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Abstract: The study of pain requires a balance between subjective methods that rely on self-reports
and complementary objective biometrics that ascertain physical signals associated with subjective
accounts. There are at present no objective scales that enable the personalized assessment of pain, as
most work involving electrophysiology rely on summary statistics from a priori theoretical population
assumptions. Along these lines, recent work has provided evidence of differences in pain sensations
between participants with Sensory Over Responsivity (SOR) and controls. While these analyses are
useful to understand pain across groups, there remains a need to quantify individual differences
more precisely in a personalized manner. Here we offer new methods to characterize pain using
the moment-by-moment standardized fluctuations in EEG brain activity centrally reflecting the
person’s experiencing temperature-based stimulation at the periphery. This type of gross data is
often disregarded as noise, yet here we show its utility to characterize the lingering sensation of
discomfort raising to the level of pain, individually, for each participant. We show fundamental
differences between the SOR group in relation to controls and provide an objective account of pain
congruent with the subjective self-reported data. This offers the potential to build a standardized
scale useful to profile pain levels in a personalized manner across the general population.

Keywords: EEG; pain biometrics; stochastic analyses; micro-movements spikes; sensory over respon-
sivity; standardized scale; personalized pain

1. Introduction

The peripheral nervous systems include an interconnected network of afferent nerve
fibers carrying information from the skin to the spinal cord and onto the brain [1]. This
flow of activity can be modeled as it updates the brain moment by moment, reflecting the
trajectories of our bodies in motion [2,3] or of the fluctuations in bodily signals at rest [4–7],
within a given environment where sensory input is processed and integrated with ongoing
movements making up intended [8,9] or spontaneous [10] behavioral states. The afferent
fibers from the periphery carry information about touch, pressure and movements sensed
by the mechanoreceptors [11], while thermoreceptors and nociceptors process information
about temperature and pain, respectively [1,12]. Collectively, they give rise to the sense
of touch, which is important to manipulate objects [13], to control our movements [14], to
gain a sense of body ownership [15] and affection [16], and to develop and maintain our
overall psychological and social wellbeing [17].
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The experience of pain (i.e., its subjective perception) is comprised of sensory, affective-
emotive, and cognitive processes of a noxious input. Pain experience can be measured in
the lab applying quantitative sensory testing, namely inducing measurable pain stimuli
of different modalities (e.g., heat, pressure), while subjects are required to rate their pain
intensity/unpleasantness using various pain scales (e.g., visual analog scale, numerical
rating scale). Thus, the individual’s experience of pain though seemingly centrally pro-
cessed, it is evoked at the periphery using different experimental assays. These may include
(among others) the physical experience of sustained pressure [18,19] or sustained tempera-
ture [20–23], carried along peripheral afferent nerves to the central nervous systems, which
is comprised of the spinal cord and the brain.

In recent years, we have learned about the central processing of movement-related
reafference from a special participant (Ian Waterman, IW) who experienced a viral infection
that killed the afferent fibers for light-touch, pressure, and movements. The infection
spared the afferent fibers for pain and temperature [24–26]. IW has remastered motor
control in the absence of proprioception and kinesthetic reafferent information, by sensory
substituting with vision the senses of touch, pressure, and movement [27,28]. Perhaps using
information about his central processing of peripheral activity during resting state [24],
could help us develop new models of statistical inference and interpretations for use in
other data sets. His case could help us interpret resting-state data from centrally processed
sensory information in other patient populations with sensory processing dysfunctions
mediated by disruptions in peripheral reafferent flow [29,30].

Ian Waterman’s case is interesting as fluctuations in his electroencephalographic (EEG)
activity at rest revealed the presence of the exponential distribution of peak amplitudes
(Figure 1). This distribution represents a memoryless random process whereby past activity
does not contribute to the probabilistic prediction of future events. In this case, events refer
to moment-by-moment fluctuations in signals’ amplitudes and timings. We posit that these
fluctuations inform the nervous systems of dynamically adaptive states, as they transition
from highly variable to steady-state. Based on our prior theoretical work on kinesthetic
reafference [8], we have conjectured that this type of memoryless process may impede
creating a proper memory buffer to sustain activity long enough to bring it to the brain’s
awareness, to consciously recognize it, or to use it effectively as reference to inform and
predict impending states of the system [5,8,29].

Having found in IW these patterns at rest, reflecting the variability of the signals
as a renewal process in “the here and now” in the absence of movement reafference
sensations, may help us characterize other states related to pain sensation in neurotypical
controls. More precisely, it may also help us characterize, stochastically, the departure
from this memoryless state, in cases with atypical pain sensations. We know the stochastic
signatures of not sensing touch, pressure, and movement, in a person that nevertheless
senses temperature and pain. As such, we may use this prior information as reference
to learn how the fluctuations in EEG activity may distribute during resting state for a
person who does not have severed communication between the peripheral afferent fibers
and the brain, but that nevertheless reports atypical sensation of pain. We would like to
assess distributions of stochastic activities related to fluctuations in EEG peak-amplitudes
on participants with sensory over-responsivity (SOR), a subtype of sensory modulation
dysfunction (SMD) which in turn falls under the broader umbrella of sensory processing
disorder [31].

The SOR subtype of SMD manifests clinically as a condition in which stimuli that are
not typically painful are perceived as abnormally irritating, unpleasant, or even reportedly
painful [32], sometimes interfering with activities of daily life [33]—as measured by several
clinical scales. These clinical manifestations are also consistent in laboratory experiments,
measured under controlled conditions [34]. Under these controlled settings, people with
SOR express discomfort and hypersensitivity to experimental manipulations in pressure or
temperature, whereby the lingering sensation of evoked peripheral activity leads to the
conscious expression of pain and sustained pain aftersensation centrally experienced [34].
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Figure 1. Proposed central characterization of lingering (pain) sensation. Special participant Ian
Waterman (IW) lost his kinesthetic reafference but retained the sensations of pain and temperature.
His electro-encephalographic (EEG) waveforms at rest, provide information about the shifts in
probability density functions characterizing the distributions of fluctuations in peak activities in the
lead electrodes with maximal clustering coefficient derived from the network of leads. Such shifts
distribute exponentially, signaling a memoryless, random distribution of these activities, such that
past events do not contribute to the prediction of future events. This type of distribution of his central
EEG activities is congruent with the distribution of his movement-kinesthetic reafferent peripheral
activities. What type of distributions could we find in individuals with intact kinesthetic reafference
but sensory over-responsivity resulting in lingering sensations of temperature-induced pain?

Prior work has relied on population statistics and provided an account of full cohorts.
A new detailed individualized characterization of minute fluctuations in EEG activities
while experiencing pain could help us re-examine these issues to formulate a personalized
account, useful to inform automatic groupings and stratifications of random draws of
the population, with the overarching aim of defining a standardized scale of centrally
processed pain. This would be beneficial to other disorders on a spectrum (e.g., autism,
schizophrenia, and Parkinson’s disease) whereby such sensory processing issues of pain
abound too [35–38]. Across these various disorders of the nervous system, we need proper
objective characterizations of pain sensation to complement and augment reports on the
subjective sensations of pain captured by clinical inventories.

The type of analysis that we offer here, away from assumptions of theoretical pop-
ulation statistics, has been previously used on a characterization of stochastic variations
in movement reafferent signals. This is a data-driven approach whereby we let the data
reveal patterns and then, upon interpretation and inference, we propose possible lines of
inquiry to pursue in future work. In our prior work, the results led to automatic clustering
of the above-mentioned clinical disorders on a spectrum [39]. These in turn, have shown
strong ties with other disorders of the nervous systems and various types of disruption
in reafferent flow of movement information [40,41], thus allowing us to further pursue
new lines of questions. Since pain and temperature share separable afferent channels from
movement afference, and crosstalk can be quantified through central processing using
controlled experimental assays, here we apply these new data-driven analytical methods
to SOR participants who suffer from abnormally high pain sensation. We re-examine
previously published EEG data [34] as well as explore pain-evoked EEG responses induced
by sustained temperature in controls vs. SOR participants. We do so by analyzing the gross
data commonly discarded as noise, by avoiding a priori assumptions of theoretical normal
distributions of the fluctuations in EEG-waveforms’ peak amplitudes. We discuss our
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results within the context of stochastic processes amenable to offer a probabilistic account
of pain sensation in general.

2. Materials and Methods

These details of the experiment have been explained in previous publications, but we
report them here for completeness [34,42]. The Rutgers University Institutional Review
Board approved this de-identified data sharing. The IRB committee of Rambam Health
Care Campus approved this study in 2013. The IRB number is 3075, The Israeli ministry of
health # HT4858.

2.1. Participants

The study included 21 healthy participants (5 males and 16 females) between the
ages 18 and 40 years old recruited from a convenience sample in a laboratory database.
Participants were naïve to the testing. Based on a medical survey, participants with
no chronic pain history and no regular use of analgesic or psychiatric medication were
included in the study. Participants with any psychological, psychosocial, metabolic, and
neurological disorders were excluded from the study. This means that if the participant
had a diagnosis of any of the above-mentioned disorders, they did not sign up, nor did
they participate in the study.

Participants were able to communicate and understand the instructions of the study.
They self-reported to be free of any pain relief medications 24 h prior and any caffeine
products at least 2 h prior to the experiment, and to have had sufficient sleep the night
before. Sufficient sleep means that participants did not express any complaints about sleep
disturbances. We did not measure their sleep. All participants provided written consent,
which was approved by the Institutional Review Board of Rambam Health Care Campus
(Haifa, Israel).

Participants were categorized into two groups—sensory over responsiveness (SOR)
group (n = 9, 1 male) and control group (n = 11, 3 males). The SOR group was comprised
of those whose Sensory Responsive Questionnaire Intensity Scale (SRQ-IS; [43])-Aversive
score exceeded 2 standard deviations from its mean. The control group was comprised of
those with scores within the 2 SD from the mean. Note, the SRQ-IS is designed to clinically
identify those with sensory modulation disorder and is comprised of Hedonic scores and
Aversive scores [44]. The Aversive scores that were used as a criterion to categorize groups
involve answering intensity levels (on a scale 1–5) on scenarios such as “Being in dark/unlit
surroundings bothers me,” and “Watching T.V./computer in a well-lit room bothers me.”
Further details of participant recruitment can be found in [34]. By using these scores, we
operationalized each participant’s perception of sensory experience.

2.2. Experiment

This was a block design experiment, whereby each participant performed all three
conditions in blocks of trials. They sat comfortably in a quiet air-conditioned room under
all 3 conditions. In the first condition, the participant was instructed to close his/her eyes
and rest for 5 min. In the second and third condition, pain was administered for 5 min.
Note, both conditions are identical and merely sequential in order. In each of these pain
conditions, heat stimulus was applied to the participant’s forearm with 8–12 s interval to
simulate a pain experience. Specifically, the participant was applied with a heat stimulus by
the Contact Heat-Evoked Potential Stimulator, which is a computerized thermal stimulator
(Medoc Ltd. Advanced Medical Systems, Ramat Yishai, Israel). The temperature was
tailored to everyone to evoke a peak pain magnitude of 50/100 (pain-50) on the numeric
rating scale. Specifically, we gave 30 stimuli, ISI 8-10, baseline temperature 39 ◦C with
destination pain 50 described in [42] +0.5 ◦C. After each stimulus, during ISI, subjects
provided pain intensity and pain unpleasantness ratings, using the numerical rating scale.
During the study, EEG signals were recorded with a 32-electrode cap (Easy Cap Q40; FMS
Falk Minow Services, Herrsching, Germany) with the Quick Amp EEG System (Brain
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Products GmbH, Munich, Germany). These signals were processed at 500 Hz sampling
rate, with 0.15–100 Hz bandpass filter, and a notch filter at 50 Hz. The EEG signals were
further preprocessed using the PrepPipeline toolbox [45], with which we referenced via
a robust average reference procedure, where channels were iteratively referenced to the
average signal, while bad channels, such as those showing extreme amplitudes (deviation
z-score exceeds 5) or lacked correlation with any other channel (correlation less than 0.4),
were excluded and interpolated in this process.

2.3. Data Analysis
2.3.1. Analyses in the Frequency Domain

For each condition, pairwise cross-coherence was computed using each of the 32 EEG
channel waveforms (Figure 2A). Across the frequency range within the cross-coherence
values, we extracted the maximal value within the beta and gamma bands (13–100 Hz),
as this bandwidth showed to have a noticeable difference between the SOR and control
groups (Figure 2B). Note, we had examined other bandwidths, as well as beta and gamma
band separately, but did not find such a pattern. For that reason, we focused on the beta
and gamma bands combined.

Figure 2. Data analytics pipeline. (A) For each pair of EEG channel combination, cross-coherence was
computed, and its maximal value within the beta and gamma band (13–100 Hz) was extracted. (B)
The maximal cross-coherence values obtained from (A) were used to construct an adjacency matrix
of all EEG channel combinations. (C) EEG channel combinations were categorized by a combination
of different scalp areas (F: frontal, T: temporal, P: parietal, O: occipital), and these categories’ median
of maximal cross-coherence values, as shown in (B), were computed and compared. (D) Based on the
channel’s adjacency matrix shown in (B), a network was constructed, where the nodes corresponded
to each EEG channel, and the links corresponded to the maximal coherence values. As a measure of
segregation of this network, cluster coefficients were computed and compared. (E) The channel with
the highest cluster coefficient, computed at (D), was selected and its EEG waveform was band-pass
filtered at 13–100 Hz. (F) The band-passed waveform was shifted up so that all values were positive.
Then the spikes (maxima; denoted in red) and valleys (minima; denoted in black) were extracted
to compute MMS (micro-movement spikes; standardized spike amplitudes), where the MMS is
computed as dividing the spike value by the sum of the spike value and the average of the signal
values between the two local minima as shown in Equation (2). (G) For each 4 s time window,
MMS were gathered and plotted a histogram. For two consecutive time windows, the earth mover’s
distance (EMD) was computed and compiled across time for each condition (5 min duration). (H)
Histogram of EMDs were plotted and fitted to a Gamma PDF. (I) The fitted Gamma parameters
obtained at (H) were plotted on the Gamma parameter plane, and its parameters were compared
across conditions and groups.
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From the maximal cross-coherence values obtained, we built an adjacency matrix for
each participant from each condition (Figure 2C). Based on this matrix, first, we categorized
the channels by scalp areas—frontal (F), temporal (T), parietal (P), and occipital—and
compared the median of maximal cross-coherence values between different combinations
of scalp areas (Figure 2D).

Further, using the adjacency matrix, we built a network where the nodes correspond
to a single EEG channel’s activity, and edge corresponds to the maximal cross-coherence
value between the two nodes. Here, network edges between a set of nodes form triangles,
and the fraction of triangle numbers formed around each node is defined as the cluster
coefficient. This is a measure of segregation within a network and is computed using
the average intensity (geometric mean) of all triangles associated with each node using
an algorithm by [46]. Equation (1) describes the computation, where N is the set of all
nodes, Ci is the Cluster Coefficient of node i (out of n = 32 nodes); ti is the geometric mean
of triangle links formed around node i and ki is the number of degrees (links) formed
around node i. The median of these cluster coefficients from all EEG channel was then
computed for each participant and compared across different groups and conditions using
the Kruskal–Wallis nonparametric test.

Ci = ∑
i∈N

ti
ki(ki − 1)

(1)

2.3.2. Analyses in the Temporal Domain

Among the 32 EEG channels, we selected a channel with the highest cluster coefficient,
as it would be deemed a hub channel, and analyzed its temporal data. The location of the
selected channel can be found in Figure A1. Specifically, we bandpass filtered the data at
13–100 Hz using IIR filter at 20th order (Figure 2E). Then we extracted the micro-movement
spikes (MMS).

MMS =
local peak

local peak + avg(activitymintomin)
(2)

This standardization equation is commonly used to address allometric effects (Mosi-
mann, 1970) that occur due to individual anatomical differences (Figure 2F).

Micro-movements spikes (MMS): To standardize the amplitudes of the data, we shifted
the data up so that the minimum value of the waveform equals 0. Then, to compute a set
of standardized spike amplitudes, we took each spike amplitudes from the filtered and
shifted waveforms and divided this local peak by the sum of this raw spike amplitude
value and the average of the signals sampled within the two adjacent minima surrounding
that local spike, as shown in Equation (2).

To examine the change in stochastic variations of the signals over time, we extracted
the MMS due to fluctuations in the signals’ amplitude from each condition (of 5 min dura-
tion) and examined how the frequency distribution of these standardized spike amplitudes
changed over time. Specifically, we segmented the data by 4 s time window, while sliding
it with 50% overlap between consecutive windows. This allowed us to gather on average
100 spikes per window (the criteria to have proper statistical power for our 95% confidence
in the empirical estimation.) For each time window, histograms of MMS peaks’ amplitudes
were plotted, binned from 0.5 to 0.7 with 0.02 intervals. Then, we used similarity metric
that enables us to compare probability distributions pairwise and estimate differences
in probability space. We obtained the earth mover’s distance (EMD) [47–49] between
2 sequential windows’ histograms to quantify the change in stochasticity (Figure 2G). The
EMD (also known as the Kantarovich–Wasserstein distance [47,48,50,51]) is a distance
metric that can quantify stochastic shifts in probability space. Previous work elaborates
on the algorithm to compute this distance adapted to our biometrics [7]. The stochastic
shifts in the EMD across the data set were thus examined, by obtaining the distribution of
EMD values (Figure 2H) using Freedman–Diaconis binning rule [52] and fitting a Gamma
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probability distribution function (PDF) using maximum likelihood estimation with 95%
confidence intervals (Figure 2I).

The Gamma PDF is defined by two parameters—the shape and the scale—and these
parameters are informative to provide interpretations of stochastic features of a single
participant by localizing the participant’s signatures (empirically estimated) on the Gamma
parameter plane (Figure 2I.) Then we can interpret this personalized signature in relation
to other participants localized under similar conditions, and in relation to the baseline
signature of the participant as we vary the conditions (e.g., from resting state to pain, to
de-adaptation from pain).

The continuous family of Gamma probability distribution functions (PDF) ranges
from exponential (shape equals 1, representing the case of the memory-less exponential
distribution) to skewed, asymmetrical distributions with heavy tails, to Gaussian-like
symmetric distributions (with higher shape values). By sampling over large numbers
of nervous systems biorhythms sampled from the human population, across disorders
of the nervous system, ages, and between sex, we have empirically found a power law
relating the shape and the scale parameters. In this empirically found relation, as the shape
values increase, the scale values decrease consistently with a tight linear fit on the log-log
Gamma parameters’ plane spanned by the values of the shape and scale. The scale values
represent the noise to signal ratio, NSR (i.e., empirically estimated Gamma variance over
the Gamma mean). Knowing one parameter (the shape) helps us infer the other (the scale),
owing to this power-law relation. We have empirically found that processes with high
noise (high scale value) and close to the random exponential distribution (small shape
value) correspond to stochastic regimes of high uncertainty, leading to poor prediction
of future events from present events. Likewise, processes with symmetric distributions
(high shape values) and low NSR correspond to stochastic processes with high certainty,
describing predictive performance with high accuracy. This has been the case for data
related to central signals registered from EEG and resting-state fMRI processing, and for
peripheral signals registering kinematics of different movement classes. This has also been
the case for autonomic signals related to heart and breathing activities [53–56].

3. Results
3.1. SOR Participants Show Reduced Cortical Interactions within the Beta and Gamma Bands
during Resting Condition

As a first step, between all pairs of channels, we obtained the cross-coherence measure
and extracted the maximum for each comparison. We extracted this information within
the beta and gamma bands (13–100 Hz). By categorizing the channel pairs by their cor-
responding scalp areas, we find an overall lower coherence among the SOR group than
the control group. This is most noticeable from the interactions between temporal and
frontal (χ(1,19) = 4.69, p = 0.03), parietal and temporal (χ(1,19) = 4.05, p = 0.04), and occipital
and temporal areas (χ(1,19) = 4.37, p = 0.04) (Figure 3A). Such reduced coherence among
SOR were observed only during the resting condition, and not during the pain induced
conditions, during which the coherence levels were similar between the two groups. From
this, we find that reduced cortical interactions within the beta and gamma bands during
resting condition is characteristic of SOR.

As a subsequent analysis in the frequency domain, we used the adjacency matrix of
pairwise cross-coherence values to create a network graph and quantify the connectivity
across all channels. We computed the clustering coefficient value for each channel and
obtained the median to compare values between the two groups, controls and SOR.

During the resting condition, SOR showed lower clustering coefficients than the
control group (χ(1,18) = 4.37, p = 0.04), implying a more sparse connection across the scalp
within the beta and gamma band. On the other hand, under the two pain conditions, the
connectivity remained similar between the two groups (Figure 3B).
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Figure 3. Cross-coherence between EEG channels. (A) 32 channels are categorized to one of these
areas—Frontal, Temporal, Parietal, and Occipital—and maximal cross-coherence value examined
within the beta and gamma band (13–100 Hz) for all channel pairs. Median values among the
different channel pairs categorized by the scalp areas are then compared between SOR (S) and control
(C) groups, where SOR exhibits lower values than the controls, particularly between frontal and
temporal channels, parietal and temporal channels, and occipital and temporal channels. This pattern
is found only during the resting condition. (B) Based on the adjacency matrix of maximal cross-
coherence values, cluster coefficients are computed for all channels. The median of cluster coefficients
is compared between the SOR and control groups for all three conditions. Cluster coefficient values
are lower for SOR than the control group during the resting condition, but not significantly different
when pain is induced.

3.2. Relative to Baseline, SOR Participants Show Higher Rates of Change in Stochastic Signatures
than Controls

The temporal stochasticity of the most connected channel (i.e., channel with highest
cluster coefficient) was examined by band-passing the time series through the beta and
gamma band (13–100 Hz), extracting the MMS amplitudes, and building a stochastic tra-
jectory on the Gamma plane. We then examine the first-order rate of change in Gamma
parameter position, using the frequency histogram of the MMS peaks and computing the
EMD between two consecutive histograms (PDFs.) This amounts to a “speed temporal pro-
file” of the PDFs as they shift stochastic signatures per unit time on the Gamma parameter
plane. Our unit time is 4 s time window, enough time to make an empirical estimation with
statistical power and high confidence (based on frequency histograms derived from over
100 peaks.) The EMD values thus obtained per two consecutive time windows were then
accumulated into a frequency histogram, and the distribution of EMDs compared between
the two groups for each condition.

As shown in Figure 4A, in the resting condition, the SOR group showed a more
symmetrical distribution of EMD values, reflected by its higher shape (χ(1,19) = 8.91,
p < 0.01), and lower scale fitted parameter values (χ(1,19) = 6.91, p < 0.01) than the control
group. As shown by the symmetry of EMD distribution from the SOR group, the MMS
amplitudes of the cortical signal tends to be more predictive with reduced noise. Conversely,
the typical individual from the control group tends to have an exponential-like distribution
of EMD values, implying that their signals tend towards a memoryless regime, where the
past is not informative to predict the future.

In the first pain condition, when the pain was induced for the first time, the SOR
group and the control group started to show less distinction in their stochasticity. The
typical individual from the control group did not change too much from the resting
condition, where the EMD values were distributed closer to an exponential (memoryless)
distribution. However, in this condition, the SOR group started to exhibit a pattern similar
to the control group, shown by a reduced shape value and higher scale parameter values.
Nevertheless the distinction is still statistically significant between the two groups for
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the shape (χ(1,19) = 4.85, p = 0.03) and borderline significant for the scale (χ(1,19) = 3.41,
p = 0.06) parameter.

Figure 4. Differential localization in probability space and faster rate of change across pain conditions
in SOR than controls. Stochastic shifts across time characterized by the distribution of EMDs
between sequential time windows of MMS distributions reveal the departure of SOR from controls.
(A) Distribution of EMDs obtained from sequential sliding windows of 4 s were examined and fitted
a Gamma distribution. Under the resting state, SOR group tended to show a more symmetric (higher
shape; more predictable) and less variable (lower scale; lower NSR) shifts in its EMD distributions.
Under the first pain condition (Pain 1), the SOR group shifted distribution to a different regime
tending to show less difference with the control group. Their PDF shifted to a less symmetric and
less variable distribution; while the control group shifted to a lesser degree and mostly maintained
its exponential distribution. Under the second pain condition (Pain 2), the SOR group showed even
less difference with the control group, by exhibiting a more asymmetric (lower shape; more random)
and more variable (higher scale; higher noise) pattern. (B) The distinction between the two groups
can also be observed from the moments of EMD distributions, where the SOR tends to have a higher
mean and a tighter range of variance and skewness than the control group. ** p < 0.01, * p < 0.05,
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In the second pain condition, the SOR group and control group no longer exhibited
their distinction with statistical significance, as quantified by the shape (χ(1,19) = 0.61,
p = 0.43) and scale (χ(1,19) = 0.61, p = 0.43) values. At this point, both groups show their
EMD values to be distributed closer to an exponential distribution, implying that their
MMS amplitudes of the cortical signals have higher uncertainty, with higher noise and
randomness relative to baseline.

At a different angle, when we also examine the empirical moments of the EMD
distribution between the two groups, we found some distinction in the resting condition.
In general, the SOR group tended to have a higher mean (χ(1,19) = 2.91, p = 0.09) EMD
values implying higher rates of stochastic change from their baseline state, compared to
controls. Although other moments were not statistically different in their values (variance
χ(1,19) = 0.01, p = 0.94; skewness χ(1,19) = 0.85, p = 0.35; kurtosis χ(1,19) = 0.50, p = 0.48),
within each condition, the variance and skewness tend to have a tighter range across
individuals for the SOR than the control group (Figure 4B).

Given the significant differences in the rates of stochastic shift between controls and
SOR relative to baseline and their non-significant statistical difference during pain and pain
recovery conditions, and given the result that controls do not shift from the exponential
regime during pain conditions, we can safely conclude that the EEG beta and gamma
bands of the EEG signals from the SOR experienced significantly higher shifts at a faster
rate than controls did when transitioning from condition to condition. Their stochastic
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signatures localize these two groups on different probability distributions and the shifts in
probability space are larger in magnitude and rate for SOR.

3.3. Inventory Scores Agree with Stochastic Characterization of Brain EEG Signals’ Fluctuations

With an aim to find correspondence between metrics obtained from different domains—
temporal, frequency, and clinical inventory scores—we visualized these together as shown
in Figure 5A for EMD fitted shape parameter, cluster coefficient (CC), and SRQ-IS score,
and in Figure 5B for EMD fitted scale parameter, cluster coefficient, and SRQ-IS score.
Overall, the EMD shape parameter has a strong relation with CC and the SRQ-IS scores,
and thereby separate the SOR group from the control group well. On the other hand, EMD
scale parameter has some relation to those metrics, but to a lesser degree.

Figure 5. Congruence of clinical scores and stochastic signatures expressed in a parameter space
spanned by score range, and stochastic signatures in the temporal, and frequency domains. (A) For
each participant, the SRQ-IS was plotted on the z-axis (clinical score) along with the EMD’s fitted
shape parameter on the y-axis (temporal) and the median cluster coefficient (CC) value of cross-
coherence networks on the x-axis (frequency). Combining these metrics across 3 domains shows
a good separation between the two groups. (B) A similar plot was made as (A), but with the
EMD’s fitted scale parameter on the y-axis. Although the two groups show some separation, this
visualization distinguishes the two groups slightly less than in (A), where the fitted Gamma shape
parameter was utilized. (C) For statistical comparison, all participants were median ranked by cluster
coefficients (CC; ranked in descending order) and expressed relative to the shape ((C) top-left) and
scale ((C) top-right), with statistically significant differences between the extreme ranked quartiles
in the shape parameter. The EMD’s fitted shape and scale parameters and cluster coefficients ((C)
bottom subpanels) were also categorized into 4 ordered-ranked groups, and the SQR-IS (score) were
compared between the upper and lower 50 percentiles; and between the lowest quartile and 2nd
lowest quartile; and between the highest quartile and the 2nd highest quartile. Noticeably, all metrics
show statistically significant correspondence between each other at a coarse level (as the upper
and lower 50 percentiles show differences) but do not correspond at a finer level (as shown by the

similarity between the 1st and 2nd quartiles, and 3rd and 4th quartiles). * p < 0.05,
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To examine the correspondence to a finer level (Figure 5C), we median ranked the
participants by quartiles along the shape and scale parameters and along the CC values,
and compared the quartile groups’ inventory scores, CC, and Gamma parameter values
using a non-parametric Kruskal–Wallis test. Specifically, we compared between the 1st
and 2nd quartiles, between 3rd and 4th quartiles, and between the lower 50 percentile and
the higher 50 percentile (i.e., the 1st and 2nd quartiles combined against the 3rd and 4th
quartiles combined). In general, when comparing the lower and upper 50 percentiles, the
Gamma shape parameter had a strong correspondence with CC (χ(1,19) = 6.43, p < 0.01)
and the inventory score (χ(1,18) = 4.55, p = 0.03); and the Gamma scale parameter exhibited
such relation, but to a lesser degree with CC (χ(1,19) = 3.61, p = 0.06) and inventory score
(χ(1,18) = 3.45, p = 0.06). However, for both Gamma parameters, their statistical significance
was only observed when comparing the lower and upper 50 percentile, which is roughly
the separation of the SOR group against the control group. When we examine at a finer
level, to compare within the SOR group and within the control group, such correspondence
is hard to see for all 3 metrics.

4. Discussion

This work aimed at offering a new characterization of central signals from EEG
activities registered during baseline state, and pain conditions in participants with SOR,
relative to controls. We successfully reproduced previously published results including
population-based statistical analyses in [34] whereby the baseline EEG activities of SOR
during resting state significantly differed from controls. Further, we add new findings to
the objective characterization of pain.

In the present analyses, we employed a personalized approach whereby we made use
of the gross data (i.e., all fluctuations away from the empirically estimated mean of the
person’s data) that is usually discarded as noise. We characterized each participant’s gross
data by the MMS of EEG signals’ amplitude, and empirically estimated the continuous
family of probability distributions that best fitted these fluctuations for each participant
in an MLE sense. We then uniquely localized each participant on a probability parameter
space. Using this information, and a proper distance metric to measure change in probabil-
ity space, we then tracked for each participant and for the entire cohort, the rates of change
in stochastic shifts, when transitioning from resting state to pain 1 and to pain 2 conditions.

This individualized characterization of the brain EEG activity revealed two funda-
mental differences between SOR and control participants: (1) the distributions of the EMD
signaling stochastic shifts was exponential in controls and tending to symmetric in SOR;
(2) the shifts in the shape of this type of probability distribution in controls was not visible
(i.e., they remained exponential) during the pain conditions, but significantly shifted from
more to less symmetric shapes, to exponential, in SOR participants. Lastly, we found good
correspondence between the clinical classification scores and the stochastic signatures that
we empirically estimated for each participant, signaling that our personalized approach
is not at odds with the clinical approach. This is important to augment the subjective
inventories reflecting the person’s self-perception of pain, with the objective biometrics
quantifying the physical sensations of pain evoked by this experimental assay. The type
of temperature-based manipulation used by the assay occurs at the periphery. Through
afferent flow, the processing, transduction, and transmission of these signals from the
peripheral to the central nervous systems give rise to physiological EEG signals reflecting
the brain activities during these conditions. When the fluctuations in these probability
distribution signatures are exponentially distributed, random memoryless, and with high
NSR, the peripheral stimuli are not perceived as painful (controls cases). When the shifts in
signals are distributed with quasi-symmetric shapes tending to the Gaussian distribution,
the stimuli are perceived as a lingering sensation of discomfort and reported as pain (SOR
cases.) As such, our work here offers a set of biometrics whereby the perception of pain
levels coincides with the physiological (physical) sensation of bodily signals. Peripheral
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changes are centrally registered both at the level of the stochastic shifts in EEG signals and
at the level that the person can consciously self-report.

The discovery that the baseline signatures in controls are exponential when the SOR
signatures are Gaussian-like lends itself to the following interpretation (in light of what
we know from reafferent signals in the resting state EEG activities of deafferented partic-
ipant IW, who cannot sense movement): The controls’ baseline activity with a random,
memoryless regime that does not change much during pain conditions, implies that there
is not enough buffering of the activity to sustain the sensory information and use it as
an anchor to predict impending events (signal’s fluctuations) in the pain condition. The
control participant experiences the baseline and the pain in “the here and now” with a
renewal process that is too random and variable (with high NSR) to systematically sustain
a memory of the events and anticipate impending spiking activity in the context of pain.
As such, the control participant does not reportedly sense pain, because this information
does not shift stochastic signatures from baseline and at baseline, the information is just
random background noise. In stark contrast, the SOR participant starts out at resting state
with systematic signals that have higher shape values (more symmetric distributions) and
lower scale values (lower NSR) implying higher statistical certainty. This higher certainty
is amenable to build a more reliable predictive code whereby impending variations in the
signals can be systematically anticipated, thus scaffolding the ability to build a memory
buffer to consciously register the change from resting to pain state. In this sense, the physi-
cal pain at the periphery surfaces to consciousness as the brain activity seems to offer more
awareness of change in SOR than in the controls’ signals, which remain as random noise.

When transitioning from Pain1
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Pain 1 condition. The activity seemingly went back to a random memoryless state
with no memory (no buffering of the activity long enough to bring it up to conscious
perception) thus not sustaining the lingering sensation with the same intensity as in the
initial block of the experiment. In this sense, the proposed stochastic-process interpretation
of the pain sensation is to have these two opposing limiting states along a continuum
(random memoryless vs. predictive) instantiated by the distribution of the signals and how
they change from moment to moment. The EMD in this case provides information about
the shifts of the frequency histograms representing probabilities derived from the signals’
fluctuations. Of course, this is merely a proposition and will need validation with larger N,
but we express this caveat in the section below, referring to these issues.

Our results of treating everyone (individually) as a random process and empirically
characterizing the individual stochastic signatures and their rates of change during pain
states, invites a new characterization of pain states in relation to resting states. This
personalized characterization is also amenable to examine the cohort behavior and identify
statistical self-groupings congruent with clinical scores. We see that the physical sensation
of pain is perceived and reported by the person with SOR but not by the control participant,
whose activities do not sustain, nor anticipate the pain state.

In summary, the changes in EEG MMS that we quantified in the beta and gamma
band (13–100 Hz) may reflect the renewal processes in central neural processing that is
continuously refreshed by the peripheral feedback from afferent signals. The activity
of the gamma band alone (putatively related to attentional states) or of the beta band
alone (putatively related to movement afference) will not produce these patterns. It is their
combined activities that brings the signal that reflects their integration as the person reaches
awareness of the lingering sensation of pain (Resting
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Our results of treating everyone (individually) as a random process and empirically 
characterizing the individual stochastic signatures and their rates of change during pain 
states, invites a new characterization of pain states in relation to resting states. This per-
sonalized characterization is also amenable to examine the cohort behavior and identify 
statistical self-groupings congruent with clinical scores. We see that the physical sensation 
of pain is perceived and reported by the person with SOR but not by the control partici-
pant, whose activities do not sustain, nor anticipate the pain state. 
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experience. We propose it as a systematic predictive memory of it that is sustained long
enough to bring it to awareness. This may be through increased certainty experienced
by increasingly systematic prediction-confirmation loops, away from randomness. This
interpretation, which is further supported by the congruence of our statistical inference
with the clinical scores, warrants further investigation, given the critical need for objective
characterizations of pain and the potential applications of these methods to scale up the
results of this work.

Caveats and Limitations

Despite the clean new results and the congruence with the prior work based on the
same data set, we caution that the modest size of the cohort limits our conclusions. The
treatment of each participant as a random process guarantees the statistical power of
each empirically estimated signature with 95% confidence interval. We ensured that the
4s-window with 50% overlap provided a continuous estimation with renewal of activity
every 2 s comprising enough fluctuations to make a sound stochastic estimate and shift to
the next point along the stochastic trajectory. However, the n of 21 participants, 9 with SOR
is modest. We need a larger cohort. Further, the group was not balanced in sex and age.
Ideally, we would like to sample larger numbers of males and females, but also examine
transgender groups and groups with same-sex orientation. Lastly, it would be great to
sample from other disorders of the nervous systems that also complain about issues with
pain and temperature dysregulation.

5. Conclusions

Using this new approach, it will be possible to scale up our results from this modest
cohort and ascertain subtypes of pain sensation. A positive note is that by integrating the
complementary subjective and objective methods that we used here, we will attain much
more than using only one method on its own right. In this sense, despite the caveats, we feel
confident that the present methods have the potential to help us advance our understanding
of the perception of physically induced pain—as registered by micro fluctuations in EEG
brain signals.
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Appendix A

Figure A1. Location of channels with highest cluster coefficient. The hub channel (i.e., channel with
highest cluster coefficient) is shown for SOR (red) and controls (blue). Each colored line represents
a single participant’s data. For example, if there are 2 circles surrounding a single channel, that
means 2 participants had their hub channel positioned there. Overall, SOR hub channels tend to
be positioned in the frontal and lateral area; and Control’s hub channel tends to be distributed in
the medial area. Notice that controls do not have any central lead (in contrast to SOR) and that
controls have occipital lead (in contrast to SOR.) Notice that across the cohort, the maximal clustering
coefficient leads in SOR are more distributed thank those in the controls.
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