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Abstract: Immunotherapy is a promising therapeutic strategy both for solid and hematologic tumors,
such as in Hodgkin (HL) and non-Hodgkin lymphoma (NHL). In particular, immune-checkpoint
inhibitors, such as nivolumab and pembrolizumab, are increasingly used for the treatment of re-
fractory/relapsed HL. At the same time, evidence of chimeric antigen receptor (CAR)-T-cell im-
munotherapy efficacy mostly in NHL is growing. In this setting, the challenge is to identify an appro-
priate imaging method to evaluate immunotherapy response. The role of 18F-Fluorodeoxyglucose
(18F-FDG) positron-emission tomography/computed tomography (PET/CT), especially in early
evaluation, is under investigation in order to guide therapeutic strategies, taking into account the
possible atypical responses (hyperprogression and pseudoprogression) and immune-related adverse
events that could appear on PET images. Herein, we aimed to present a critical overview about the
role of 18F-FDG PET/CT in evaluating treatment response to immunotherapy in lymphoma patients.

Keywords: immunotherapy; 18F-FDG PET/CT; Hodgkin lymphoma; Non Hodgkin lymphoma;
immuno-checkpoint inhibitors; CAR-T cell therapy

1. Introduction

In the last decade, the advent of immunotherapy in clinical practice has represented a
keystone in the management of cancer patients, providing new therapeutic opportunities
and paving the way for new challenges for oncology. Immunotherapy has revolutionized
solid and hematologic tumor treatment with increasing use both in Hodgkin (HL) and non-
Hodgkin lymphoma (NHL). In this context, immunotherapy with checkpoint inhibitors
such as nivolumab and pembrolizumab, targeted programmed cell death protein 1 (PD-1),
represents one of the key pathways most broadly studied.

In particular, classical HL is a peculiar tumor characterized by a vast majority of im-
mune infiltrate, where Hodgkin Reed-Sternberg cells escape immune surveillance through
an overexpression of the programmed death 1 ligands (PD-L1). For this reason, the Food
and Drug Administration (FDA) and the European Medicines Agency (EMA) have ap-
proved these two anti-PD-1 drugs (nivolumab and pembrolizumab), for the treatment
of refractory/relapsed (R/R) HL [1,2] with the intent to reactivate the immune system
and restore immunity against Hodgkin Reed-Sternberg cells [3]. Different clinical trials
(CHECKMATE 205, KEYNOTE 087) confirm the usefulness of monotherapy with pem-
brolizumab and nivolumab in HL, with a high overall response and complete response rate,
and the interest is now focusing on the possibility of association with chemotherapy [4,5].
In patients with R/R HL, studies demonstrated high response rates, with complete re-
sponse rates in 20% of cases [2,5,6], as well as a favorable toxicity profile of immune-related
adverse events [7,8].
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At present, there is not the same amount of evidence for NHL. First results in diffuse
large B cell lymphoma (DLBCL) are not as encouraging as in HL, probably due to the infre-
quent expression of PD1/PDL1 (CHECKMATE 139) [9], but considering some subtypes of
DLBCL, such as primary mediastinal B cell lymphoma (PMBCL), in which the expression
of PD1/PDL1 is higher, the evidence of checkpoint inhibitor efficacy appears to be stronger
(KEYNOTE 013) [1]. In this setting, chimeric antigen receptor (CAR)-T-cell immunotherapy
has shown remarkable efficacy in R/R B-cell malignancies, including DLBCL. However,
a substantial fraction of patients will not respond or relapse, without fully knowing the
mechanisms leading to CAR-T-cell therapy resistance yet.

Nowadays, the efficacy and safety of these new therapeutic frontiers are a matter of
debate and it is essential to individuate which are the adequate tools to be able to fully
understand them. In this scenario, a crucial role is played by imaging and, in particular, to
18F-Fluorodeoxyglucose (18F-FDG) positron-emission tomography/computed tomogra-
phy (PET/CT) is asked whether it could maintain its well-established role in lymphomas,
and also for the immunotherapy response assessment. Currently, the literature regarding
PET reliability in patients with lymphoma undergoing immunotherapy is still poor, but
the preliminary results are encouraging.

Herein, we aimed to present a brief a critical overview about the role of 18F-FDG-
PET/CT in evaluating treatment response to immunotherapy in lymphoma patients, focus-
ing on the early and interim evaluation.

2. The Basis of Immunotherapy

Immunotherapy using Immune Checkpoints Inhibitors (ICI) is a recent successful
therapeutic approach, which aims to reactivate the immune system against cancers [10,11].
The immune response against tumor cells is mediated by cytotoxic T cells. The specificity of
this response is driven by the interaction between major histocompatibility complex receptor
I (MHC-I), displaying an antigen from tumor cells, and T-cell receptor (TCR) of the cytotoxic
T cell. Co-stimulatory signals such as interleukin-2 (IL-2) or interferon (IFN) improve the
immune response against foreign antigens [12]. Conversely, co-inhibitory signals alleviate the
immune response to allow self-tolerance. The binding between PD-1 of the cytotoxic T cell
and its ligand (PD-L1 and PD-L2), expressed by antigen-presenting cells (APCs) as well as on
a variety of immune cells including Reed–Sternberg cells [13–16], negatively regulates T-cell
activation and function [17]. This interaction results in a senescent T-cell with an exhausted
phenotype and proliferation of tumor cells. Furthermore, another silencing immune response
mechanism could be represented by the binding between cytotoxic T-lymphocyte antigen 4
(CTLA-4) expressed by regulatory T cells with the B7 expressed by APCs [12].

The pharmacology of ICIs, particularly anti-CTLA-4, anti-PD-1, and anti-PD-L1 an-
tibodies, is based on the reactivation of the immune response against tumors [18,19], by
targeting and blocking the co-inhibitory signals [20]. The unique microenvironment behind
HL, consisting of a minority of Reed-Sternberg cells that interact with numerous immune
cells [21–24], could explain the success of ICIs. Malignant Reed-Sternberg cells constitute
less than 5% of the tumor cellularity, influencing the microenvironment by secreting a
significant number of chemokines and cytokines that attract the various subsets of immune
cells to the areas involved in the disease, including T cells, with variable numbers of
macrophages, eosinophils, plasma cells, B cells, neutrophils and fibroblasts [25]. Moreover,
in HL patients, a genetic alteration in chromosome 9p24 causes an over-expression of PD-L1
and PD-L2 on the surface of Reed-Sternberg cells, which leads to immune evasion. This
over-expression makes HL uniquely vulnerable to PD-L1 blockade.

In addition, it is reported that many intratumoral T cells express PD-1, explaining their
inability to eradicate Reed–Sternberg cells [26], as well as monocytes and macrophages that
contribute to an immunosuppressive environment [27]. Evidence of PD-L1 and/or PD-L2
expression has been found in a subset of NHL cells and in the tumor microenvironment [28].
However, the response rates to PD-1 blockade in R/R DLBCL, as well as in follicular
lymphoma (FL), has been disappointing.
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Conversely, in this setting of patients a promising target is represented by CAR-T
cells. CAR-T cells are autologous T lymphocytes genetically engineered to bind specific
antigens expressed on malignant cells and absent on healthy ones stimulating, through
signaling domains, T-cell proliferation, cytolysis and cytokine secretion. CAR-T cells are
generated through apheresis of patient’s peripheral blood mononuclear cells and activated,
then transduced with retroviral or lentiviral vector with a CAR construct, typically an
antibody single chain variable fragment or peptide. The modified T cells are re-infused
into the patient [29,30].

The main mechanisms underlyng immunotherapy are shown in Figure 1.
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Figure 1. Schematic representation of immunological mechanism in Hodgkin (HL) and Non Hodgkin (NHL) lymphoma
microenvironment, focusing on immunotherapy and PET imaging targets. Chimeric antigen receptor T-cell (CAR-T); glucose
transporter 1 (GLUT1); programmed cell death protein-1 (PD-1); programmed cell death protein-ligand 1 (PD-L1); T-cell
receptor (TCR); antigen-presenting cell (APC); cytotoxic T-lymphocyte antigen 4 (CTLA-4); interferon (IFN), interleukin-2
(IL2); immune-checkpoint inhibitor (ICI); major histocompatibility complex (MHC).

Challenge in Treatment Response Assessment

Immune CI represents a new challenge for medical imaging, for both morphological
and functional methods [12]. If the use of 18F-FDG PET/CT in stadiation, treatment response
evaluation and follow up in patients with lymphoma is well established, some concerns
remain about PET evaluation in immunotherapy because of the possibility to encounter
hyperprogression/pseudoprogression, as it is well documented for solid tumors [31].

Hyperprogression is an acceleration of tumor growth rate, sometimes observed after
starting immunotherapy [32,33], which increases at minimum 2-fold between the baseline
and at the first timepoint post-therapy evaluation, and confirmed later. The timing for
assessing hyperprogression could be restricted to 2 months after the treatment start.

Instead, pseudoprogression is characterized by initial enlargement of tumors or the
visualisation of new lesions, due to the concomitant immune cell infiltration followed by
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a response. It usually occurs within 6 to 12 weeks after the initiation of checkpoint in-
hibitors and is associated with favorable outcomes. Consequently, it is essential to correctly
distinguish hyperprogression from pseudoprogression, in order to early modify the thera-
peutic strategy avoiding premature treatment interruption [33,34]. Finally, end-of-treatment
evaluation should allow to safely stop immunotherapy in the event of durable response [33].

In Figure 2 is represented the two different atypical patterns mentioned above.
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Pseudoprogression consists of transient enlargement of lesion in the first timepoint post-ICI evaluation, mostly due to
immune cells infiltration and is associated with a favorable outcome. Hyperprogression describes an increase in tumor
volume growth rate during immunotherapy, assessed at the first timepoint post-therapy evaluation, and confirmed within
2 months after the start of therapy.

In this context a particular mention is deserved for the abscopal effect, described
as a measurable response at a distant localization of a tumor or a metastasis after local
treatment, which is, in most cases, radiotherapy [35]. Although observed in anecdotal
clinical experiences, the abscopal effect rate seems to be enhanced after the association
of immune-activating drugs with RT [36,37]. There has been increasing evidence of the
immunotherapeutic potential of ionizing radiation due to its ability to induce tumor
antigen release during cancer cell death and promote pro-inflammatory signals that trigger
tumor-specific T cells [38–41].

Whereas salvage radiotherapy can induce durable control in only a subset of R/R
HL [42], some authors suggest that radiation combined with ICIs could achieve a higher
response rate by increasing the abscopal effect probability. Qin Q et al. and Quéro et al.
have reported a complete and durable response in 3 and 4 HL patients respectively, treated
with an association of palliative normofractioned RT and anti-PD-1 [43,44].

18F-FDG is the main radiotracer used in nuclear medicine imaging [45]. However,
exploring glucose metabolism, 18F-FDG is not specific for tumor cells, and also targets
immune cells, making it difficult to differentiate 18F-FDG uptakes related to malignant cells
from those due to inflammation induced by immunotherapy [12]. In this scenario, new
imaging interpretation criteria have been proposed to avoid a misdiagnosis, leading to a
revision of the classically used Lugano criteria and to the formulation of LYRIC (Lymphoma
Response to Immunomodulatory therapy Criteria) [46] (Table 1).

In this system, patients categorized as having an indeterminate response (IR) at initial
imaging required repeat imaging within 12 weeks and a re-evaluation to determine if the
original appearance represents true or pseudoprogression. Recent studies focusing on HL
validated 18F-FDG PET/CT in early immunotherapy evaluation, stating that a semiquan-
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titative evaluation can distinguish responders from non-responders and confirming the
leading role of metabolic response assessment in these patients [3,24,47,48].

Table 1. LUGANO and LYRIC (Lymphoma Response to Immunomodulatory therapy Criteria) imaging interpretation
criteria.

LUGANO LYRIC

Complete Response
(CR)

PET/CT: DS 1, 2, or 3 with or without a residual mass
OR
CT: target nodes/nodal masses must regress to ≤1.5 cm in longest diameter

Partial Response
(PR)

PET/CT: DS 4 or 5 with reduced uptake compared with baseline and residual mass(es) of any size
OR
CT: ≥50% decrease in SPD of up to 6 target measurable nodes and extranodal sites

Progressive Disease
(PD)

PET/CT: DS 4 or 5 with an increase in intensity of uptake from baseline and/or new FDG-avid foci
consistent with lymphoma at interim or EoT assessment.
OR
CT: an individual node/lesion must be abnormal with: longest diameter >1.5 cm and increase by
≥50% from product of the perpendicular diameters nadir and an increase in longest or short
diameter from nadir 0.5 cm for lesions ≤2 cm 1.0 cm for lesions >2 cm

In the setting of splenomegaly, the splenic length must increase by >50% of the extent of its prior
increase beyond baseline (eg, a 15-cm spleen must increase to >16 cm). If no prior splenomegaly,
must increase by ≥2 cm from baseline

New or recurrent splenomegaly AND/OR involvement of the bone marrow

New or clear progression of preexisiting non measured lesions

Regrowth of previously resolved lesions

A new node >1.5 cm in any axis or a new extranodal site >1.0 cm in any axis; if <1.0 cm in any axis, its
presence must be unequivocal and must be attributable to lymphoma

Assessable disease of any size unequivocally attributable to lymphoma

IR(1): ≥50% increase in SPD in first 12 weeks

IR(2): <50% increase in SPD with

a. New lesion(s), or

b. ≥50% increase in PPD of a lesion or set of lesions at
any time during treatment

IR(3): Increase in FDG uptake without a concomitant
increase in lesion size meeting criteria for PD

Deauville Score (DS), End of Treatment (EoT); sum of product of diameter (SPD); Indeterminate Response (IR); Product of the perpendicular
diameters (PPD).

On the other hand, 18F-FDG PET could also be useful to reveal the PD-1/PD-L1 status.
Effectively, PD-L1 promotes glycolytic metabolism in tumor cells, while this glucose con-
sumption by tumors metabolically restricts T cells, notably by dampening their glycolytic
capacity [49]. As a result, PD-L1 protein expression was significantly correlated to glucose
transporter 1 (GLUT1) expression, which is the transporter of 18F-FDG. However, to over-
come the low 18F-FDG specificity, new potential targets for nuclear medicine imaging are
developing based on an understanding of the mechanisms of ICI [12].

3. Search Strategy

A literature search was conducted on the Medline (PubMed) database including all
articles published up to 30 November 2020. The following keywords have been entered to
rule the research: “Hodgkin lymphoma” OR “Non-Hodgkin lymphoma” OR “lymphoma”
AND “Immunotherapy” AND “Immune checkpoint inhibitors” AND “anti-CTLA-4”,
“anti-PD1”, anti-PDL1” AND “CAR-T cell therapy” AND “18F-FDG” AND “PET” AND
“positron emission tomography/computed tomography” AND “early response evaluation”



J. Pers. Med. 2021, 11, 217 6 of 17

AND “treatment response” AND “outcome”. Review, meta-analysis, case report, case
series were excluded. Only original articles edited in English were included in this review.
After reading the abstracts some articles were excluded because they did not meet the
goal of our review in evaluating the use of 18F-FDG PET/CT in patients with lymphoma
treated with immunotherapy. For the same reason some articles were not considered in the
final draft after reading the full text. To identify supplementary eligible articles, additional
references were searched from the retrieved review articles. The main charateristics of the
included studies are detailed in Table 2.

Table 2. Characteristics of original articles included.

Author PMID Year Study Type pts Hystology Immunotherapy Imaging
Timing

Response
Criteria Main Faindings

Chen et al.,
31,628,220 [47] 2019 retrospective 45 HL anti PD-1

(nivolumab)
3 mo

(SD +\−2.3) Lugano/LYRIC

In R/R HL patients the first
early 18F-FDG PET/CT
assessment, using either

Lugano or LYRIC, predicted
OS and allowed early risk

stratification.

Castello et al.,
30,032,683 [3] 2018 retrospective 43 HL

anti PD-1
(42 nivolumab;

1 pembrolizumab)

8 weeks and
17 weeks Lugano/LYRIC

Decrease in glucose
metabolism (DSUVmax) and
tumor burden (DMTV, DTLG)

on early/interim 18F-FDG
PET/CT resulted significant
in responders to anti PD-1

immunotherapy.

Mokrane et al.,
32,286,191 [8] 2020 retrospective 45 HL anti PD-1

(nivolumab)
2 mo (range

1.7–3.7) Lugano/LYRIC

In R/R HL early CT and
18F-FDG PET/CT at a median
of 2 months after initiation of

anti-PD1 immunotherapy
predicted OS.

Dercle et al.,
28,596,157 [24] 2018 retrospective 16 HL

anti PD-1
(15 nivolumab;

1 pembrolizumab)
3 mo Lugano/LYRIC

HL responders (CR, PR) at
3-month 18F-FDG PET/CT

assessment could
confirm/convert in a

complete response in the
successive evaluation

Dercle et al.,
29,360,605 [50] 2018 retrospective 16 HL

anti PD-1
(15 nivolumab;

1 pembrolizumab)
2–3 mo Lugano/LYRIC

Reduction in tumor volume
(DMTV, DTLG), in tumor

glucose metabolism
(DSUVmax) and increasing in

spleen metabolism is
associated to anti PD-1

therapy response

Wang et al.,
30,769,193 [51] 2019 retrospective 19

NHL
(14 DLBCL,

3 FL,
1 MALT,
1 Burkitt,
1 ovarian

LL)

CD19 CAR-T baseline PERCIST

In NHL patients treated with
CAR-T cells therapy, higher

baseline disease burden
(DMTV; DTLG) on 18F-FDG
PET/CT is associated have

more severe CRS

Shah et al.,
30,385,043 [52] 2018 prospective 7

NHL
(3 DLBCL,

4 FL)
CTL019 CAR-T 1 mo Lugano

In patients with DLBCL and
FL receiving CTL019 CAR-T

cells, the early 18F-FDG
PET/CT and the total MTV

could predict immunotherapy
response

Derlin et al.,
33,174,144 [53] 2020 retrospective 10 NHL

(DLBCL) CD19 CAR-T 30 d and
90 d Lugano

Early metabolic assessment in
lymphoma lesions and

off-target lymphoid organs
(spleen and lymph nodes)

could predict medium-term
response to CAR-T-cell

therapy, as well as identify
patients at risk for severe

toxicity

Stable Disease (SD), Relapse/Refractory (R/R), Overall Survival (OS), Delta Maximum Standardized Uptake Value (DSUVmax), Delta
Metabolic Tumor Volume (DMTV), Delta Total Lesion Glycolisis (DTLG), Complete Response (CR), Partial Response (PR), Chimeric-Antigen
Receptor T-cell (CAR-Tcell), Diffuse Large B-cell Lympgoma (DLBCL), Follicular Lymphoma (FL), Mucose-Associated Lymphoid Tissue
(MALT), Lymphoblastic Lymphoma (LL), Cytokine Release Syndrome (CRS).
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4. Evidence Based Medicine of Early 18F-FDG PET/CT during Immunotherapy
4.1. Hodgkin Lymphoma

In the era of PET-guided response-adapted treatment strategies, the role of interim
18F-FDG PET/CT in HL patients treated with cytotoxic chemotherapies is well known
and closely correlates with outcome. Whether early 18F-FDG PET/CT also could predict
outcome in HL patients treated with anti PD-1 immunotherapy remains to be investi-
gated [1,2,5,54,55]. Early 18F-FDG PET/CT could be used to define treatment duration,
changing the therapeutic regimen if necessary, or by identifying patients requiring con-
solidation or by reinforcing the treatment with other agent(s), avoiding unnecessary side
effects [56].

Castello and colleagues pointed out a significant reduction in tumor glucose metabolism,
expressed by Delta Maximum Standardized Uptake Value (DSUVmax), in responder
patients in both early (after 8 weeks) and interim (after 17 weeks) assessment. However,
changes in tumor burden metrics, expressed as Delta Metabolic Tumor Volume (DMTV)
and Delta Total Lesion Glycolisis (DTLG), were statistically significant only after 17 weeks
of treatment. These seemingly opposite results can be explained in part by the changes
that occur during the course of immunotherapy within the tumor microenvironment, as
pseudoprogression phenomenon. However, it is interesting to underline that by applying
the LYRIC criteria, which should have exceeded this limitation, no significant differences
were detected in this study [3].

In other studies, a significant decrease in tumor volume and in tumor glucose metabolism,
as well as increases in spleen metabolism were observed in responders at 3 months 18F-
FDG PET/CT assessment. In fact, 18F-FDG uptake into healthy spleen tissue appears
significantly increased in responders, suggesting a favorable immunological reconstitu-
tion [24]. In 78% of patients with objective imaging responses at 3 months, the clinical
benefit lasted longer than one year, demonstrating that imaging management strategies are
feasible and that early evaluation with 18F-FDG PET/CT is a useful tool [50].

A key point emerged about the significance of pseudoprogression detected by early
18F-FDG PET/CT, with regards to its correlation with the following detection of a real
progression. Progressive disease, based upon standard criteria, at an early time-point
in patients with R/R HL treated with anti PD-1 may be considered to carry a high risk
of being “true” progression rather than pseudo-progression. In fact, studies comparing
immune-related LYRIC criteria to conventional response criteria, pointed out that patients
classified as indeterminate response (IR) by LYRIC criteria at the early assessment were
subsequently confirmed as having true progression of metabolic disease (PMD) at the
late evaluation [46]. As shown in the cohort studied from Chen et al., a trend towards
worse overall survival (OS) was present in patients with type 2 IR according to LYRIC
criteria [47]. Recently, a similar conclusion was carried out by Mokrane et al. who hy-
pothesized that the “wait-and-see” strategy recommended in other tumor types does not
seem applicable at an early time point assessment in patients with R/R HL treated with
immunotherapy [8]. The authors support the idea that progressive disease at primary
evaluation with CT or 18F-FDG PET/CT at an early stage should be considered at high
risk of being a true progressive disease. Comparing both imaging modalities, 18F-FDG
PET/CT detected progressive disease in patients more frequently than CT alone did. This
may be explained by the ability of functional imaging to depict “viable” HL lesions with
high glucose consumption before anatomic progression [57]. Although previous studies
demonstrated that 18F-FDG PET/CT tended to upstage up to 40% of patients at baseline
evaluation compared with CT alone [8,58,59]. However, the clinical value of the complete
metabolic response in patients with R/R HL treated with immunotherapy remains con-
troversial. Some reports suggest that anti-PD-1 could be stopped in patients achieving a
complete metabolic response [60], while in the case of a partial response, more aggressive
strategies may be required [24,61]. Others contest that a complete metabolic response can
predict a clinical benefit [4,62] without defining the timing of immunotherapy treatment
ending. Regardless of time assessment, response-adapted treatment strategies in patients
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with R/R HL treated with immunotherapy should take into account that early assessment
with 18F-FDG PET/CT outperforms CT in identifying patients who achieve a metabolic
response [50]. In conclusion, complete responders at either primary CT or PET/CT as-
sessments experience a 2-year OS excellent probability and clinicians could consider a
treatment de-escalation. Moreover, the major incremental value of 18F-FDG PET/CT is to
help detect earlier and higher rates of complete response. Finally, a progressive disease at
either primary CT or PET/CT assessment carries a poorer prognosis, as well as a higher risk
of being a true progressive disease rather than pseudoprogression, in this case clinicians
could consider treatment escalation/association.

In Figure 3 is described a rapresentative case of early 18F-FDG PET/CT evaluation in
a classic HL patients trated with nivolumab.
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Figure 3. Clinical case of a 75 year-old female with history of classic Hodgkin Lymphoma firstly diagnosed in August 2014.
She underwent chemotherapy with ABVD and, in September 2017, with brentuximab and R-bendamustine for disease
relapse. In June 2019, the disease persistence induced hematologists to choose an off-label treatment with nivolumab.
(A–E) 18F-FDG PET/CT performed before the start of immunotherapy, documented disease localized in para-aortic (blue
arrow, SUVmax 4.5) and lombo-aortic (green arrow, SUVmax 5.5) lymph nodes and splenic lesions (red arrow, SUVmax
4.7). (F–L) Early 18F-FDG PET/CT performed 3 months after the start of the immunotreatment, indicate a dissociated
response with decreasing SUVmax in para-aortic (blue arrow, SUVmax 2.5) and lombo-aortic (green arrow, SUVmax
4.5) lymph nodes but increased 18F-FDG uptake in splenic lesions (red arrow, SUVmax 5.7) and the appearance of a
mediastinal adenopathy (yellow arrow, SUVmax 2.4). (M–Q) Interim 18F-FDG PET/CT, performed 6 months after the
start of nivolumab, documented an increased uptake in para-aortic (blue arrow, SUVmax 6.9), lombo-aortic (green arrow,
SUVmax 5.3) lymph nodes and in splenic lesions (red arrow, SUVmax 6.5). The mediastinal adenopathy previously detected
showed no FDG uptake.

The immunotherapy was well tolerated and is still ongoing; at the last clinical follow-
up, the patient referred to a comparison of asthenia and sweating, probably due to a
disease progression. In this clinical case the first interim evaluation showed a real disease
progression, which was confirmed by the subsequent 18F-FDG PET/CT and by clinical
worsening. The pathological meaning of mediastinal adenopathy at early evaluation
18F-FDG PET/CT remains doubtful for the possible relation with frequent inflammatory
activation during immunotherapy.

4.2. Non Hodgkin Lymphoma

As mentioned above, the role of immunotherapy in NHL is still under evaluation,
especially due to heterogeneous biological features of various subtypes, among which
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only few showed encouraging results (Figure 4). In 18 R/R PMBL patients with frequent
9p24.1 alteration, recruited in KEYNOTE 013, an ORR of 41% was achieved with 2 patients
obtaining a CR [1,63,64].
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Figure 4. Clinical case of a 34-year-old male patient affected by diffuse large B-cell lymphoma
diagnosed with biopsy of mediastinal mass, with right lung involvement, in June 2016. He underwent
radio-chemotherapy with R-CHOP, R-DHAP and R-IEV with a subsequent stem cell transplant in
June 2017. In March 2018, the persistence of the right lung lesion led haematologists to choose
a following therapeutic option immune checkpoint inhibitor (pembrolizumab). (A–C) 18F-FDG
PET/CT performed before the start of immunotherapy shows a metabolically active right lung lesion
(blue arrow, SUVmax 8.7). (D–F) 18F-FDG PET/CT performed 5 months after the start of immuno-
treatment shows partial metabolic response of the known lesion with a reduction of SUVmax (blue
arrow, SUVmax 4.2). (G–I) 18F-FDG PET/CT 4 months after the end of immunotherapy shows
further metabolic reduction (SUVmax 3.5) of the lung lesion, which appeared excavated on CT
coregistered to PET images. The patient was followed-up with stable disease until December 2020,
when progression disease was documented.

In this clinical case, the partial response showed by interim 18F-FDG PET/CT, con-
firmed at the post-treatment metabolic evaluation, was found to be prognostically reliable,
considering the 2-year PFS.

However, because only a small subset of NHL patients has PD-L1/L2 expression,
current investigations in NHL are therefore focusing on targeting other checkpoints, with
an increasing interest in the use of novel CAR-T cell therapies. Even for this kind of therapy,
the problem concerning tumor site inflammation and false-positive results exists and makes
difficult 18F-FDG PET/CT response assessment. The pseudoprogression observed with
CAR-T cell therapy was more rapid and significant compared with that of checkpoint
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inhibitors, which could be secondary to the different malignancy types treated with each
therapy, but also may reflect a greater efficacy of CAR-T cell therapy [51].

Considering the significance of early PET evaluation for outcome prediction, recently
Derlin and colleagues found that, for achieving remission, an early metabolic response at
PET was required [53]. In a pilot study including patients who performed 18F-FDG PET/CT
scans before and 1 month after CAR-T-cell therapy, Shah et al. demonstrated that all patients
that did not reach a complete response subsequently relapsed [52]. On the other hand,
patients who achieved a complete metabolic response, with no residual MTV, showed a
long-term remission of their disease over 2 years after treatment. Therefore, non-responders
with clear signs of early progression could benefit from a quick change in therapy at 1-
month PET/CT [52]. Indeed, Imber et al. reported that in the majority of patients with
post-CAR-T progression, salvage radiation therapy had to be delivered to FDG-avid sites
in pre-CAR-T PET [65]. Patients with an unfavorable outcome demonstrated a significantly
higher decrease of glucose metabolism in both spleen and lymph node between baseline
and early 18F-FDG PET/CT. This finding can be explained by low CAR-T expansion and
survival after migration to spleen and lymph nodes following the intravenous injection,
as observed in preclinical rodent models or by depletion of off-target B cells, disrupting
crucial immune networks for anti-tumor response [66,67]. However, this mechanism needs
more evidence to be confirmed.

Immunological mechanisms may also contribute to toxicity, for example with the
cytokine release syndrome (CRS), caused by cytokines produced by both activated CAR-T
cells and other immune cells [68,69], and the immune effector cell-associated neurotoxi-
city syndrome (ICANS) [52,53,70]. In terms of adverse effects, Whang et al. found that
higher disease burden, measured by MTV and TLG, was associated with more severe
CRS [51,71,72]. Concerning acute toxicity, Derlin et al. found that higher lymphoma cell
metabolism (SUVmax) was associated with neurotoxicity. Importantly, SUVmax is directly
related to the Ki-67 proliferation index in DLBCL [73], indicating that patients with high
proliferation lymphoma may be particularly prone to develop adverse effects. Of note, Ru-
bin et al. reported cortical and sub-cortical 18F-FDG PET/CT hypometabolism in patients
with neurological toxicities [74].

4.3. Role of 18F-FDG PET/CT in IrAEs

Immune-related adverse event (IrAE) is a frequent occurrence in immunotherapy, al-
though its precise pathophysiology remains unclear. It can be explained through enhancing
antitumor immune response by ICIs that can alter immunologic homeostasis up to break
self-tolerance and develop autoimmune disease, virtually involving any organ [75]. IrAE
can occur at any time during ICI therapy, but is common within the first 3 months [76].
Since not all IrAEs exhibit clinical signs and symptoms, 18F-FDG PET/CT could provide
more information on IrAEs, even before they become manifest. Furthermore, it is debated
whether IrAEs may be a favorable prognostic marker for immunotherapy, because they
may reflect the antitumor immune activation.

Several evidences indicated that IrAEs are associated with a higher response rate,
although this is still controversial [34,77]. For example, diffuse 18F-FDG uptake in thyroid
or autoimmune thyroiditis has been reported to predict a favorable outcome in DLBCL,
treated with rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisone
(R-CHOP) [78]. Similar conclusions were reached in other studies, in which patients who
developed imaging signs on PET/CT of at least one IrAE (most frequently colitis and
arthritis) had a significantly longer progression-free survival (PFS) than those without
irAEs [79]. For this reason, it is important to report immune-related findings, even if they
are not necessarily associated with clinically significant IrAE.

In the approach to metabolic imaging with 18F-FDG PET/CT, another early sign
of immune activity is the inversion of the liver-to-spleen ratio (normally > 1), possibly
reflecting the immune activation preceding T cell proliferation, but also the reactive nodes
in the drainage basin of the primary tumor, which could be wrongly diagnosed as cancerous



J. Pers. Med. 2021, 11, 217 11 of 17

lymph nodes [80,81]. Moreover, IrAEs often require immunosuppressive treatment, which
increases the risk of developing infections [82].

Because the autoimmune/inflammatory process appears as diffuse increased FDG-
metabolism, differentiating IrAEs from metastases or tumor progression is needed in PET
images interpretation. For this purpose, clinical symptoms, laboratory parameters, CT-
coregistered to PET images or complementary specific imaging methods could be helpful.
For example, pneumonitis, a common IrAE, appears at PET/CT with different intensities of
FDG-uptake associated with reactive mediastinal lymphadenopathy and possibly pleural
effusions. CT specific imaging patterns (ground-glass opacities and consolidations) can
clarify the diagnostic doubt [76].

5. Looking Forward
5.1. Ongoing Studies

In the present day, immunotherapy consists in a treatment option considered after the
failure of traditional chemotherapy and is generally prescribed as monotherapy. For this
reason, a great field of interest is the possible use of immunotherapy in association with
chemotherapy and many studies are in progress to assess the efficacy of these combinations
compared to solely immunotherapy, but also to verify their safety and toxicity profile
studying different dosages (NCT03331341 NCT02758717 NCT03038672 NCT03872180).

Another interesting issue, investigated in a phase II trial, is the possibility of using
immunotherapy with pembrolizumab as a first choice in untreated B-Cell Non-Hodgkin
Lymphoproliferative Diseases patients (NCT03498612).

In these clinical trials, 18F-FDG PET/CT is the main imaging method chosen to follow-
up and the principal criteria used to evaluate treatment response are Lugano Criteria
(NCT03872180, NCT03498612, NCT02758717, NCT03843294, NCT04450173), while in one
study is Deauville criteria (NCT03331341).

Results about immunotherapy efficacy and treatment evaluation with 18F-FDG PET/CT
in NHL are scarce. An observational study (NCT02476734) is investigating this topic, fo-
cusing on the prognostic value of early 18F-FDG PET/CT in patients with FL and DLBCL
receiving redirected autologous CART-19 T-cell immunotherapy. Two 18F-FDG PET/CT
scans, one performed every 6 weeks within CART-19 infusion and one after one month
from infusion, will be evaluated and compared.

A growing interest is also being addressed to new radiotracers such as 18F-fluorothymidine
used in a prospective study (NCT03633955) evaluating the ability to assess immunotherapy
response in patients affected with Acute Lymphocytic Leukemia, Acute Myeloid Leukemia,
Ambiguous Lineage Leukemia or Lymphoma and Myelodysplastic Syndrome. All the
trials reported are registered at www.clinicaltrials.gov.

5.2. Immuno-PET

While 18F-FDG remains the main investigated radiopharmaceutical in clinical trials, its
low specificity led to individuate novel radiotracers, which bind to specific immunotargets.
From this point arises a wide and interesting scenario about immuno-PET (iPET). Immuno-
PET is an interesting area of molecular imaging that employs mAbs and antibody fragments
radiolabeled with positron emitter radionuclide (Zirconium 89Zr and Curium 64Cu, with
longer half-life, or Fluorine 18F and Gallium 68Ga, with shorter half-life), combining the
high specificity and affinity of antibodies for cell surface markers with the high sensitivity
and resolution of PET [83,84]. Since its capability to noninvasively and whole-body assess
the expression of heterogeneous tumor antigens in different localizations or within a
single lesion, iPET is revealing as a promising strategy in the era of theragnostic for
various malignancies. In fact, a pre-treatment iPET scan could better predict response to
immunotherapy and guide a more adequate selection of patients that would benefit or
suffer more adverse effects from immunotherapy [85,86].

For lymphoma patients, different interesting target could be considered for iPET,
such as general T cell markers (CD3, CD4, and CD8), immune-checkpoints (PD-1, PD-
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L1 or CTLA-4) or biomarkers of the immune response (interferon-gamma, interleukin-
2, and granzyme B) [12]. Muylle et al. were the first to clinically assess in 5 patients
the capability of 89Zr-rituximab (anti-CD20 mAb) iPET in revealing CD20 expression
in relapsed B-cell NHL patients and its biodistribution in view of radioimmunotherapy
(RIT) with 90Y-rituximab [87]. Another clinical study was published about the use of
89Zr-labeled anti-CD20, with focus on assessing biodistribution and radiation dosimetry
of 90Y-ibritumumab, optimizing the administered dose of RIT and predicting toxicity in
B cell lymphoma patients, thanks to PET quantitative evaluation [88]. In a pilot study,
iPET with 89Zr-labeled mAbs targeting CD20 was considered as a potential biomarker to
predict R/R DLBCL response to rituximab, showing a positive correlation between tumor
89Zr-rituximab uptake and CD20 expression in biopsied tumor lesions [89].

Inducible T-cell COStimulator (ICOS or CD278) could be a promising target of iPET
(with 89Zr-DFO-anti-ICOS tracer) to noninvasively track activated CAR-T cell at tumor
site in patients with B-cell malignancies with high sensitivity and quantitative capabili-
ties. Simonetta et al. preclinically assessed the utility of 89Zr-DFO-ICOS mAb iPET to
image in vivo CD19-specific CAR-T cell migration, activation, expansion and homing
targeting tumor-infiltrated tissue during antitumor response in a murin model of B-cell
lymphoma [90].

In recruiting status, a clinical trial is enrolling 20 patients with high risk DLBLC
treated with atezolizumab, a mAb targeting PD-L1, after achieving a complete metabolic
remission with R-CHOP. To assess PD-L1 tumor surface expression as potential biomarker,
the patients have to undergo 89Zr-atezolizumab iPET at baseline and after induction
therapy (R-CHOP) and at suspected relapse during or after consolidation treatment with
atezolizumab (treatment trial HOVON 151) (NCT03850028) (https://clinicaltrials.gov).

iPET may help to understand the immune cells recruited in the tumor microenviron-
ment and to identify still unknown immune pathways and targets, therefore optimizing
therapeutic strategies and guiding new clinical trials. In addition, the combination of
iPET with radiomics and artificial intelligence could allow a further characterization and
detailed categorization of tumors, offering the possibility of an increasingly precision and
personalized medicine.

6. Conclusions

Nowadays, immunotherapy represents a new frontier for medicine, offering new
therapeutic possibilities in both Hodgkin and non-Hodgkin lymphomas, giving more
chances in non-responder patients to conventional treatment. In this context, a crucial role
is played by imaging and, in particular, by 18F-FDG PET/CT, a well-established tool in the
fight against lymphomas. Up to now, the results obtained are promising, showing a signif-
icant prognostic value of 18F-FDG PET/CT in the immunotherapy response evaluation,
even in the early assessment. However, still now, most of the literature results are based
on retrospective data. Further prospective studies are needed to better understand the
mechanisms underlying these new immunological targets and to optimize the metabolic
imaging potentialities.
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