter “a”, paired-t p > 0.05. (c) Simulation of human gut/fecal microbiota transplantations
(hGM-FMT) mice data yields reproducible simulated “disease data subtypes” from 6 mice/group. (d) Cumulative line
plots depicting patterns of statistical irreproducibility and pairwise statistical directions of effect estimates (n.s.:signif.,
signif.:signif., signif.:n.s., and n.s:n.s.). Representative simulations comparing two groups of donors, with N ranging from
three (trio) donors/group to 63, in multiples of three (cumulative addition of new trios per group). Note Y-axis, p-value of
differences using two-group Student’s t-test. Notice as N increases, the cumulative significance (red line) exhibit different
linear patterns due to variance introduced by random sampling. (e) Percentage of simulated analysis with significant or
nonsignificant pairwise difference (blue; significant, black; non-significant; and parentheses, SD). Comparison deemed
significant, if at least one p-value < 0.05 across simulations with N between 3 and 63 donors/group. (f) Visualization
of simulated outcome using observed data from Baxter et al. [21]. No differences between integer and decimal datasets,
superscript letter “a”, paired-t p > 0.05. (g) Random simulations illustrate “erratic” statistical patterns. Notice as N increases,
group differences become more significant, until an inflection point, where adding more donors makes the significance
disappear. See Supplementary Figure S2 for additional examples and computed R2 value to illustrate the linearity of the
correlation between N and statistical significance.
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3.2. Random Sampling from Overlapping Datasets Yield “Linear Patterns of Statistical
Irreproducibility”

Often, published literature contains figures and statistical analysis conducted with
three donors per disease group. Thus, to mimic this scenario and to examine the role of
random sampling of subjects on the reproducibility of pairwise statistical results (significant
vs. nonsignificant) in the context of hGM-FMT rodent studies, we compared two groups of
donors, each having three donors/group (donor “trio”), with N increasing in multiples of
three (ranging from 3 to 62 donors/group). We conducted (i) multiple donor/group (“trio–
trio”) pairwise comparisons and (ii) a simultaneous overall analysis for the cumulative sum
of all the donor trios (i.e., the cumulative addition of new trios per group) simulated for
each disease group. That is, we monitored and quantified whether results for each random
iteration (simulation event) were significant (using univariate Student’s t-statistics p < 0.05)
or nonsignificant (p > 0.05) for groups of simulated donor datasets (Dis1, Dis2, or Healthy).
Assessing the effect of random sampling at various N and also as N accumulated, we
were able to illustrate that pairwise “trio–trio” comparisons between the simulated rodent
disease outcome datasets almost always produced nonsignificant results when iterative
trios were compared (due to large SD overlapping; see bars in Figure 1d representing 21
sets of pairwise trio–trio p-values). However, as N increases by the cumulative addition
of all (mostly nonsignificant) donor trios (i.e., N increases in multiples of three, for a
range of N between 3 and 63 donors/group; (3, 6, 9, 12, . . . ,63)), pairwise statistical
comparisons between the simulated datasets did not produce consistent results (see line
plots in Figure 1d representing p-value for cumulative addition of donors when sampling
iterations were simulated).

Results are clinically relevant because the simulated N, being much larger (63 donors/
group) than the largest N tested by one of the hGM-FMT studies examined in a recent
systematic review [51] (21 donors/group) [45] demonstrates that the analysis of randomly
selected subjects would not always yield reproducible results due to the chance of sampling
aleatory sets of individuals with varying degrees of disease severity, regardless of how
many donors are recruited in an study. To provide a specific example, using Dis1 as a
referent, cumulative pairwise comparisons (vs. Dis2 and vs. Healthy) revealed at least
five different patterns of irreproducible statistical results (rodent disease outcome) as
N increased between 3 and 63 per group. Figure 1d illustrates four of these variable
cumulative linear patterns of statistical irreproducibility in which, remarkably, (i) Dis1
becomes significantly different vs. Dis2, and vs. Healthy, as N increases, (ii) Dis1 becomes
significantly different from Dis2 but not vs. Healthy, (iii) Dis1 was significantly different
from healthy but not vs. Dis2, and (iv) Dis1 never becomes significantly different despite
sampling up to 63 donors/group. See Supplementary Figure S2 for complementary plots
illustrating linearity of patterns (R2, mean 0.51 ± 0.23, 21 simulations).

Hence, the results clearly illustrate that seeking funds to recruit more donors as
recently suggested is not a prudent statistical solution to the problem of understanding
disease causality of widely variable conditions in both humans and animals. By statistical
irreproducibility, herein, we refer to the inability to reproduce the direction and statistical
significance of a test effect when analyses are conducted between groups created by the
random selection of subjects from distributions defined using observed data.

To investigate the cumulative probability of generating a statistically significant simu-
lation that collectively would lead to the inconsistent patterns (statistical irreproducibility)
observed via random sampling, we computed an aggregate “cumulative probability of
being a significant simulation” for 50 pairwise statistical simulation sets fulfilling the four
linear patterns described above. Emphasizing the concept that increasing N is not a repro-
ducible solution, Figure 1e shows that only 35.3 ± 4.0% of comparisons between Dis1 and
Dis2, and 58.8 ± 3.3% for Dis1 and Healthy, were significant.
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3.3. “Erratic Patterns” of Statistical Irreproducibility as N Increases

To increase the external validity of our observations, we next simulated the data
published from a hGM-FMT study on colorectal cancer conducted by Baxter et al. [21]. In
agreement with Basson et al. [52], Baxter et al. revealed comparably bimodal colorectal
cancer phenotypes in mice resulting from both the diseased (colorectal cancer) patients and
healthy human donors (Figure 1f).

Unexpectedly, we observed for both Basson et al. [52] and Baxter et al. [21], as simu-
lations were conducted, an “erratic” shift on the significance of the cumulative analysis
occurred as N increased (Figure 1g). In some cases, the increasing addition of donor
trios/group (as simulations proceeded for increasing values of N) made it possible to
identify simulations where erratic changes in the statistical significance for group com-
parisons switched randomly, yet gradually, from being significant to nonsignificant as
more donor trios were “recruited” into the simulations (Figure 1g). Clinically relevant
simulations indicated that adding extra subjects could at times actually invert the overall
cumulative effect of the p-value, possibly due to the variable distribution and multimodal
nature of the host responses to experimental interventions. As such, simulations indicate
that it is advisable to conduct several a priori determined interim data analysis in clinical
trials to ensure that significance is numerically stable (p < 0.05), as well as the relevance
of personalized analysis to examine disease variance in populations. Unfortunately, there
are no guidelines or examples available to assist in determining how many donors would
be sufficient, and to visualize the effect of random sampling of individuals from a vastly
heterogeneous population of healthy and diseased subjects.

3.4. Monte Carlo Simulations and Probability of Statistical Reproducibility

Expanding the reproducibility of these uniform and Gaussian distributions, we then
made simulations using solely Gaussian distributions for N = 63 donors/group and con-
ducted (i) Monte Carlo adjusted Student’s unpaired t-tests and (ii) Monte Carlo adjusted
one-way ANOVA with Tukey correction for family errors and multiple comparisons. Monte
Carlo simulations were used to indicate how many tests will yield a significant result and
the direction of effect. Monte Carlo simulations with normal Gaussian distribution around
the group means and a pooled SD of ± 4 were also computed. See Supplementary Figure
S3 and Supplementary File 2 for methods employed in GraphPad for this Monte Carlo
simulation and the corresponding dataset. Supporting the observations above, Monte Carlo
Gaussian simulations showed that, using pairwise comparison, Dis1 would be significantly
different from Dis 2 (adjusted t-test p < 0.05) only 57.7% of the time (95% CI = 58–57.4), with
1540 simulations producing negative (contradictory) mean differences between the groups.
Compared to Healthy, Dis1, and Dis2 were significant only 9.1% (95% CI = 9.2–8.9) and
78.3% (95% CI = 78.6–78.1) of the time, respectively. Statistical analyses were compared,
for p-values computed by parametric t-tests and nonparametric Mann–Whitney statistics,
findings were comparable, yet distinct, with borderline significant p-values.

Under the “Weak Law of Large Numbers” [73–75] and randomization principles, it is
almost always possible to detect some level of statistical significance(s) and mean group
differences when asymptotic mathematical methods based on numerous simulations are
used. For example, when simulations are used as a surrogate for multiple experiments
which are not possible in real research settings. However, in this case, the mean simulated
differences yielding from 100,000 simulations were minuscule (Dis1-Dis2 = 1.6; Healthy-
Dis2 = −1.97; and Healthy-Dis1 = 0.42). Compared to the range of disease variance
for each disease, such minuscule differences may not be clinically relevant to explain
disease variance at the individual level. Note that the SD was 4; therefore, it is intuitive to
visualize in a numerical context such small differences across greatly overlapping unimodal
simulations.

Correcting for family errors, one-way ANOVA corrected with 10,000 Monte Carlo
simulations with N = 63/group showed that at least one of the three groups would be
statistically different in approximately only 67.2% of the simulations (95% CI = 64.2–
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70.0), whereas in 32.8% (95% CI = 64.2–70.0) of simulations, the groups would appear
as statistically similar (see Supplementary Table S1 for estimations after 100,000 Monte
Carlo simulations (R software); note narrower CI as simulations increase, Supplementary
Figure S4). The comparison of Dis1 vs. Dis2 in supplementary Table S1 demonstrates that
the percentage of cases in which a simulation could be significant, depending on the degree
of data dispersion. For example, simulations with SD of 4, compared to SD of 10, produce
significant results less often, illustrating how data with larger dispersions contribute to
poor statistical reproducibility, which cannot necessarily be corrected by increasing N.

3.5. Violin Plots to Visualize, and Tests to Quantify, Multimodal “Disease Data Subtypes”

To visualize and to illustrate how to address the underlying mechanisms that could
explain the “linear and erratic patterns of statistical irreproducibility” that is introduced by
random sampling, we first used dot plots based on observed and simulated data, followed
by kernel-based statistics and plots (violin, box, bar). Plot appearance and one-way ANOVA
statistics showed that when N is increased, significant results, when present for largely
overlapping phenotypes, are primarily due to small differences between sample means
(Figure 2a,b).

Simulations that compared three groups of 65 donors/group almost always yielded
a significantly different group; however, dot plots show that the significant differences
between means are just a small fraction of the total disease variability as verified with
Monte Carlo simulations. That is, as N increases, comparisons can become significant (see
plot with 65 donors in Figure 2c). In this context, a significant difference of such a narrow
magnitude may not be clinically relevant, or generalizable, to explain the presence of a
disease phenotype in a population, especially for subjects at the extreme ranges of the
disease distribution.

Mechanistically, the detection of significant comparisons can be attributed to the effect
that increasing N has on the data mean and variance, which increases at a higher rate for the
variance as shown in Figure 2d. Instead of increasing N as a general solution, we suggest
that scientists use violin plots over other plots commonly encouraged by publishers [76]
(e.g., bar, boxplot, and dot plots), because violin plots provide an informative approach
to make inferences about “disease data subtypes” in the population (see subtypes shown
with arrows in Figure 2e,f).

Violin plots are similar to a box plot, as they show a marker for the data median,
interquartile ranges, and the individual data points [77]. However, as a unique feature,
violin plots show the probability density of the data at different values, usually smoothed
by a kernel density estimator. The idea of a kernel average smoother is that within a range
of aligned data points, for each data point to be smoothed (X0), there is a constant distance
size (λ) of choice for the kernel window (radius or width), around which a weighted
average for nearby data points are estimated. Weighted analysis gives data points that are
closer to X0 higher weights within the kernel window, thus identifying areas with higher
data densities (which correspond to the disease data modes). As an example of the benefits
of using violin plots, Figure 2g shows that as N increases, as does the ability of scientists to
subjectively infer the presence of disease subtypes.

To strengthen the reproducibility of “subtype” mode identification, herein, we also
suggest the use of statistical methods to identify disease data modes (e.g., see the statistical
function modes in Methods and Discussion), because as N increases, the visual detection of
modes becomes increasingly more subjective as shown in Figure 2g.
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Figure 2. Violin plots enable visualization of data subtypes in simulations of random sampling for various N sample
size. Observed raw data derived from Basson et al. (a,b) Dot plots (mean, range) of observed (1 “trio”; 3 donors/group),
and simulated data (3 and 6 donors/group; panel B). Note that differences are not significant because of the variability
between diseases. (c) Dot plots (mean, range) of simulated data for 9, 21, and 65 donors per group. Note that simulated
mean effects became significant with 65 donors/group. However, the mean difference is small compared to the variance of
the groups and the difference is not biologically different because it is a function of the total variance (23%). (d) Kernel
density simulations (10,000) based on observed (n = 3) and simulated data. Note that as N increases the mean becomes
narrower while the variance widens. See 100,000 Monte Carlo simulations in Supplementary Table S1. (e) Comparison of
visual appearance and data display for violin, dot, bar, and box plots of simulated data to illustrate “disease data subtypes”
(arrows). (f) Plot illustrates cumulative proportion of simulation runs that generated a significant (green, p < 0.05) or
nonsignificant value (black, p > 0.05). Analysis illustrates how Monte Carlo adjusted analysis could be reported with
observed findings. See Supplementary Figure S4 for 100,000 Monte Carlo simulations of random numbers generated in R.
(g) Violin plots allow visualization of data subtypes as N increases (arrows, subtypes).
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3.6. Violin Plots Guide Subtype Analysis to Identify Biologically Significant Results

Violin plots and kernel density distribution curves in Figure 3 illustrate why com-
paring groups of randomly sampled individuals may not yield biologically relevant in-
formation, even though statistical analysis identifies that the mean values differ between
compared groups. Figure 3a illustrates the different patterns of potential donor subtypes
(i.e., data modes visualized in violin plots as disease data/curve “peaks”) that would yield
significant results in a single experiment depending on the donors sampled.
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Figure 3. Violin plots illustrate that statistical differences with large N may not have clinical predictive value at individual
level. Violin and kernel plots illustrate statistical vs. biologically relevant differences and thresholds. (a) Violin plots of
four simulated random number sets illustrate that each set of donors may have unique subtypes of disease illustrated with
arrowheads (disease severity scores with higher number of simulated donors). Arrows indicate “disease data subtypes”
vary with every simulation of 63 donors/group. (b) Kernel density curves illustrate large overlap of sample population
from simulated data (see panel 3a). Significant differences are highlighted by shaded area. Note the threshold does not have
distinctive separation for the plots indicating that it is not biologically useful as a predictor of outcome. (c) Violin plots
illustrate meaningful statistical difference for population (compared to panel 3b). “Fake disease X” (“DisX”) was generated
as a “mock” disease following Gaussian distribution around the mean. Monte Carlo simulations were significant 96.5%
(upper limit 97.6, lower limit 95.4%). (d) Kernel density curves of panel 3c illustrate example of distribution separation with
both statistical difference and biological relevance.
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However, the kernel density plots in Figure 3b show that significant findings do
not necessarily indicate/yield clinically relevant thresholds or parameters to differentiate
between the populations (due to the overlapping and inflation of data “peaks” in some
subjects within the samples). To contrast the data simulated from Basson et al., we replaced
data from Dis1 dataset with a Gaussian distributed (R software) sample of random numbers
(within 13.5 ± 3.5, labeled as “fake disease X”; vs. 6.4 ± 4.3, and 4.5 ± 2.5 for Dis2
and Healthy, respectively) to illustrate how a kernel plot would appear when significant
differences have a clinically relevant impact in differentiating subtypes (Figure 3c,d).

Collectively, simulations indicate that the uneven random sampling of subtypes across
a disease group would be an important factor in determining the direction of significance
if studies were repeated, owing primarily to the probability of sampling data “modes” or
“peaks/valleys” in both healthy and diseased populations.

3.7. Multimodal Datasets Illustrate How Statistical Irreproducibility Occurs

Thus far, we have used unimodal distributions to show how random sampling affects
statistical results. However, there has been an increased interest in understanding data
multimodality in various biological processes [78,79] for which new statistical approaches
have been proposed. Methods to simulate multimodal distributions are however not trivial,
in part due to the unknown nature of multimodality in biological processes.

To facilitate the understanding of the conceptual mechanisms that influence the ef-
fect of data multimodality and random sampling on statistical significance, Figure 4a–e
schematically contextualizes the statistical and data distribution principles that can interfere
with reproducibility of statistical results when simulations are repeated.

Random simulations from unimodal distributions work on the assumption that num-
bers (e.g., donors’ disease severity) are drawn from a population, independently from one
another. That is, the probability of sampling or drawing a number from a population is not
influenced by the number that was selected prior. While this form of random sampling
is very useful in deterministic mathematics, it does not capture the dependence of events
that occur in multimodal biology. That is, in biology, the probability of an event to occur
depends on the nature of the preceding events. To increase the external validity of our
report, we thus conducted simulations based on three strategies to draw density curves
resembling multimodal distributions.

To simulate the statistical comparison of two hypothetical multimodal data distribu-
tion, we (i) ran Markov chain Monte Carlo (MCMC) simulations for two datasets (“drug
A” vs. “drug B”) each with two data modes (Figure 5a,b), (ii) used the statistical dip test
(STATA) to determine if the simulated data were statistically multimodal, and (iii) used the
Student’s t-test to determine the statistical significance, the mean differences, and directions
for the simulated distributions (“drug A” vs. “drug B”), using various N (Figure 5c). The
MCMC simulations clearly illustrate how random sampling of two multimodal hypotheti-
cal datasets lead to inconsistent patterns of statistical results when compared, indicating
that biological data are multimodal, have multiple peaks/modes, and that two groups
intended for comparison may have different or mismatching shapes and thus real data may
not have Gaussian distribution. Notice that the data dispersion increases as N increases;
see summary statistics in Figure 5c.

Collectively, Figure 5 underscores the notion that randomness alone elicits effect
on irreproducible results, and that mean-SD are imperfect to visualize data shape. See
Supplementary Figure S5 for wider range of N and the scripts for the dip test and modes
analysis using STATA and R commands.

Figure 5d,e depicts distributions derived from both “truncated beta”, and the combi-
nation of two “mixed unimodal” distribution functions (e.g., two independent Gaussian
curves in one plot), which are illustrative of multimodality, but not necessarily reliable
methods to examine the effects from dependent random sampling in multimodality. Thus,
we used “Random walk Markov chain Metropolis–Hastings algorithms” using R software
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to simulate random sampling, accounting for the hypothetical dependence between two
different disease subtypes.
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Figure 4. Conceptual overview of the effect of random sampling and analysis of multimodal data. (a) Schematic conceptual-
ization of random sampling from a population of heterogeneous individuals. (b) Representation of various unidimensional
data distributions. Notice that mean and SD do not represent the shape of the distribution. (c). Examples of probability den-
sity functions of unimodal distributions. Wolfram language [80]. (d) Example of a random sampling of numbers generated
in this study using decimal Gaussian distribution generates a non-Gaussian distribution (bimodal; two peaks/modes, as in
disease distribution subtypes). This illustrates that even under seemingly unbiased circumstances (randomness), a set of
random subjects from a population may be of two subtypes and not represent the population in its “universe” of disease
possibilities. (e) Multimodal distributions. Use of violin and kernel plots to visualize subtypes.

Conclusively, MCMC illustrations emphasize that increasing N in the study of mul-
timodal diseases in a single study should not be assumed to provide results that can be
directly extrapolated to the population, but rather, MCMC emphasizes that the target study
of data subtypes could lead to the identification of mechanisms which could explain why
diseases vary within biological systems (e.g., humans and mice).

3.8. Categorical Data Exhibit Multimodality

Until this point, the majority of data simulations reported herein were based on
continuous data, using various methods computer pseudorandom number algorithms.
Statistical comparisons were then made between two and three groups per simulation
using t-tests or one-way ANOVAs, or their nonparametric equivalent, as it is common in
rodent literature. To further understand the effect of randomness on preclinical datasets,
we further simulated categorical outcomes [81,82]. We simulated five categories of gut
inflammation, with changing severity in steps of 1, between 1-(category “normal”) to
6-(category “most inflamed”). To illustrate how randomness affects the reproducibility
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of statistical analysis in studies with >3 treatments, we simulated five treatment groups
(untreated, placebo, and treatments X, Y and Z).
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resenting the six categories), creating equal group sets of N = 6, 12, 100, and 1000 inte-
gers/group, with no differences between the five groups. 

One-way ANOVA (and Kruskal–Wallis) statistics with post hoc pairwise compari-
sons across groups for >250 study dataset simulations, illustrated that increasing N from 
6 to 1000/group do not prevent the occurrence of expected false significant findings (i.e., 
Ho = at least one group is different) with p-value < 0.05. Random groups with N = 1000 
expected to be similar, showed statistical significances in 3 of 50 iterations, which is ex-
pectedly similar to the expected five false discoveries for 100 if p = 0.05 (3/50 vs. 5/100; 
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Figure 5. Comparison of two statistically similar multimodal datasets yields highly irreproducible results due to random
sampling at various N. Markov chain Monte Carlo (MCMC) simulations emphasize the need to identify disease subtypes
for the study of multimodal diseases. MCMC are random-number-generating strategies to simulate two multimodal
distributions, wherein a random walk MCMC Metropolis–Hastings’ algorithm simulates random sampling accounting
for inter-/within-mode dependence of two “data disease subtypes”. (a) MCMC simulations of two statistically similar
multimodal datasets (hypothetical effect of “drug A”; red dash line vs. “drug B”; blue solid line), “real” distributions set
at N = 100,000; grey reference line at x = 0, downward arrows; data modes. (b) Random sampling of multimodal dataset
(from panel 5a) at N = 100 yields varying dataset distributions and a different mean, SD. (c) Effect of random sampling
dataset (from panel 5a) on increasing N on t-test significance and direction of effect for “drug A” vs. “drug B” (arrow),
including dip test for MCMC simulations (set.seed 101). See Supplementary Figure S5 for wider range of N and the STATA
and R command scripts for the dip test and modes analyses. (d) Example of other multimodal distributions derived from
“truncated beta” and the combination of two “mixed unimodal” distribution functions. (e) Example of a Hartigan–Hartigan
(Hartigans’) unimodality dip test and a modes test [69,83,84] showing a multimodal data distribution (black dotted line)
compared to normal univariate density plot (red line). To identify data subtypes (modes), the dip test [69] computes a
p-value to help determine unimodal or multimodal; does not require a priori knowledge of potential multimodality; it is
interpreted from test statistics (if p < 0.05 data is not unimodal, if p > 0.05–1.0 at least one data mode in dataset). Asterisks
indicate significance p < 0.05.

Using an integer generator which draws true random numbers from atmospheric
noise (random.org), we set the algorithm to draw random numbers between 1 and 6
(representing the six categories), creating equal group sets of N = 6, 12, 100, and 1000
integers/group, with no differences between the five groups.

One-way ANOVA (and Kruskal–Wallis) statistics with post hoc pairwise comparisons
across groups for >250 study dataset simulations, illustrated that increasing N from 6 to
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1000/group do not prevent the occurrence of expected false significant findings (i.e., Ho = at
least one group is different) with p-value < 0.05. Random groups with N = 1000 expected to
be similar, showed statistical significances in 3 of 50 iterations, which is expectedly similar
to the expected five false discoveries for 100 if p = 0.05 (3/50 vs. 5/100; Fisher exact p = 1);
however, the directions of the effects changed drastically within treatment groups, across
the significantly different simulations.

Supporting our hypothesis, increasing N does not necessarily prevent false discoveries,
as we did not see more false discoveries than linearly expected [51] when N decreased from
“optimal” 1000 to “less optimal” 100, 12 and 6 (3/50 vs. 2/40, 4/40 and 1/40, respectively;
Fisher exact p < 0.6261; Figure 6a–c).
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Figure 6. Categorical data simulations and violin plots illustrate that integer data exhibit multimodality and affect statistical
reproducibility as simulations are performed randomly with various N. (a) N = 1000/group, simulation #1, violin plot and
correspondent box plot for nonsignificant expected similarity across five groups (one-way K-W p > 0.05). See p-values and
violin plots for >40 consecutive simulations in Supplementary Figure S7. (a,b) N = 12/group, violin plots for simulations
#27 (non-significant), and #1, #14, and #40 (significant) illustrate comparisons due to randomness, result in irreproducible
“treatment effects” and “direction of effects”. Arrows, data points with statistical influence (see boxplots in Supplementary
Figure S7). (c) Screenshots of time-lapse videos to show dynamically how statistical irreproducibility occurs at random for
various N. Arrows indicate direction of effect. See Supplementary Video S1 doi:10.6084/m9.figshare.13377407. Asterisks
indicate significance p < 0.05.

Visualization of these integer datasets with violin plots, illustrates that in all cases,
categorical data follow multimodal distribution principles that accentuate the random
irreproducibility of statistical analysis, and more importantly, the irreproducibility of the
direction of effect as simulations are repeated. Violin plots illustrate how with lower
N, there is the risk that investigators misperceive a data point as an outlier, when it
is not, and proceed to exclude such points, consciously or unconsciously favoring the
appearance of significant findings, especially when using small N for categorical data. As
an alternative to categorical data, we have proposed the use of decimal scoring systems,
instead of univariate integers, where decimals further carry information relevant to disease
severity, making the system intrinsically more multivariable (see validated examples from
Rodriguez-Palacios et al. for colonoscopy scores, and pathological scores for intestinal
pathologies in [53,85]). To appreciate the advantages of violin plots in understanding
integer multimodality for integers, simulations at various N are available as time-lapse
videos at doi:10.6084/m9.figshare.13377407 (https://figshare.com/s/dcf154ce73c5bc086e80).

3.9. “Data Disease Subtyping” and “Cage-Cluster” Statistics

One important caveat to consider across animal studies is that increasing N alone is
unhelpful if clustered-data statistics are not used to control for animal cage-density (>1
mouse/cage), which our group showed contributes to “artificial heterogeneity”, “cyclical
microbiome bias”, and false-positive/false-negative conclusions [8,86].

https://figshare.com/s/dcf154ce73c5bc086e80
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To infer the role of scientific decision on the need for particular statistical methods,
we examined the published studies [51] for “animal density” and “statistical” content (see
Methods). Supporting the need for “modernizing” data analysis, we found that only one of
the 38 studies (2.6%, 95% CI = 0.1–13.8%) used proper statistical methods (mixed models)
to control for cage-clustering [23].

Although on average, studies tested 6.6 patients and 6.4 controls/group (range =
1–21), most studies were below the average (65.7%, 25/38, 95% CI = 48.6–80.4%), with 14
having <4 donors/group (Figure 7a). However, of interest, the number of human donors
included in a study was inversely correlated with the number of mice/per donor used in
the FMT experiments Figure 7b.
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Figure 7. Study design and statistical methods among 38 hGM-FMT studies reveal lack of cage-clustered analysis and
dominance of univariate analysis. Analysis of 38 studies reviewed in ref [51]. (a) Average and correlation of human
donors with disease vs. healthy controls hN (left) and number of mice mN per human donor across studies (right
plot). (b) Correlation plot with exponential, logarithmic and linear fits shows that scientists tend to use less mice when
more donors are tested, creating a “trade-off” between data uncertainty due to variance in human disease with that of
variance in animal models for disease of interest. (c) Pie chart, distribution of studies reporting mice/cage (MxCg), which
indicates cage-clustered effects (search within study text keywords cage/cluster*, individual/house*, mice per*, density*,
mixed/random/fix/methods/stat*, p = *). Most studies do not report MxCg (animal density). (d) Heatmap, overall
statistical methods (M), statistical software (S), and study design (D) used across 38 studies. Only “study 6” [23] used linear
mixed methods to control for the random effects of cage clustering. *Asterisk indicate variables examined in ref. [51]. Most
statistical software reported in studies appear to be used for univariate statistics.

Unfortunately, the majority of studies (25/38, 65.8%, 95% CI = 48.6–80.4%) did not
report animal density, consistent with previous analyses [8]; while 10.5% of the studies
(4/38, 95% CI = 2.9–24.8%) housed their mice individually, which is advantageous because
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study designs are free of intraclass correlation coefficient, eliminating the need for cage-
cluster statistics (Figure 7c).

Our review of the statistical methods used across the 38 studies also revealed that
most scientists used GraphPad chiefly for graphics and univariate analysis of mouse
phenotype data. This finding suggests an underutilization of the available functions in
statistical software, for example, Monte Carlo simulations, to help understand the effect of
random sampling on the reproducibility and significance of observed study results, and
the likelihood of repeatability by others (Monte Carlo adjusted 95% confidence intervals)
(Figure 7d). Of note, none of the studies considered multimodality or used violin plots (0%,
0/38, 95% CI = 6.9e−18, 9.1).

3.10. Multimodality in Human Outcome Data

To expand our analysis from that of microbiome hGM-FMT studies to that of other
multifactorial diseases, we then examined published data from a double-blind, randomized,
placebo-controlled, crossover design study in which the efficacy of a prebiotic dietary fiber
(polydextrose) in improving cognitive performance an acute stress response in healthy
individuals was investigated [87]. Using pre- and post-intervention data extrapolated
from a figure in the publication, herein, we show that multimodality is present in human-
derived outcomes. (Figure 8a–e). In the context of the simulations herein presented,
this analysis represents the complexity of biomedical research and illustrate means to
visualize disease subtypes. In this example, we show the “high”, “middle”, or “low”
responders to cold stress regardless of the treatment (placebo vs. prebiotic fiber). Note
that at baseline, two samples of individuals have two different distributions (normality
tests and multimodality). In the figure, panels 8B and D illustrate that two different groups
of individuals sampled for the study have different degrees of susceptibility. It is also
important to note that at baseline, the two samples of individuals have two different
distributions (normality tests and multimodality; Figure 8b,d). In conclusion, re-analysis
of data from this human clinical trial that used maltodextrin as dietary placebo illustrates
multimodal variability/differences in the stress responses between the two human groups
and after the placebo consumption.
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for “prebiotic” fiber group before and after cold stress test. Panels B and D illustrate that two different groups of individuals
sampled for the study have different degrees of susceptibility. Asterisks indicate significance p < 0.05.
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4. Discussion

Understanding dataset multimodality and identifying strategies to address such
source of variability in statistics is an emerging field in applied statistics to help address
the complexity of multipeak data sets to improve study inferences and reproducibility
in various fields of science, including biomedical research. Despite the inclusion of large
numbers of human subjects in microbiome studies, the causal role of the human microbiome
in disease remains uncertain. Exemplifying that a large N is not necessarily informative
with complex human diseases, a large metanalysis [88] of raw hGM data from obese and
IBD patients showed that human disease phenotypes do not always yield reproducible
interlaboratory predictive biological signatures. Even when hundreds of individuals are
studied, especially, if the “effect size for the disease of interest” is narrow (i.e., in obesity;
larger in IBD) relative to the variability of the disease. For the human IBD subtypes (i.e.,
ulcerative colitis and Crohn’s disease), the metanalysis [88] concluded that only the ileal
form of Crohn’s disease showed consistent hGM signatures compared to both healthy
control donors and patients with either colonic Crohn’s disease or ulcerative colitis [89],
but no consistent signatures were observed for obesity.

Using a simple strategy of assuming random numbers drawn from an observed sample
distribution, we have analytically illustrated that increasing N yields aberrant and/or
conflicting statistical predictions, which depend on the patterns of disease variability and
presence of disease subtypes (data modes). Specifically, our simulations revealed that
the number of discernable data subtypes may wax and wane as N increases, and that
increasing N does not uniformly enable the identification of statistical differences between
groups. Furthermore, subjects randomly selected from a multimodal diseased population
may create groups with statistical differences that do not always have the same direction.
Especially, (i) if the human disease of interest exhibits variable phenotypes (e.g., cancer,
obesity, or asthma) and (ii) if multivariable cage-clustered data analyses are not used to
account for intraclass correlation coefficient of phenotypes within/between animal cages.

Under the “weak law of large numbers” principle in mathematics (Bernoulli’s theo-
rem [73–75]; see references for further illustration [90]), as N increases, the distribution of
the study/sample means approximates the mean of the actual population, which facilitates
the identification of statistically significant (but not biologically meaningful) differences
between otherwise overlapping sample datasets. Commonly used statistical methods (e.g.,
t-tests; parametric vs. nonparametric) are designed to quantify differences around the
sample centers (mean, median) and range of dispersion (standard errors or deviation) of
two groups. However, these methods do not account for the distribution shape (unimodal
vs. bi/multimodal) of the compared datasets. With arbitrary increases in N, what is in-
significant becomes significant, thus increasing the tendency for the null hypothesis to be
rejected despite clinically subtle differences [91,92].

To guide the selection of sufficient N (cases) or disease data subtype, herein we
highlight the use of two simple statistical steps: (i) to first determine if the shape of the
dataset is unimodal (e.g., dip test), and if not unimodal, then (ii) to use statistical simulations
and tests to determine the number of modes/data values of interest, and finally, to (iii)
perform Monte Carlo simulations using the statistical analysis conducted by scientists
on their experimental data to quantify the frequency by which random sampling could
interfere with the p-value computed. Such forms of Monte Carlo adjusted p-values can
easily be performed using GraphPad or similar software (R, STATA), which are widely used
in the literature. Doing so facilitates the objective design of personalized/disease subtyping
experiments. Although comparisons between group means is important because some
diseases are truly different, findings from our own hGM-FMT study [52] and others [21,23]
highlight the relevance of studying disease subtypes and the sources of variability by
personalizing the functional analysis of the hGM in mice (i.e., that both “pathological”
and “beneficial” effects can be seen in hGM-FMT mice independent of donor disease
status). For example, in our own work, the functional characterization of “beneficial”
or “nonbeneficial” disease microbiome subtypes in IBD patients at times of remission
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could lead to the identification of an ideal patient fecal sample for future autologous
transplantation during times of active disease. Therefore, personalized research has the
potential to identify different functional microbiome subtypes (on a given outcome, e.g.,
assay or hGM-FMT mice) for one individual.

One pitfall of traditional statistics that are based either on mean and SD, or on non-
parametric median and ranking methods, is that only central and dispersion parameters
are used for analysis, which does not represent the data distribution shape. With mean and
SD consistent with the observed data, there is no guarantee that the simulated data would
match the whole distribution of the observed data.

With respect to determining unimodality, easily implementable tests to quantify data
modality are available in STATA (statistical functions diptest and mode; proprietary and
community contributed) and R (Package multimode, community contributed) [93]. The dip
test [69] quantifies departures from unimodality and does not require a priori knowledge
of potential multimodality, and thus, information can be easily interpreted from the test
statistics and the p-value [83,94]. Although reports and comparative analysis of statistical
performance have been described for various multimodality tests (e.g., dip test, bimodality
test, Silverman’s test, and likelihood ratio test [95], and kernel methods), including simpler
alternatives that use benchmarks to determine the influence of data outliers [78,79,83,96], it
is important to emphasize that every method depends on its intended application and data
set/shape [84], and thus must be accompanied by the inspection of the data distributions
modes.

5. Conclusions

In conclusion, by conducting a series of simulations and a review of statistical methods
in current hGM-FMT literature, we extensively illustrate the constraints of increasing
N as a main solution to identify causal links between the hGM and disease. We also
highlight the integral role of multivariable cage-clustered data analyses, as previously
described by our group [8]. Herein, we provided a conceptual framework that integrates
the dynamics of sample center means and range of dispersion from the compared datasets
with kernel and violin plots to identify “data disease subtypes” to address sample size and
data multimodality. Biological insights from well-controlled, analyzed, and personalized
analyses will lead to precise “person-specific” principles of disease, or identification of anti-
inflammatory hGM, that could explain clinical/treatment outcomes in patients with certain
disease subtypes and self-correct, guide, and promote the personalized investigation of
disease subtype mechanisms.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-442
6/11/3/234/s1, Figure S1: Generation of random datasets of integer and decimal numbers using
functions designed to draw numbers from a uniform and gaussian distribution, Figure S2: Further
examples for data simulations with R2 value illustrate linearity as illustrated in Figure 1D, Figure
S3: GraphPad Methods for Monte Carlo simulation, Figure S4: Monte Carlo Gaussian 100,000
simulations, Figure S5: Markov chain Monte Carlo (MCMC) simulations and examples of dip test,
Figure S6: 16S microbiome profiles of hGM-SAMP fed an AD or AD-modified diet for 24 weeks, S7:
Categorical data simulations and violin plots illustrate that categorical data exhibit multimodality and
affects statistical reproducibility of random data. Table S1: Comparative percentages of simulations
that yielded significant results for two statistical approaches, Video S1: Time-Lapse Examples
doi:10.6084/m9.figshare.13377407 (https://figshare.com/s/dcf154ce73c5bc086e80).
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