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Abstract: Obesity is a frightening chronic disease, which has tripled since 1975. It is not expected to
slow down staying one of the leading cases of preventable death and resulting in an increased clinical
and economic burden. Poor lifestyle choices and excessive intake of “cheap calories” are major
contributors to obesity, triggering type 2 diabetes, cardiovascular diseases, and other comorbidities.
Understanding the molecular mechanisms responsible for development of obesity is essential as it
might result in the introducing of anti-obesity targets and early-stage obesity biomarkers, allowing
the distinction between metabolic syndromes. The complex nature of this disease, coupled with
the phenomenon of metabolically healthy obesity, inspired us to perform data-centric, hypothesis-
generating pilot research, aimed to find correlations between parameters of classic clinical blood
tests and proteomic profiles of 104 lean and obese subjects. As the result, we assembled patterns
of proteins, which presence or absence allows predicting the weight of the patient fairly well. We
believe that such proteomic patterns with high prediction power should facilitate the translation of
potential candidates into biomarkers of clinical use for early-stage stratification of obesity therapy.

Keywords: obesity; BMI; blood tests; proteomics; mass spectrometry

1. Introduction

Obesity in most cases is blatantly visible by the unaided eye. Paradoxically, at the
same time both clinicians and citizens tend to ignore this pathology, acquiring the scale of
“globesity” [1,2]. Being a generally preventable disease, obesity, resulting from the excess
of body fat, often entails the development of 50+ various pathologies, significant disability,
and premature death [3].

The pathogenesis of obesity involves the interaction of genetic, environmental, and
behavioral factors [4]. Each time, figuring out the characteristic features in the biomedical
portrait of obesity, scientists are trying to resolve the nature vs nurture debate [5]. The
multifactorial nature and high comorbidity of obesity make it difficult to understand
the clear molecular nature of this disease. Moreover, about a third of obese patients are
“metabolically healthy” with little or no evidence of metabolic syndrome. There are four
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central features (insulin resistance, increased visceral fat, atherogenic dyslipidemia, and
endothelial dysfunction), which make up the essential definition for metabolic syndrome.
Among them, only the first two are obligatory [6].

However, metabolic syndrome is not the one and only way to identify individuals
with increased risk of cardiovascular diseases and diabetes, as well as other comorbidities.
Reliable identification of individuals with a significant risk of endocrine or cardiovascular
complications requires assessment methods taking into account orthogonal factors (e.g.,
family history, age, sex, smoking, and other crucial parameters) [6].

Importantly, the “healthy” phenotype of an obese individual with no metabolic aber-
rations is not constant. Thus, the metabolism of half of such patients ceases being “healthy”
in ca. 10 years [7]. It means that early diagnostics and intervening even for “metabol-
ically healthy obesity” is crucial. The dynamic nature of obesity makes it even more
difficult to find out meaningful differences between normal state, metabolically healthy,
and unhealthy obesity.

Despite the apparent obviousness of strategies for treatment and prevention of obesity,
unfortunately, in the long term, they demonstrate low efficiency, primarily because standard
pharmacological solutions and significant behavioral changes regarding nutrition and
activity, in most cases, do not take root in the modus vivendi of the patients.

A major diagnostic criterion of obesity is body mass index (BMI), expressed by a
person’s weight divided by the square of his or her height. BMI reliably indicates the
anthropometric condition for the overwhelming majority of cases; however, it does not
accurately reflect the severity of the health risks [8,9]. The same could be stated for
traditional laboratory tests, including monitoring of triglycerides and lipid profiles [10].

The dynamic and multifactorial nature of obesity may be the reason why there are
still no biomarkers approved by the FDA or other reputable organizations that could be
effectively used to diagnose this disease in personalized—not “one size fits all”—mode.

High-throughput technologies accelerated life science dramatically: the speed of
reading the sequences of biological macromolecules is no longer a bottleneck for unraveling
the mechanisms of health and disease [11]. Since the sequencing of DNA emerged, a wide
range of projects aimed at establishing genetic markers of various medical conditions
were performed, and obesity is no exception. Several large-scale genomic studies (e.g.,
DiOGenes, which explored biological samples from 350 European families [12,13]) paved
the way for a further selection of nutritional recommendations through understanding the
dynamics of weight maintenance based on the uniqueness of a particular patient [14].

Technical progress in the exploration of the proteome, the final level of transmission of
biological information and predecessor of the metabolome, achieved during the last decade
has provided a base for illuminating risks and improving current therapeutic strategies [15].
Proteomics allows the development of a personalized molecular profile that takes into
account the pattern of biomarkers. This “molecular mirror” reflects all significant processes
in the body, including systemic chronic inflammation, associated with obesity [16–18].

In the study, we used a proteomics approach to get a panoramic picture of the pro-
teome of patients with respect to their weight status. To the best of our knowledge, we
provide the first evidence that qualitative plasma protein landscape significantly differs
from classic clinical parameters on an issue of obesity. We highlighted proteins, which
could play a significant role in the development of obesity and obesity-associated disease
and should be additionally explored as a prominent tool to improve risk stratification.

2. Materials and Methods
2.1. Sample Collection

One hundred and four human plasma samples were obtained from the patients
of the Clinic of “Federal Research Centre of Nutrition, Biotechnology and Food Safety”
(Moscow, Russia).

All study participants gave informed consent confirming their willingness to par-
ticipate in the research. All procedures performed in studies involving human partici-
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pants were under the ethical standards of the institutional or national research committee
and with the 1964 Helsinki declaration and its later amendments or comparable ethi-
cal standards. The study was approved by the relevant ethical review committee of the
Federal Research Centre of Nutrition, Biotechnology and Food Safety (protocol #4 from
15 June 2018).

The present study included 104 individuals in accordance with the inclusion and
exclusion criteria. The inclusion criteria were the age of the study participants from 18 to
45 years, BMI from 18.5, absence of diagnosed somatic and mental disorders.

Individuals younger than 18 and older than 45 years were excluded from the study,
as well as pregnant/breastfeeding patients, patients with mental disorders, identified
cancer, cardiovascular and any gastrointestinal diseases, other somatic disorders, and
recent (6 months) weight loss.

The patients were divided into groups according to their body mass indexes. BMI,
calculated as the mass of the individual in kilograms divided by his/her height in meters
squared, is one of the most popular metrics to characterize body condition [19].

Five groups of patients (Table 1) were enrolled for this study: controls (NORM,
BMI = 18.5–24.9), overweight patients (OW, BMI = 25.0–29.9), and patients with obesity
stage 1 (OB1, BMI = 30.0–34.9), 2 (OB2, BMI = 35.0–39.9), and 3 (OB3, BMI > 40.0).

Table 1. Characteristics of patients enrolled in the study.

NORM OW OB1 OB2 OB3 p-Value 1

Number of patients 22
13/9 (f/m)

21
10/11 (f/m)

19
10/9 (f/m)

21
10/11 (f/m)

21
11/10 (f/m) -

Age (years,
mean ± std. deviation) 30.54 ± 5.34 32.90 ± 6.66 29.89 ± 8.16 32.62 ± 7.92 34.05 ± 6.64 0.4

Height (cm ± std. deviation) 172.65 ± 7.31 171.99 ± 11.81 170.15 ± 11.99 172.26 ± 9.74 172.08 ± 9.72 0.7
Weight (kg ± std. deviation) 64.93 ± 8.12 81.80 ± 12.24 94.44 ± 13.23 109.62 ± 13.67 140.33 ± 27.76 <0.001
BMI (kg/m2 ± std. deviation) 21.73 ± 1.90 27.52 ± 1.35 32.51 ± 1.69 36.81 ± 1.39 46.99 ± 5.81 <0.001

1 To refute the theory that the group characteristics do not differ significantly, a p-value < 0.05 was used. p-value, calculated for age and
height characteristics of groups under study, provides evidence, that differences of age and height groups are statistically insignificant.
NORM—individuals with BMI = 18.5–24.9; OW—overweight patients with BMI = 25.0–29.9; OB1—patients with obesity stage 1 and
BMI = 30.0–34.9; OB2—patients with obesity stage 2 and BMI = 35.0–39.9; OB3—patients with obesity stage 3 and BMI > 40.0.

Venous blood samples were collected into EDTA tubes after overnight fasting and
centrifuged at 1500× g, for 10 min at room temperature. Plasma fractions were stored
at −80 ◦C in cryotubes until processing. Samples were randomized prior to proteomic
investigation to avoid potential batch effects.

2.2. Anthropometric and Clinical Tests
2.2.1. Anthropometric Tests

The BMIs of the patients were evaluated according to the standard formula [19]. The
weight distributions were measured using the bioelectrical impedance analysis method.

2.2.2. Biochemical Blood Test and Complete Blood Count

Serum levels of fasting plasma glucose, triglycerides, high-density lipoprotein, low-
density lipoprotein, cholesterol, alanine aminotransferase, aspartate aminotransferase,
γ-glutamyl transpeptidase, alkaline phosphatase, uric acid, urea, creatinine, albumin, biliru-
bin, etc. were determined according to standard protocols. Blood levels of hemoglobin,
hematocrit, and blood cell indexes were established according to standard protocols [20].

Results of anthropometric and blood tests are provided in Supplementary Table S1.



J. Pers. Med. 2021, 11, 64 4 of 14

2.3. Sample Preparation
2.3.1. The Depletion of Blood Plasma

The immunoaffinity depletion of the high abundance plasma proteins (albumin and
IgG) was used to enhance the detection of lower abundance but more insightful proteins in
further shotgun proteomic analysis. For plasma depletion, we used ProteoPrep Kit (Sigma-
Aldrich, St. Louis, MO, USA). The depletion was carried out following the manufacturer’s
instructions [21].

2.3.2. Trypsinolysis of Depleted Plasma

The depleted blood plasma samples (175 µg of total protein) were in-solution digested
in accordance with a standard protocol [22]. In brief, proteins were denatured and re-
duced with a solution containing sodium deoxycholate, tris-2-carboxyethyl-phosphine
hydrochloride, and 1,4-dithiothreitol, and further alkylated with vinylpyridine. Trypsin
was added to the sample (trypsin/total protein = 1/100) and then incubated within 2 h
at a temperature of 44 ◦C. After 2 h, an aliquot of trypsin was added and then incubated
for 2 h at 37 ◦C. Trypsinolysis was quenched by adding formic acid to each sample to a
final concentration of 5%, then a mixture of peptides was centrifuged at 10,000 rpm within
15 min. The supernatant was collected and subjected to further chromatography-mass
spectrometric analysis.

2.4. HPLC-MS/MS Analysis

Separation and identification of the peptides were performed on an Ultimate 3000
nano-flow HPLC (Thermo Fisher Scientific, Cleveland, OH, USA) connected to Orbitrap
Exactive (Thermo Fisher Scientific, Cleveland, OH, USA) mass spectrometer equipped with
a Nanospray Flex NG ion source (Thermo Fisher Scientific, Cleveland, OH, USA). Peptide
separation was carried out on an RP-HPLC column Zorbax 300SB-C18 (C18 particle size
of 3.5 µm, inner diameter of 75 µm and length of 150 mm, Acclaim® PepMap™ RSLC,
Thermo Fisher Scientific, Cleveland, OH, USA) using a linear 90-min gradient from 95%
solvent A (0.1% formic acid) and 5% solvent B (0.1% formic acid, 80% acetonitrile) to 60%
solvent B over 95 min at a flow rate of 0.3 µL/min.

Mass spectra were registered in the positive ion mode. Data was acquired in the Orbi-
trap Exactive analyzer with a resolution of 70,000 (at m/z 400) for MS and 15,000 (m/z 400)
for MS/MS scans. For peptide fragmentation higher energy collisional dissociation (HCD)
was used, the signal threshold was set to 17,500 for an isolation window of 1 m/z and
the first mass of HCD spectra was set to 100 m/z. The collision energy was set to 35%.
Fragmented precursors were dynamically excluded from targeting for 10 s. Singly charged
ions and ions with not defined charge states were excluded from triggering MS/MS scans.
Three LC-MS/MS repetitions were performed for each plasma sample.

2.5. Interpretation of Experimental Data

Raw files were converted into .mgf files by MSConvert (v. 3.0). Each of the 312 mgf
files containing the feature list for protein identification was processed by SearchGUI
software (v. 4.0.4 [23]) using three search engines (X!Tandem, MS-GF+, OMMSA) against
SwissProt library of human canonical and alternatively spliced protein sequences in auto-
matic mode [24]. Trypsin was specified as the proteolytic enzyme; maximum of 2 missing
cleavages were allowed. Pyridylethylation (C) was used as a constant modification, and
oxidation of methionine was set as a variable one. Charge states of +2, +3, and +4 were
selected as parent ions. Mass tolerance was set to ±15 ppm for precursor ions and ±0.01 Da
for fragment ions. The cut-off of false discovery rates for peptide-spectra matches, pep-
tides, and proteins was ≤1%. Results were visualized in PeptideShaker (v. 2.0.5 [25]).
The MS data were deposited to the ProteomeXchange Consortium via the PRIDE partner
repository [26] with the dataset identifier PXD023526.
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2.6. Statistical Analysis

Clustering analysis of clinical and anthropometric tests was performed using Ward’s
method and Euclidean distance for normalized data. Clustering patterns of protein pres-
ence/absence were done using Ward’s method and Jaccard distance metric. All statistical
analyses and graphics were performed using R version 4.0 [27].

Each protein of interest was annotated with its GO-terms from UniProt using ViSEAGO
package [28]. We used the “2020-03” GO release and “2020_01” UniProt release.

When comparing the results of proteomic and clinical analysis, we explored publicly
available data on the relationship between proteins and parameters of clinical analysis.
The automatic analysis of the texts of scientific publications was performed by Scanbious
platform [29,30], which visualizes semantic networks between objects of various types
(names of proteins, pathological processes, etc.).

We predicted the BMI of the patient based on the pattern of presence/absence of
certain proteins in his/her blood plasma using the Least Absolute Shrinkage and Selection
Operator (LASSO) regression implemented in glmnet package [31]. We performed 10 itera-
tions, each time randomly selecting 90% of the samples. For each iteration we needed to
select the optimum value of LASSO tuning parameter lambda, which penalizes the sum
of the absolute values of the coefficient. Optimum value of lambda was also selected by
performing cross-validation (10 runs of 10-fold cross-validation cycle). The lambda with
the minimum average error was selected as a lambda for the current iteration. Final model
included only proteins, which were selected at every iteration (10 out of 10 times). Model
performance was estimated as the median absolute error which was defined as the median
of absolute differences between the true BMI and the predicted BMI.

3. Results and Discussion
3.1. Clinical Component

Much attention has been riveted on the phenomenon of metabolically healthy obesity
(MHO), characterized by the absence of the metabolic abnormalities that traditionally
accompany excess adiposity [32]. Thus, a substantial proportion of the obese subjects
does not seem to be at an (at least temporarily, [33]) increased risk of mortality and
metabolic complications of obesity. MHO is characterized by the absence of dyslipidemia,
hypertension, insulin resistance, and chronic inflammation.

Moreover, lean subjects may possess abnormal metabolic parameters (exhibiting
metabolically unhealthy non-obesity, MUNO) [34]. A gradient of metabolically healthy
and unhealthy obese and lean phenotypes makes the revealing of abnormalities as well as
relevant prevention of risks more difficult even for non-obese individuals.

To elucidate whether there is a bias to any of the selected extremes (four combinations
of metabolic status and BMI) in our sample collection, we selected the monitored param-
eters of blood and anthropometric tests (Supplementary Table S1), which significantly
differed between groups under study (NORM, OW, OB1, OB2, OB3). For these differed
parameters, we performed a principal components analysis (Supplementary File S1) and
hierarchical cluster analysis (Figure 1) using Ward’s minimum variance. The results of
cluster analysis were evaluated with the Adjusted Rand Index (ARI), which reflects an
agreement between two partitions: one given by the clustering process and the other
defined by external criteria.

In our case, ARI was equal to 0.051, which indicates a low similarity between resulting
and expected clustering. According to the obtained result, it is not possible to explic-
itly define the boundaries between groups of subjects with different weight conditions
under study.

The impossibility to unambiguously divide patients according to their weight condi-
tions based only on the results of clinical tests once again emphasizes the controversial and
considerably challenging nature of obesity and indicates the need for orthogonal data.

In our opinion, the most promising for solving this problem will be the transition to
the proteome level and multiplex assessment of the patient’s proteome landscape.
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3.2. Proteomic Component

In total, 154 proteins were reliably identified in the entire collection of plasma samples.
These proteins are predominantly associated with peptidase activity, receptor binding,
and lipid transporter activity. Most of the proteins are localized in blood microparticles or
plasma lipoprotein particles and vesicles, and therefore we expect stable detection of them
under various mass spectrometric protocols. Of those, 36 proteins were consistently found
in all plasma samples under study. A total of 138 proteins were identified in the NORM
group of lean subjects. A total of 148 proteins were identified in the integrated group of
overweight (OW) and obese (OB1, OB2, OB3) samples.

Next, we performed a principal components analysis (Supplementary File S1) and
studied possible relationships between the pattern of presence/absence of proteins in blood
plasma and the patient’s BMI using cluster analysis.

Preliminarily, unrepresentative proteins (identified in a single sample in the collection)
and non-specific proteins (identified in all samples) were excluded from the calculations.
The data matrix consisted of 104 rows (samples) and 101 columns (proteins).

The pattern of 15 proteins (namely, P07225, P00748, P07357, P07358, P09871, P01591,
P01861, O43866, P00736, P02654, P13671, P25311, P01619, P01859, and P29622) allows
to distinguish (Figure 2a) a group of 14 samples with increased BMI (mean 39 vs 33,
p-value = 0.002). Moreover, 11 of them belong to the OB2 and OB3 groups, and three
samples were obtained from overweight individuals. It should be noted that these three
patients from OW were diagnosed with blood lipids disorder (there are seven samples
with such a diagnosis in the whole OW group). Half of the samples from the OB2 and OB3
groups were also characterized by this diagnosis. As part of a pattern of 15 proteins for
5 (P07225 [35], O43866 [36,37], P02654 [38], P25311 [39–41], P29622 [42]) the association
with the obesity was shown. It is noteworthy that five of these 15 proteins are complement
components, included in two complexes: P07358, P07357, and P13671 organize membrane
attack complex (MAC), that plays a key role in the innate and adaptive immune response,
and P09871 and P00736 combine with serine protease to form the first component of
the classical and less variable pathway of the complement system, also associated with
obesity [43,44].
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Figure 2. Cluster analysis of the presence/absence patterns of (a) 101 proteins (columns) in 104 blood plasma samples
(rows) for all 104 samples under study (rows) and (b) 98 proteins (columns) in 83 samples, excluding plasma samples
obtained from overweight individuals. The color bar indicates BMI.
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The collection of the samples under study contains blood plasma from overweight
patients with an increased body mass index (OW), but not exceeding the threshold values
required for the diagnosis of obesity, which could affect the results of cluster analysis. In
this respect, we removed from consideration 21 samples from the borderline OW group, as
a result, the total number of identified proteins remained practically unchanged, as well as
the set of proteins common for the two—NORM and OB—groups. The updated matrix
consisted of 83 rows (samples) and 98 columns (proteins) plotted with the same parameters.
Clustering indices improved slightly, so for the group with high BMI its mean value was
42, and for the rest—32 (p-value = 0.002, Figure 2b).

The composition of the cluster with high BMI practically did not change—three sam-
ples from the OW group left, and one image from the OB2 group was added. Accordingly,
the pattern of specific proteins did not change significantly, it included 13 proteins, where
12, except two immunoglobulins (P01619 and P01859) and serpin (P29622), coincide with
the results of the pattern of proteins according to the all-samples clustering. New in the
resulting pattern is the component of the above MAC complex—P07360.

3.3. BMI Prediction

To assess the contribution of proteins to obesity, an attempt to predict the BMI of
the sample based on proteomic data was performed. For this, using the LASSO method,
we built a regression model predicting the BMI of a sample according to the pattern of
presence/absence of proteins in blood plasma. The model based on all data consisted
of five proteins (P08185, P0DJI8, P10643, P25311, and P35858), and the median absolute
error (MAE) was 5.1 kg/m2 (Figure 3a). At the same time, the model obtained on the
basis of processing data excluding samples from the OW group showed a higher accuracy,
MAE = 3.2 kg/m2 (Figure 3b), and the number of proteins required to build the model
was 18.
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It is noteworthy that the pattern of 18 proteins includes five proteins from the model
with lower predictive power, as well as three previously considered proteins of the comple-
ment system (P00736, P07358, P07360) included in the MAC complex, which is indirectly
associated with obesity [45].

Text-mining [29,30] performed for these proteins and their relations with pathological
processes showed that 15 out of 18 proteins (Table 2) are associated to varying degrees with
metabolic disorders, including obesity. For example, according to our model, the absence of
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sex hormone-binding globulin (P04278) correlates with increased BMI, which is confirmed
by studies on its expression, where it was shown that inhibition of the corresponding gene
leads to the development of obesity [46].

Table 2. Proteins included into predicting pattern and their association with obesity.

# UniProt ID Gene Name References Comment on the Association with Obesity

1 A0A0C4DH25 IGKV3D-20 - -

2 P00736 C1R [43,47] High expression of complement components in omental adipose tissue

3 P00742 F10 [48,49] Chronic low-grade inflammation, but is likely also due to direct effects
of adipose tissue on mediators of coagulation

4 P01700 IGLV1-47 [50] Differentially expressed gene in normal individuals and obese patients
with breast cancer

5 P02655 APOC2 [51,52] Cofactor for lipoprotein lipase, a plasma enzyme that hydrolyzes
triglycerides/agent for obesity

6 P04278 SHBG [46,53] Decreased SHBG levels may be one of the components of the metabolic
syndrome

7 P07358 C8B [54]
Protein encoded by C8B gene and associated with complement

activation was shared across diets indicating that a core set of proteins
participate in tissue response to high-fat diet

8 P07360 C8G [54]
Protein encoded by C8G gene and associated with complement

activation was shared across diets indicating that a core set of proteins
participate in tissue response to high-fat diet

9 P08185 SERPINA6 [55–59] Corticosteroid-binding globulin polymorphism could influence obesity,
metabolic, or hypothalamo-pituitary adrenal axis activity parameters

10 P0DJI8 SAA1 [60,61] Major acute phase protein, correlating with obesity and insulin
resistance in human

11 P10643 C7 [47]
Constituent of the membrane attack complex (MAC) that plays a key
role in the innate and adaptive immune response by forming pores in

the plasma membrane of target cells

12 P20742 PZP - PZP levels are individual-specific, do not correlate strongly with obesity

13 P22352 GPX3 [62–66]
GPX3 expression is significantly higher in lean compared to obese as

well as in insulin-sensitive compared insulin-resistant individuals
with obesity

14 P25311 AZGP1 [39–41,67–71]

AZGP1 stimulates lipid degradation in adipocytes and causes the
extensive fat losses associated with some advanced cancers. May bind

polyunsaturated fatty acids. Can promote the browning of white
adipose tissue and can serve as a potential therapeutic target for

treating metabolic diseases such as obesity. It is reduced in obesity, with
a trend to further decrease with prediabetes and type 2 diabetes

15 P35858 IGFALS [72]

IGFALS is involved in protein-protein interactions that result in protein
complexes, receptor-ligand binding or cell adhesion.

Children and adolescents with a variety of illnesses and metabolic
disorders have altered circulating IGF-I and IGFBP levels. Circulating

IGF and IGFBP levels overlap with normal values

16 P51884 LUM [73]
LUM over-expression in visceral fat and liver resulted in improved

insulin sensitivity and glucose clearance.
Over-expression of LUM increases insulin sensitivity

17 Q06033 ITIH3 [43,74] ITIH3 negatively correlated with obesity

18 Q96KN2 CNDP1 [75]

An increased risk for obesity/overweight due to genotypes of CNDP1
was observed only in the group with a low carotene/carbohydrate
intake ratio. In the high carotene/carbohydrate intake group, the

genotype of CNDP1 was no risk factor for obesity/overweight
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Summarizing the above said, we can conclude that among the reliably and reliably
detected proteins [76] in blood plasma, there is a pattern that has predictive power in
the issue of obesity. The minimum pattern size is five proteins. Expanding the panel
increases the level of BMI prediction accuracy, which can be critical in examining borderline
states in metabolically healthy obese and unhealthy lean, and also provide researchers
with additional information about body composition status even when exploring protein
profiles from the patients with non-obesity disorders.

We would like to stress that our intention was not to build the perfect BMI prediction
model (the dataset is quite limited for this task) but rather to point to some plasma pro-
teins likely associated with obesity when analyzed together. We suppose that the further
studies needed to elaborate on this issue will also allow detection of the transition from a
“metabolically healthy” phenotype of the patient with a high BMI to an “unhealthy” one.

4. Conclusions

According to the authors’ knowledge, no approved omics pattern has been developed
to distinguish individuals at increased risk of obesity and its comorbidities. In the present
study, we analyzed clinical and anthropometrical parameters of 104 subjects with different
weight conditions. Each individual was also characterized by the profile of core proteins
circulating through his/her blood plasma.

Our main conclusions were two-fold:

1. We demonstrated the impossibility to divide patients according to their weight con-
ditions based only on the results of standard blood tests. Orthogonal, in our case—
proteomic, data upgrades the level of understanding of the controversial nature of
obesity.

2. Our overall results indicate that studies of proteins circulating in blood have the
prediction power of the weight status of the patient under study. We composed two
proteomic patterns (including 5 and 18 proteins, respectively), which provide addi-
tional information about the patient’s phenotype for more personalized treatment.

We strongly believe that such proteomic patterns have great potential as warning
labels, signaling about obesity-associated alterations, and, thus, improving early-stage
therapy of both metabolically unhealthy obese and lean individuals.
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