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Abstract: The planning of the surgical treatment in orthopedics, with the help of three-dimensional
(3D) technologies, arouses an increasing scientific interest. Scientific literature describes some semi-
automatic reconstructive attempts at fragmented bone fractures, but the matching algorithms pre-
sented are likely to improve. The aim of this paper is to develop a new method of aligning fragments
of comminutive fractures. We have created a structured integration process and an alignment algo-
rithm integrated in a clinical workflow for personalized surgical treatment of fractures. The pro-
vided solution is able to align the surfaces of bone fragments derived from the segmentation process
of volumetric tomographic data. Positional uncertainties are eliminated interactively by the user,
who selects the corresponding pairs of fracture surfaces. The final matching and the right alignment
are performed automatically by the innovative alignment algorithm. The paper solves a challenging
problem for the reconstruction of fractured bones, namely the choice of the optimal matching option
from the situation in which surface portions of a fracture fragment correspond to multiple high
fragments. The method is validated in practice for preoperative planning of a 49-year-old male pa-
tient who had a tibial plateau fracture of Schatzker type VI.

Keywords: orthopedic surgery; tibial fracture; personalized treatment; alignment algorithm; work-
flow; three-dimensional printing

1. Introduction

Serious trauma suffered as a result of vehicle accidents or falls from heights in which
a large amount of energy is involved often results in fractures in which bones are mul-
tifragmentary. Also, bone density disorders may lead to an increase in the probability of
unexpected fractures [1], or the association between bone and muscle tissue reduction
with risk factors for some chronic diseases [2]. Even if personalized web-based predictive
tools in orthopedic surgery are becoming increasingly available [3], fractures are often
difficult to detect and analyze on film scans. Computer Assisted Diagnosis systems based
on convolutional neural network are limiting the number of wrong diagnoses [4] and can
be used for improving diagnosis accuracy, as demonstrated for proximal femur fractures
that is aimed to be extended to all bone segments, and to become a tool commonly used
in hospital practice [5].

Injuries resulting in fractures of the joints, such as the knee, can lead to fragmented
bones, which require precise surgical reconstruction [6]. Exact bone restoration allows the
reconstruction of the axes, being a critical factor in determining the favorable clinical prog-
nosis [7].
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Severe joint fractures occur most frequently in young adult patients, and the objec-
tives of treatment are to stabilize the patient and achieve a bone union as quickly as pos-
sible, in a position of alignment of the limbs, and avoid posttraumatic osteoarthritis. This
is a serious health condition comparable to other major disorders, such as stroke, heart
disease or diabetes. Its effect is a decrease in general health, loss of work capacity, or even
disability [8]. Patients may require reconstructive surgery, with multiple interventions
over a longer period of time, to maintain the joint function or even the joint replacement.

The scientific literature on semi-automatic or fully automatic reconstruction of bone
fragments is quite scarce, with research mainly on medical imaging, bone segmentation
and surface recording [9]. Recent advances in augmented reality real-time solutions for
robotic surgery navigation with modular approach during invivo robotic surgery and seg-
mentation of the whole procedure in a set of stages allow for a very good tracking strategy
for fracture reconstruction [10].

Research on bone reconstruction is generally limited to simple fractures from a small
number of fragments [11]. The recent emergence of 3D technologies has increased the po-
tential to investigate personalized treatment of fractures [12,13], to propose preoperative
plans [14], but also to develop customized treatment solutions in cases of simple fractures
[15] or complex ones [16,17], specific instrumentation, osteointegrated implants for trau-
matology and orthopedics [18]. This allows for improved accuracy and efficiency of or-
thopedic surgeries for internal fixation [16].

By applying classical methods of open reduction, bone fragments can be devascular-
ized at the same time as soft tissue is compromised. This requires minimally invasive per-
sonalized orthopedic surgery that treats severe comminuted fractures and allows for sat-
isfactory results [19].

Given the spectacular evolution of 3D printing technologies, it is necessary to trans-
pose them into clinical workflows. Orthopedic surgeons must specialize in the latest tech-
nological developments in order to integrate applications in personalized patient treat-
ments into clinical practice [20].

This paper presents a system of semi-automatic virtual reconstruction of bone frac-
tures from volumetric computed tomography (CT) data. We extended numerical tech-
niques developed in the field of vision and computer graphics for the reconstruction of
broken archaeological fragments [21-23] and applied them to the reconstruction of highly
fragmented bone fractures. While some of these techniques are directly applicable to bone
reconstruction, there are many new challenges [24].

Volumetric CT data from clinical applications usually have a resolution of about 0.2-
0.5 mm in the acquisition plane and slightly larger (0.3-0.5 mm) in the direction in which
the images are acquired. CT scan data reflect an average tissue density per volume/thick-
ness of the finished slice, relative to the associated partial volume. Because the segmented
surfaces in the CT data show great variability, extracting the desired surfaces from the CT
volumetric data is a difficult problem in the segmentation process.

On the other hand, the noise is not stationary, and its structure is dependent on the
architecture of the segmentation algorithm used for surface extraction, which is usually
much more intense in difficult segmentation regions.

In the process of generating fractures, when the living bone is subjected to a high-
energy trauma, it tends to split, generating parts that usually have a single fracture surface
that varies slightly and corresponds to one, two or more fragments. In comminuted frac-
tures, two or more such surfaces can be identified, which have more associated fragments.
The fragments show regions of smooth surfaces which, during reconstruction, fit both the
large basic fragment of bone from which they originate and also other smaller fragments.

Consequently, the bone reconstruction algorithm must allow the fracture surfaces to
facilitate a partial match with another fracture surface from another bone fragment, and
which in turn may partially match a third fragment.

In bone reconstruction, the surface matching step excludes the application of perfect
one-to-one matching techniques because the variability of the segmentation can lead to
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attempts to match fragments already aligned elsewhere, or interpenetrating surfaces, or
even open surfaces created by empty volumes.

The objective of the research is to develop a general mathematical model and soft-
ware solution which is an algorithm for structured integration and alignment of the com-
minuted fracture surfaces. Its application should reduce the intervention of the human
operator and optimize the matching process.

2. Materials and Methods
2.1. Virtual Reconstruction of Fractures

Obtaining a precise restoration of the initially unfractured bone from its fragments is
a critical factor in determining the clinical prognosis, especially in cases of comminuted
tibial plateau fractures. Personalized treatment requires the development of algorithms
for structured integration and alignment of comminuted fracture surfaces.

We created a clinical workflow for structured integration process supported by an
alignment algorithm for personalized surgical treatment of fractures which integrates 3D
technologies (Figure 1).

3D image 3D image processing Invesalius: Segmentation: Identification
acquisition | (1) Segmentation of volumetric and classification of tissues
CT data and extraction of useful

(2) Detection of fracture surfaces | information isolating pixels

using CT intensities of the analyzed component

Patient specific modeling

Surgical planning

3D design (3) Segmentation of fragment A representation through
surfaces triangles of tissues as
ﬂ (4) Alignment of surfaces different geometric entities

3D printing | Objects produced from 3D digital files, by constructing thin and

successive layers of raw material

Replicas of thepatient'sanatomy Patient-specific surgical

instruments / guides

Patient specific orthopedics

Figure 1. Clinical workflow for structured integration process supported by an alignment algo-
rithm for personalized surgical treatment of fractures.

The method of fracture virtual reconstruction using volumetric CT data was struc-
tured in four steps:

e  Step 1: Segmentation of volumetric CT data—aimed to generate closed discrete sur-
faces, i.e., surfaces of bone fragments which can be aligned later.
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The segmentation algorithm was not linear, which complicated the relationship be-
tween the noise distribution identified in CT by Hounsfield intensities and the noise ex-
isting in the spatial positions of the locations of the segmented surfaces. Therefore, the
positions of the points in the segmented CT images were interpreted by real geometric
surface noises, in which each point had a unique and unknown noise distribution, and
estimating the location of the surfaces of bone fragment fractures was a challenge (Figure
2).

(b)

Figure 2. Comminutive tibial fractures shown in CT sections used in the process of the bone fragment fracture surfaces
identification. The bone fragment segmented surface is delimited in color: (a) the inside of the bone has a higher intensity
than that of the cortex; (b) the estimated surface segmentation is at a distance from the cortical surface.

e  Step 2: Detection of fracture surfaces using CT intensities—a surface covering was
generated for each segmented bone fragment.

The technique used to identify the pairs of points on the segmented surfaces corre-
sponding to the fracture surfaces (i.e., the surface regions generated when the bone frag-
ments are separated) required that each point on the network surface be assigned a
Hounsfield intensity that was known from the process of segmenting the bone surfaces in
the previous step.

Because the density of cortical bone tissue differs significantly from cancellous bone
tissue, the Hounsfield intensity on a given bone surface helped to shape the intact surfaces
of the fracture. One finding was that the vast majority of fractured surfaces in the metaph-
yseal region (near the joint surface) originated in lower density bone. The tibia and long
bones generally consisted of cortical bone tissue on the outer surface and cancellous bone
tissue inside the bone. Cortical bone tissue is very dense, usually having CT intensities
commonly located in the rage 700-2500 Hounsfield units. This tissue is the thickest along
the middle bone axis and becomes very thin in the metaphyseal regions near the joints.
The cancellous tissue has a variable density, usually having CT intensities around 700
Hounsfield units.

Because cancellous bone tissue usually has substantially lower Hounsfield intensities
compared to cortical bone tissue and is located exclusively within the bone, to distinguish
between points on the intact surface and points on the fractured surface, we used the in-
formation provided by the Hounsfield intensities in the vicinity of the points on the seg-
mented surfaces.

Cortical bone tissue became very thin and less dense in the distal and proximal re-
gions of the bones. Figure 3 shows the CT sections that illustrate this behavior.

Along with the high-intensity circular regions that had thick cortical bone tissue (Fig-
ure 3a), situations may have arisen when following the segmentation, the analyzed sur-
face was located at a distance from the cortical bone surface (Figure 3b), which made it
challenging to identify the fracture surfaces on the segmented bone surfaces. This problem
was addressed by using binary operations between multiple 3D masks in order to esti-
mate with high accuracy the true bone surfaces, based on Hounsfield intensities. To min-
imize errors, we considered a lower bound threshold.



J. Pers. Med. 2021, 11, 190

5 of 15

(a) (b)

Figure 3. Cortical and cancellous tissue view in a CT: (a) high-intensity circular regions show thick
cortical bone tissue in the median area of the tibia; (b) more proximal, there is much less contrast
between the regions of cortical and cancellous bone tissue.

e  Step 3: Segmentation of fragment surfaces—with the help of Hounsfield intensities,
the surfaces were segmented into intact surfaces and fracture surfaces.

We used intensities and the adopted threshold from previous step in order to mini-
mize errors. This allowed the segmentation of surfaces into intact surfaces and fracture
surfaces. In this way, we obtained probable pairs of surfaces, but which did not match
exactly.

e  Step 4: Alignment of surfaces—given the lack of a reliable system for direct corre-
spondence of fractured surfaces, the intervention of the operator was required.

Using these pairs of fracture surfaces, a multi-body alignment scheme was applied,
which used a modified method of the Iterative Closest Point (ICP) algorithm to align the
pairs of fracture surfaces.

To do this, we started from an approximate initial alignment, and the ICP algorithm
pairs two points, the closest on two surfaces (which were described by networks of points
arranged in triangular meshes which formed a net). Then by 3D movements, the pairs of
points on the two surfaces were better aligned, and these steps were further iterated as
long as the alignment was improved.

The ICP method can provide a measure of confidence that a perceived surface (e.g.,
a fracture fragment) belongs to a reference surface (e.g., an entire bone that is fractured),
during a process called matching. In this case, a local match was used, as the perceived
area corresponded only to a certain region of the reference area. In principle, a matching
process requires six degrees of freedom: three for rotation and three for translation, and
these were determined using correspondence of the nearest neighbor type.

2.2. Matching and Alignment Methods

There are two basic methods for identifying the matches between the points on the
dislocated surface of the bone fragment and the points on the basic surface of the bone, in
which both surfaces are described by networks of points arranged in triangular meshes,
namely: a) finding the closest point, and b) the extension of the normal vector to the point
on the deployed network until it intersects the other base network [25]. Accordingly, the
two major methods of alignment can be used to align points and surfaces: (a) point-to-
point method and (b) point-to-plane method.

The point-to-plane method is preferable to the point-to-point method for the align-
ment in pairs of two bone fragments modeled by volumetric scans of the bone fragments.
This method converges faster in order of magnitude. As the surfaces get relatively close
one to the other, most points in or near the overlapping area can find a compatible pair
nearby, even if it is necessary for one of the surfaces to slide along the other for better
alignment. In the point-to-point method, Figure 4a, each point of the point cloud describ-
ing the dislocated surface of the bone fragment N was associated with a discrete approx-
imation of the other base surface of the bone M and even if a few pairs of points on the
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two surfaces were ideally paired, they opposed a wider displacement of surfaces that
would lead to better alignment.

In contrast, in the point-to-plane method, Figure 4b, each point was associated with
a continuous linear approximation of the pair surface, and the pairs of false points did not
obstruct the alignment process, because each point could slide on a tangent plane on the
surface of its pair. It better describes the process of matching bone fragments, in which
there was some elasticity and allowed even a faster implementation of the programming
algorithm.

N - bone fragment ) N- bone fragment

M - base bone M - base bone

(a) (b)

Figure 4. (a) Point-to-point method: points are matched to discrete points; (b) Point-to-plane
method: points are suitable for continuous tangent planes.

For the reasons presented, the method of the nearest iterative point [26] could not be
used in the reconstruction of fractures, because there had to be a perfect correspondence
between the points of the two surfaces, a requirement that can rarely be met in databases.
For these reasons we developed a heuristic method, which had the following steps:

1. For each point on the N network (fracture fragment) the nearest position on the sur-
face M (base bone) was sought. The identified point could be a point in the network
node, it could be a point inside a triangle, or it could be on the side of a triangle.
Allowing a match on the continuous surface M versus matching with the network
points increased the degree/accuracy of matching between the two surfaces;

2. The pairs of points which are too far apart were dropped;

3. The multiple pairs of points which were made with a boundary of the core bone net-
work were eliminated,;

4. There was a rigid transformation which minimized the square of the distance be-
tween the pairs of points;

5. The procedure was iterated until convergence was achieved;

6.  The algorithm was applied on an increasingly hierarchically detailed network.

2.3. Constraints Applied to the ICP Algorithm

The constrained ICP algorithm differed from the classical ICP algorithm by the fol-
lowing;:
1. We added a distance threshold to the method based on the nearest iterative point to
avoid matching any point N on the network with other points removed from the
surface M that probably did not correspond to N;

2. Limiting the distance between the corresponding pairs of points allowed one to per-
form step 2, removing pairs at a distance, while searching for the closest points in
step 1.

Finding the nearest points could be much advanced if a subdivision of the space was
created in which according to the distance threshold the network peaks were placed.
Because the dimensions of the triangles had a limited value set at the stage of creating
the meshes, all triangles up to a certain set distance could be searched without the



J. Pers. Med. 2021, 11, 190

7 of 15

Query_routine (N,d, M)

Trust = w; =

risk of losing any part of any triangle. This way of searching for the nearest point was
a query that we defined as such:

1— identifies the nearest point on the M network to the N point

)

0— does not identify anything if there is no point on the network M at distance d

3. A limitation was included for the delimitation points which were not allowed to be
part of the surfaces matching process. These points were located on a triangle mar-
ginal side that was not common to the side of another triangle. Figure 5 illustrates
how such a match could move a surface in the opposite direction to most point cor-
respondences.

M - base bone

N-Dbone fragment

Figure 5. Matching the points between the N and M nodes of two surfaces (defined by the meshes
of triangular networks). Vectors in red indicate matches that should be avoided, as they will cause
the N surface to be erroneously shifted up and to the left.

The essence of the closest iterative point algorithm is to find a rigid transformation
that minimizes the square of the distance between the pairs of points.

As we have shown above, not all intervals in which the points are located have the
same error limits in determining their position. For this reason, an optional weighting
term for minimizing errors was also included, which evaluated the positioning uncertain-
ties in the surface matching process [27]. This term was called trust and indicated the ex-
tent to which we were certain about the position of a particular point:

1— the operator is certain about the position of the point @
0— the operator is not certain about the position of the point

The confidence of a point M located on the node of a network that wraps a surface is
the scalar product of the surface normal at point M and the vector formed between point
M and a light source that scans the geometry of the surface during the segmentation pro-
cess. The surface normal at point M means the average of the norms of the triangles en-
countered at point M. The solution now is to find a minimum of weighted square dis-
tances:

Ming = Zé_1wi{[Ml‘] - [R] ([Nl] - [Nc]) - [T]}z (3)

where [M;] and [N;] are the pairs of points in the space, while[N,] represent the [N;]
point centroid. Translation vector [T] is the difference between the two centroid of the
points [M;] and [N;] respectively.

2.4. Matching Surfaces in Practice

The matching method described in the previous paragraph can be accelerated by
matching more and more detailed meshes (triangles) in a hierarchy. A network mesh hi-
erarchy is usually used. Each of the meshes uses a single number of interval points used
in the higher hierarchical level. Sub sampling allows the construction of lowercase meshes
that are part of the hierarchy. The process starts by running the ICP at the lowest network
level, after which the next level in the hierarchy uses the transformation obtained as the
initial configuration. At each advance in the hierarchy the distance of the matching thresh-
old d is reduced by half.
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Combining multiple surfaces into a single prototype is the major problem of match-
ing surfaces. The purpose of matching is to obtain representations of the fracture frag-
ments that correspond to the anatomy of the bone.

This section examines how two triangular meshes belonging to two bone fragments
can be mated in an individual surface that allows anatomical reconstruction. The complete
topology of the bone was made by matching the triangles one by one, thus obtaining a
final triangular network of the two overlapping surfaces.

Thus, the matching of the two triangular stitches was done by three iterations:

2.4.1. Removal of Redundant Surfaces

Before joining two triangular grids, some triangles were removed until the two grids
overlapped. In this iteration, those triangles that were in a sense “redundant” were re-
moved from each network because the opposite network comprised an uninterrupted
mesh in the same spatial position. Even if the iteration eliminated some triangles on the
networks, data were not deleted, as all points in those intervals would eventually be used
to find consensus geometry.

Two triangular networks M and N were considered, and the process of removing
their redundant portions consisted of repeating the following two instructions, until both
networks remained unchanged:

(a) The redundant triangles were removed from the surface of the network N;
(b) The redundant triangles on the surface of the network M were eliminated.

Redundant triangles were removed from the N network by querying the M network.
This used the interrogative routine (1).

The nearest positions on the M network of the triangle peaks were searched. A trian-
gle was considered redundant if the three queries performed within the tolerance distance
d identified only points of the network M that were not on the edge.

2.4.2. Network Matching

The removal of triangles described above facilitated the easy overlap of two net-
works.

Figure 6a shows two overlapping networks, and Figure 6¢ shows the result of the
overlap by cutting some portions of the triangles.

N - bone N -bone N - bone

fragment fragment fragment

mesh mesh B mesh
.
A
} ‘_/‘/
M - base bone M - base bone M - base bone

mesh mesh mesh

(@) (b) (9

Figure 6. The networks M and N are cut at the common boundary: (a) the intersection between the
edges of the M and N meshes allows determination of triangle intersection points; (b) portions of
triangles on the M and N meshes are removed; (c) both networks are limited at the points of inter-
section and new triangles are formed.

N

i

W
v
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and N
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We shall examine in more detail the process of elimination (cutting) triangles on
meshes and suppose we act on two networks that are in a common plan, Figure 6a.To cut
from the two grids M and N, we first had to determine the common points of intersection
of the triangles sides that form the two grids, Figure 6b. These points were joined with a
red line in Figure 6c, after which the areas common to the two networks were removed
and new triangles were constructed up to the contact line, which are marked with dashed
lines. The vertices of the new triangle generated were determined and recorded using a
triangulation routine containing all the vertices of the newly formed network. This grid
matching iteration was extended into three-dimensional space by accurately identifying
all the intersection points.

Another problem is that in three-dimensional space, the edges of the M and N net-
works do not intersect, they are usually staggered.

To correct this, the limit of the N network was extended by an “additional” vertical
wall. In essence, a wall was created that extended around the boundary of the N network
and was approximately perpendicular to the entire boundary of the N network. As shown
in Figure 7, the mesh extension consisted of a group of triangles that formed the wall.
Finding intersection points with the edges of the M network, we needed to find the points
through which these boundaries cross the walls of the triangles. These intersection points
were then moved to the nearest positions on the edge of the proper wall. Otherwise, the
matching process continued as described above.

Contact line N mesh extension

M - base bone
mesh

N - bone
fragment
mesh

Figure 7. Extended network boundary for cutting in three-dimensional space.

2.4.3. Remove Small Triangles Inserted during Matching

The network matching process can introduce small arbitrary triangles into the net-
works. For the small triangles it is used the routine for deleting triangles.

If a node in the network falls under a threshold specified by the user, that node and
all triangles that have that node at its peak are deleted. Preferably triangle points are de-
leted that were introduced as new nodes during the network matching process.

3. Results

In order to provide an estimation of the execution times on our system by employing
the Invesalius [28], MeshLab [29] and FreeCAD software [30] we tested our model for the
alignment process in a 3D reconstruction process for a right leg Schatzker VI type fracture
of a 49 year old male (Figure 8).
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(b)

Figure 8. (a) Digital Imaging and Communications in Medicine (DICOM) image; and (b) RadiAnt
DICOM image of the patient included in the study.

Figure 9a,b shows the case of the tibial plateau fracture test in standard triangle lan-
guage (STL) format, which was prepared for 3D printing. The nature of bone fragmenta-
tion resulted in the identification of bone fragments partially detached from the basal
bone, with sufficient volume (size) to be considered of clinical importance. Figure 9c,d
show the 3D printed replica of the segmented model.

(a) (b) () (d)

Figure 9. Tibial plateau fracture Schatzker type VI: (a) posterior view of the 3D segmented model; (b) lateral view of the
3D segmented model; (c) posterior view of the 3D printed replica; (d) lateral view of the 3D printed replica.

Invesalius allows the staining of distinct fracture fragments. This feature by the cho-
sen color fulfilled two important functions (Figure 10):

(1) Acted as a visual aid for the observer in identifying independent fragments, and
(2) Allowed the system to distinguish between the segments that the operator had
delimited as separate fracture fragments.
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(a) (b)

Figure 10. Tibial plateau fracture Schatzker type VI—identification of independent fracture frag-
ments by staining of distinct fracture fragments: (a) posterior view; (b) lateral view.

Employment of the alignment algorithm allowed the reduction of bone fragments,
which took about 4 min of user interaction and only a few seconds of reconstruction align-
ment processing time. The reconstruction obtained was excellent, as it was easy to judge
by its visual appearance, as demonstrated in Figure 11a,b for the STL model and Figure
11c,d for the 3D printed replica.

(a) (b) (©) (d)

Figure 11. Tibial plateau fracture reconstruction result supported by the alignment algorithm: (a) posterior view of the
standard triangle language (STL) model; (b) lateral view of the STL model; (c) posterior view of the 3D printed replica; (d)
posterior view of the 3D printed replica.

The proposed methodology was evaluated through practical experimental valida-
tion by measuring the distances between the fracture fragments and the base bone, on the
line of the entire fracture. The measurements were performed before and after the fracture
reduction supported by the alignment algorithm, followed by an assessment of the degree
of reduction of fracture fragments. Figure 12a,b illustrate the data collected from meas-
urements on a fracture fragment.
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(a) (b

Figure 12. Evaluation of the tibial plateau fracture reduction process by measuring the distances between the fracture
fragments and the base bone: (a) initial fracture before reduction; (b) fracture after reduction supported by the alignment

algorithm.

Considering the case illustrated in Figure 12, the data samples collected from dis-
tances measurements along the fracture line are represented in Figure 13. From the anal-
ysis of the two curves representing the variation of the distances between the bone frag-
ments on the initial fracture and after reconstruction, we calculated a degree of alignment
between 68.86% for the beginning of the fragment line in which the distances between the
bone fragments were reduced from 3.5 mm to 1.09 mm, respectively 100% for the fragment
line at 37 mm in which the distances between bone fragments were reduced from 0.4 mm
to 0 mm.

4
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Figure 13. Variation of distances between bone fragments along the fracture line before (curve in
red) and after alignment (curve in blue).

This assessment was demonstrated considering one of the severe fracture lines, no-
ticing that the exact match on the entire line was no longer possible due to the damage on
the fracture surfaces of the fragments, resulting in complex, irregular contours. The in-
depth exploration of the paired surfaces at 2-3 mm, in the immediate vicinity of the frac-
ture line, revealed a high fit, which confirmed a good convergence of the alignment algo-
rithm.

In order to get an overview of the performance of the alignment algorithm, the ex-
perimental data were evaluated considering different criteria of classifying the quality of
the alignment, the considered attribute being the mean of the distance between aligned
bones fragments. Considering the measured data samples, the classification of the ob-
tained results for different thresholds in the range of 0.1-3 mm is illustrated in Figure 14.
The areas under the receiver operating characteristic (ROC) curves proved that for any of
0.5 mm, 0.7 mm or 1 mm attribute the alignment was performed correctly.
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Figure 14. Assessment of the alignment method performance for three values of the evaluation
criteria, the mean distance between fragments bones: (a) 0.5 mm, (b) 0.7 m and (c) 1 mm.

4. Discussion
4.1. Failure Modes

There are two failure situations of the alignment algorithm. First, it is possible that
the collection of radiographic information may be impaired due to the patient’s movement
during scanning or incorrect calibration of the device. Consequently, it is not possible to
identify any rigid transformation system that aligns all bone fragments simultaneously,
due to their registration in different relative landmarks. An alignment of fragments rela-
tive to different relative landmarks may be the solution to this undesirable situation. The
second failure situation could occur when the paired surfaces are perfectly flat or circular,
which would lead to a multitude of alignment possibilities. To control this situation, we
have introduced some diagnostic tools in the algorithm, which allow the location of false
surfaces and allow process control to avoid accidental slipping to regions without features
or atypical ones.

4.2. Diagnostic Tools

The alignment is usually inspected by the operator visually and any misalignments
can be identified. The distance from one fragment to another may be studied, without this
being the most relevant indication on fragment fitting, as there may be regions without
well-identified features. In this situation, if the algorithm does not detect a clear align-
ment, the operator must redefine the numerical features of the misaligned surfaces. The
entire fragment alignment process is resumed, while paying special attention to avoid re-
currence of the previous situation.

4.3. Alignment Workflow

When handling large volumes of data related to several fracture fragments, individ-
ual alignment of the fragment pairs is not recommended. It is preferable to have a rough
initial alignment, and create first pair records and try to automatically align each pair of
fragments that are found to have common surfaces.

5. Conclusions

Originality: This structured integration algorithm retains the highest possible con-
nectivity of the triangles created as grid meshes that describe the surfaces in the original
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images, prior to processing for matching. Integration is accelerated because the process
evaluates one-dimensional portions of the network instead of two-dimensional surfaces.

In essence, the process consists of mediating and integrating two geometries, which
belong to the fracture fragment and the base bone, in which: (1) the common points on the
two surfaces are joined, after which (2) for the points that are not paired, geometry medi-
ation is applied.

The planar point matching process used and the modified ICP algorithm describe
well the process of matching the bone fragments, in which there is some elasticity which
allows a quick implementation of the programming algorithm.

In conclusion, the proposed method is innovative in that it first identifies the maxi-
mum connectivity between the two networks that describe the bone fragment and the
base bone, after which it determines the final geometry of the joined surfaces. In this way,
the points that easily identify a correspondent are eliminated in the matching process,
after which the matching is continued with a limited number of points.

The study limitations occur because the method was tested on a Schatzker type VI
fracture. In the case of even more complex fractures the algorithm may require some im-
provements to identify all small fragments in order to fit.

Another limitation of the study is that physical testing was performed on a virtual
model. In vivo, the biological conditions are slightly different; for example, the blood flow
may influence the identification of corresponding points on meshes in order to achieve an
optimal fit.

Further research: The method is exemplified in the case of tibial plateau fracture but
can also be used in other complex orthopedic trauma.
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