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Abstract: Although many studies have been conducted on single gene therapies in cancer patients,
the reality is that tumor arises from different coordinating protein groups. Unveiling perturbations in
protein interactome related to the tumor formation may contribute to the development of effective di-
agnosis, treatment strategies, and prognosis. In this study, considering the clinical and transcriptome
data of three Renal Cell Carcinoma (RCC) subtypes (ccRCC, pRCC, and chRCC) retrieved from The
Cancer Genome Atlas (TCGA) and the human protein interactome, the differential protein–protein
interactions were identified in each RCC subtype. The approach enabled the identification of dif-
ferentially interacting proteins (DIPs) indicating prominent changes in their interaction patterns
during tumor formation. Further, diagnostic and prognostic performances were generated by taking
into account DIP clusters which are specific to the relevant subtypes. Furthermore, considering the
mesenchymal epithelial transition (MET) receptor tyrosine kinase (PDB ID: 3DKF) as a potential
drug target specific to pRCC, twenty-one lead compounds were identified through virtual screening
of ZINC molecules. In this study, we presented remarkable findings in terms of early diagnosis,
prognosis, and effective treatment strategies, that deserve further experimental and clinical efforts.

Keywords: renal cancers; protein interactome; diagnostic biomarker; prognostic biomarker; virtual
screening; docking

1. Introduction

Kidney cancer is among the 10 most common cancers in adults and renal cell car-
cinoma (RCC) shows a steady increase in prevalence [1]. RCC is known to be the most
common type of kidney cancer and is responsible for up to 85% of cases; it is more com-
mon in males than in females (ratio, 1.7:1), and most of the patients are at an older age
(average age of 64 years) [1]. Primarily, RCC is categorized into subtypes according to
histological classification under a microscope, including clear cell (ccRCC, also known
as KIRC), papillary (pRCC, also known as KIRP), chromophobe (chRCC, also known as
KICH), and some other, less common subtypes such as collecting duct, medullary RCC, and
unclassified RCC [2]. The most prevalent one among kidney cancers is ccRCC which repre-
sents 75–80% of RCC [3] and derives its name from its clear cytoplasm on the pathologic
analysis [4]. The rest are papillary (10–15%), chromophobe (5%), and rare kidney cancers.
Although improvement of the state-of-the-art treatment technologies, the overall prognosis
is still poor in RCCs, particularly for patients who present with the advanced-stage dis-
ease [1]. Therefore, early diagnosis and successful urological procedures with partial or
total nephrectomy can be life-saving. However, only about 10% of RCC patients present
with urological problems or other known clinical symptoms. More than sixty percent of
patients are incidentally noticed at imaging investigations [5], and metastasis has already
begun in nearly 20–30% of the patients when diagnosed [6]. In this context, biomarker
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identification from secretion fluids is extremely important for early diagnosis. Furthermore,
biomarkers are becoming increasingly significant to facilitate the discovery of anti-cancer
agents, to distinguish cancer cells from the other cells, to understand drug action mech-
anisms, to predict prognosis, to design personalized medication, and to understand the
mechanisms underlying response to therapy. All types of kidney cancers are different in
many respects including tumor location within the kidney, the cell type from which they
originate, and alterations on their genotype, making it even more crucial to characterize
the pathology of each type and to identify specific proteins as druggable targets.

Biomarkers play an important role in the implementation of personalized medicine in
clinics with respect to defining subtype phenotypes, predicting clinical course and progno-
sis, and determining the appropriate therapeutic approach. In this respect, a comprehensive
pool of molecular markers from different biological levels (hub proteins, receptors, miR-
NAs, mRNAs, reporter TFs, and metabolites) were presented from a systematic integrative
biology perspective with the potential to provide in-depth knowledge into the disease
mechanisms in RCC subtypes [7]. On the other hand, the limited diagnostic and prognostic
performance of a molecular biomarker revealed the need for system biomarkers to be
obtained with approaches that consider interactions between critical molecules such as the
differential protein interactome [8,9].

The differential interactome methodology is based on the idea that significant alter-
ations occur in the protein–protein interactions (PPIs) among phenotypes. The success
of this approach has been effectively demonstrated in various cancers and their sub-
types [8–10]. The differential interactome approach made it possible to estimate the
probability distributions for any possible co-expression profile of gene pairs (encoding
proteins that interact with each other) across phenotypes and to determine the uncertainty
of whether a PPI is meeting the corresponding phenotype.

The Cancer Genome Atlas (TCGA) is one of the comprehensive cancer genomics
datasets available. The availability of TCGA allows researchers to uncover the molecular
profiling of tumors through the application of genome analysis technologies, including
large-scale genome sequencing. In our present study, we investigated the TCGA transcrip-
tome data from 892 individuals and used the differential interactome methodology [8]
that integrates transcriptome data with the human protein interactome network to ana-
lyze and compare the differential protein–protein interactions among healthy and tumor
groups. Three common subtypes (ccRCC, pRCC, and chRCC) of RCC were investigated
and compared in terms of the differential interactome profiles. These analyses allowed us
to identify differentially interacting proteins (DIPs) that represent significant changes in
their interaction patterns during the transition from “normal” to “tumor” phenotypes and
are therefore differently related to the corresponding tumor [9]. We also determined can-
didate protein panels with high diagnostic and/or prognostic performance, which might
allow us to develop novel drug candidates and to diagnose patients in the early stage.
Furthermore, we offer drug candidates that showed an inhibitory effect on mesenchymal
epithelial transition (MET) receptor tyrosine kinase which is one of the DIPs that have
activated interactions in the case of pRCC.

2. Materials and Methods
2.1. Collecting of Gene Expression Data

The transcriptome datasets consisting of three different subtypes of kidney cancer
(chRCC, ccRCC, and pRCC) were acquired from the TCGA database [11] to analyze their
gene expression profiles. The number of the primary tumor and the matched normal
tissue samples were 538 and 72 for ccRCC, 289 and 32 for pRCC, and 65 and 24 for
chRCC, respectively.

2.2. Obtaining Protein–Protein Interactions Data

Physical PPI data experimentally detected in humans was obtained from the BioGRID
database using the latest version (v. 4.0.189) [12]. The data contained 51,745 PPIs among
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10,177 human proteins. After filtering the PPI data for proteins encoded by genes having
transcriptome data in TCGA datasets, a network was reconstructed with 34,604 PPIs among
8322 proteins.

2.3. Identification of Differential Interactome and Differentially Interacting Proteins

The gene expression profiles of RCC subtypes were analyzed together with the ob-
tained PPI data through the differential interactome algorithm revised in the study of
Gulfidan et al. [8] using R (version 3.6.1). This algorithm presents the differential PPIs
(dPPIs) between the tumor phenotype and normal phenotype, taking into account the
relative observation frequencies (q-value) of each PPI as described earlier [8,9]. The criteria
of the algorithm for obtaining significant dPPIs were set as q-value < 0.10 (significantly
repressed in tumor phenotype), q-value > 0.90 (significantly activated in tumor phenotype),
and a normalized observation frequency either in normal or tumor phenotype > 20%.

DIPs, the proteins having differential interactions, were classified into two groups
according to their interaction patterns: (i) DIPs having repressed interactions under tumor
condition, and (ii) DIPs having activated interactions under tumor condition. DIPs that
were specific to the RCC subtypes and were common in all subtypes were detected for
further analyses. The networks consisting of dPPIs and DIPs were visualized through the
Cytoscape 3.4.0 [13].

2.4. Evaluation of the Secretion Levels of Subtype-Specific DIPs in Body Fluids

The secretion levels (ppm) of subtype-specific DIPs in plasma, serum, urine, and saliva
were investigated through protein expression data which is accessible in the GeneCards [14]
database curating the proteomics databases; ProteomicsDB [15], MaxQB [16], and MOPED [17].

2.5. Analysis of Diagnostic Performance and Prognostic Power

Principal component analyses (PCA) were carried out for the assessment of the diag-
nostic potential of subtype-specific DIPs using the expression values of genes encoding the
DIPs which had the secretion levels in body fluids. The simulations were performed using
the gene expression data of tumor samples of ccRCC, pRCC, and chRCC datasets for each
subtype-specific DIPs, separately.

To explore the prognostic performance of each subtype-specific DIP, survival anal-
yses were carried out through stratification of patients into high- and low-risk groups
based on their prognostic index (PI), which is the linear component of the Cox model
(PI = β1x1 + β2x2 + . . . + βpxp, where βi is coefficient acquired from the Cox fitting, xi is
the expression value of each gene). Analyses were implemented through the SurvExpress
tool [18] utilizing two RNA-Seq originated datasets of ccRCC with 415 samples, and pRCC
with 278 samples including clinical data. In addition, RNA–Seq originated chRCC dataset
with 9 samples with clinical data retrieved from TCGA [11] was analyzed separately
through the pipeline established in our previous study [8] due to the absence of any dataset
related to the chRCC subtype in the SurvExpress database. The signatures of survival in
each risk group were estimated by Kaplan–Meier curves and Hazard Ratios (HR). Statistical
significance of each plot was evaluated by the cut-off for log-rank p-value < 0.05. Hazard
ratio (HR = O1/E1/O2/E2) was calculated to discover the significance of the survival
curves based on the ratio between the relative death rate in group 1 (O1/E1) and the
relative death rate in group 2 (O2/E2), where O denotes the observed number of deaths,
and E denotes the expected number of deaths.

2.6. Identification of Candidate Drugs through Virtual Screening

We set the following criteria to determine the potential drug target protein among
DIPs in docking studies: (i) its interactions should be activated in the disease state, and
(ii) it should have at least 5 interactions. Among DIP proteins of pRCC, MET protein
satisfied all the criteria and came to the forefront as a potential drug target. Through virtual
screening, potential molecules targeting MET were determined. To have an insight into
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the ligand-receptor interactions, the available X-ray crystal structures of MET were fetched
from the Protein Data Bank (PDB) (www.rcsb.org) [19]. PDB entry 3DKF was chosen for
all the docking studies according to the resolution, Ramchandran outliers, and structural
similarity between the screened ligands and the co-crystallized ligands. Virtual Screening
binding analysis was carried out on the assigned binding site of the X-ray crystal structure of
MET [20] exploiting ZINC molecules described by the publicly available ZINC15 library [21].
Molecular docking studies were executed for 703 substances retrieved from the ZINC15
library through AutoDock Vina [22] in the PyRx virtual screening tool (v. 0.8) [23].

3. Results
3.1. Differential Interactome Estimation in Subtypes of RCC

RNA-seq transcriptome data of three RCC subtypes were retrieved from TCGA to
apply differential interactome methodology [8] for prediction of highly probable PPIs in
each state and identification of differential PPIs. To this end, we examined transcriptomic
data for three common subtypes of RCC with an adequate number of samples (n > 24)
in both normal and tumor groups (see Materials and Methods section). The scale-free
topology of the differential interactome network brings out the presence of hubs called
DIPs indicating substantial changes in their interaction patterns during the transition from
“normal” to “tumor” phenotypes [8,9]. We determined 628 DIPs for chRCC, 50 DIPs for
ccRCC, and 29 DIPs for pRCC as subtype-specific DIPs, whereas 33 DIPs were common in
all subtypes (Supplementary Table S1). The tumor-specificity of DIPs varied according to
the subtype (Figure 1).
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Further analyses (i.e., determination of prognostic power, diagnostic performance,
and druggability) were implemented by taking into account 50 DIPs specific to ccRCC,
29 DIPs specific to pRCC, and the top 50 DIPs having the most interactions specific to
chRCC (Table 1). We considered those DIPs as a cluster for each subtype and suggested
them as potential systems biomarkers for the development of effective diagnosis, prognosis,
and treatment strategies.

Table 1. Differentially interacting proteins (DIPs) specific to RCC subtypes.

Specificity s-DIPs 1 Non s-DIPs 2

ccRCC-specific

ABCC2, B2M, BST2, CALU, CCDC106, CENPA,
CYB5R3, DDX3X, DKC1, DNAJB4, DTNBP1,

GABBR1, GIT2, HLA-B, HSPBP1, IMMT,
MAPK3, NRP1, PDIA4, PEA15, PFDN2, PFKM,

PPIB, PRKCD, RGCC, RPS6KA3, SDHA,
UBQLN1, TNIP1

AZIN1, CDT1, ELF4, FBXW8, GPS2, IL32,
IRF1, LDOC1, MCM7, MCM9, MTF1, MTOR,

P4HA2, PHLPP1, RSL1D1, SCD, TAF1,
TAPBP, TOMM20, USP2, ZNF668

pRCC-specific
CS, CUL3, DFFA, DHFR, EIF4A2, FLOT2, G6PD,

GSTA2, IGBP1, ITGA3, MET, MME, MVP,
PARP4, PGM2, PNPT1, PPM1A, TRAPPC1

GSTA4, HGF, LBH, LGALS8, MMGT1,
RANBP9, SF3A3, SOCS1, TRAPPC12,

TRAPPC2L, UNG

chRCC-specific

ANXA5, AQP1, ARF1, BAD, CHMP4B, CYLD,
ECH1, EEF1B2, FLOT1, FUS, HADHA, HADHB,
HSD17B10, JUP, KRT18, MAPRE1, PARK7, PFN1,
PHB, PHB2, PPP1CB, PRDX1, PRDX2, PRDX3,

PRDX5, PSMB4, PSMB6, PSME1, PTGES3,
PTMA, RAB1A, RAB7A, S100A10, TGOLN2,

TXN, UBB, UBE3A, YWHAB, YWHAE

ABL1, AMFR, ARAF, CDK9, FOS, JUND,
MCL1, MORF4L2, SF3B5, STAU1, TRIM8

1 Protein expression was observed at least in one of the following body fluids: serum, plasma, saliva, urine; 2 Protein expression was not
observed in any of the following body fluids: serum, plasma, saliva, urine.

Then, we filtered DIPs by considering whether they are secreted in body fluids and
renamed secreted proteins as “s-DIPs” (Table 1, Figure 2). s-DIPs represent proteins
that were expressed at least in one of the following media: serum, plasma, saliva, or
urine (www.genecards.org) [14]. The importance of secretion in body fluids that can be
accessed without surgery is that it might provide serious convenience for early diagnosis.
While s-DIPs were used for diagnosis analysis, all DIPs (s-DIPs and non-s-DIPs) were
considered in prognosis and druggability (virtual screening) analyses.
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3.2. Prognostic and Diagnostic Capabilities of DIPs Clusters

We considered the clusters of DIPs as potential systems biomarkers for each RCC
subtype and analyzed their diagnostic performance and prognostic power.

The diagnostic analysis was performed via PCA using s–DIPs (Table 1). All s–DIP clus-
ters exhibited significantly high diagnostic performance for relevant subtypes (Figure 3A).
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Prognostic capabilities of gene clusters were quantified through log-rank p-values
and visualized by Kaplan–Meier curves (Figure 3B). Cox (proportional hazards) regression
was also engaged to estimate HRs. These analyses were carried out utilizing TCGA clinical
datasets (see Materials and Methods section). Gene clusters were significantly predic-
tive in terms of patient survival risk assessment for the respective subtype (Figure 3B,
ccRCC p < 1 × 10−15, pRCC p = 5.36 × 10−5, chRCC p = 1.86 × 10−3). Through Cox-
proportional hazard analysis, HR values were estimated as 4.33, 4.32, and 7.12 for ccRCC,
pRCC, and chRCC, respectively.

3.3. Discovery of Drug Candidates through Virtual Screening Analyses

In silico simulation techniques have become an indispensable tool for modern-day
drug discovery programs. Molecular docking currently offers the best alternative to quickly
estimate the binding conformations of ligands that are energy-efficient to interact with a
pharmacological receptor site. It has become more popular as it is time and cost effective
in the pipeline of drug discovery and development. Interactions of some DIP proteins
within the module were activated during the tumorigenesis, while some were found to be
repressed. We hypothesized that, if we manage to break through the interactions that are
activated, we might model a strategy to cure the disease. For this purpose, we considered
DIPs with activated interactions in the tumor state as potential drug targets.
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For instance, among DIP proteins of the pRCC subtype, MET protein came into promi-
nence as a potential drug target. Candidate molecules targeting MET were determined via
virtual screening of the ZINC15 library via the available crystal structures of MET from
PDB. All available X-Ray crystal structures of MET (PDB IDs: 3DKF, 2RFN, 3EFJ, 3U6H,
4EEV) and their bound ligands were superposed, and potential binding sites were deter-
mined to identify the binding site location on the receptor (Figure 4A). Virtual Screening
binding analysis was accomplished on the assigned binding site of the X-ray structure
of MET (PDB ID: 3DKF) utilizing ZINC molecules which were described by the ZINC15
library. The virtual screening analysis revealed twenty-one ZINC molecules with high
binding affinities (∆G0 ≤ −12, LE > 0.35) (Table 2; Figure 4B).
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Table 2. The ZINC molecules presented the best binding affinities to MET.

Ligand ZINC15 ID Vina Binding Affinity
(kcal/mol) Ligand Efficiency (LE)

ZINC200458361 −12.7 0.41
ZINC144529139 −12.6 0.39
ZINC73196087 −12.6 0.45
ZINC72318117 −12.5 0.44
ZINC72318118 −12.5 0.41
ZINC73163075 −12.5 0.42
ZINC96284612 −12.5 0.41

ZINC150080371 −12.4 0.38
ZINC299865209 −12.4 0.42
ZINC43176957 −12.4 0.43
ZINC73165724 −12.4 0.39
ZINC73196196 −12.4 0.43
ZINC72318119 −12.3 0.41

ZINC150078084 −12.2 0.37
ZINC96284613 −12.2 0.39

ZINC144475075 −12.1 0.4
ZINC40431067 −12.1 0.37
ZINC84759584 −12.1 0.36
ZINC96284618 −12.1 0.37

ZINC144529348 −12 0.41
ZINC166085169 −12 0.38

4. Discussion

Dysregulations in various biochemical pathways play an important role in cancer
formation and development. Genetic studies have identified numerous molecular defects
in cancer cells and suggested multiple potential targets for therapeutic intervention. Con-
ventional drug design has mainly focused on the inhibition of a single protein, usually
an enzyme or receptor; however, this strategy has not been successful enough, as the
development and progression of cancers are mostly due to the coordinated action of a
group of biological entities rather than a single molecule dysfunction [24]. Hereby, PPIs
have become highly promising targets that cover many therapeutic areas and potential in-
tervention points for the development of anticancer agents. Until now, significant progress
has been made in identifying small molecule inhibitors of various protein–protein systems
in the field of oncology, and powerful and selective drug-like molecules that inhibit many
interactions such as p53-MDM2 interaction have been discovered [25]. Furthermore, a
number of these small-molecule inhibitors, such as Siremadlin, AMG-232, and APG-115
have progressed to early phase clinical trials [26].

Our study reports the generation of the dPPI networks in RCC subtypes through
the implementation of high throughput transcriptome and protein interactome data. The
integration of respective RNA-seq datasets and differential interactome approach allowed
the identification of dPPIs in different conditions (tumor/normal) in RCC subtypes. The
study unveils and compares the dPPIs for each subtype and identifies DIPs through a
differential interactome. Further analyses on DIPs may be useful in understanding the
tumor mechanisms. For instance, our findings revealed that HspB1 protein is one of the
common DIPs for three subtypes. The correlation between HspB1 expression in RCC
subtypes and metastasis process has been revealed in previous studies and HspB1 is
known to facilitate metastasis by suppressing anti-cancer response such as apoptosis and
senescence [7,27].

DIP clusters were used for diagnostic and prognostic analyses for each subtype. De-
spite the improvements in the state of the art treatment technologies, the overall prognosis
is still poor in RCCs and more than 50% of RCCs are diagnosed incidentally [28]. Even
the detection of the early asymptomatic stage during routine examination could have a
profound impact on clinical outcome. Therefore, an effective, clinically useful test for



J. Pers. Med. 2021, 11, 158 9 of 11

early detection of RCC subtypes should be measurable in readily accessible body fluids,
such as plasma, serum, urine, or saliva. For this purpose, we filtered DIPs by considering
whether they are expressed in those body fluids at the protein level and defined the s-DIP
concept here for the first time in literature. s-DIP clusters characterize patients well in
terms of the diagnostic group (subtype) to which they belong. Hence, we offer that s-DIPs
might be used for the diagnosis of candidate RCC patients after further experimental and
clinical validations.

Saliva is one of the complex and important multi-constituent body fluids that reflects
a wide variety of physiological knowledge due to its contents extensively supplied by the
blood. Moreover, a saliva-based diagnosis has been drawing attention in the diagnosis
of systemic diseases such as renal cancers, due to the source, composition, function, and
interaction of saliva with the substances that make up the plasma [29,30]. In the present
study, besides blood components and urine, we also demonstrated the potential of saliva
as a non-invasive potential media for RCC diagnosis, especially in chRCC.

The three basic elements for the art of medicine are diagnosis, therapeutics, and
prognosis. Therefore, after making the correct and early diagnosis, determining the optimal
treatment strategies would be important and as a follow-up, one could provide up-to-date
information on the patient’s prognosis. Our present investigation also aimed to provide
new targets for the design of novel therapies in RCC subtypes and putative biomarkers
with prognostic significance. In this study, DIP clusters appear to be strong putative
candidates for the prognostic marker in each related subtype. Survival analyses through
stratification of patients according to clinicopathological variables such as tumor stage
or grade would demonstrate the prognostic power of the potential biomarkers better.
However, despite the presence of comprehensive gene expression profiling efforts such
as TCGA, transcriptome data with available clinical information is still limited for RCCs,
even for the most common subtypes.

Additionally, to shed light on the further experimental studies, we identified MET
protein as an ideal potential drug target in pRCC and showed the high potential of
twenty-one Zinc molecules (Table 2) as candidate therapeutics for future preclinical stud-
ies. The integration of the transcriptome and protein interactome data with the drug
knowledge helped to uncover 21 in silico validated potential drug candidates for pRCC.
These in-silico findings can be used further to design and synthesize novel MET in-
hibitors. Furthermore, ZINC73196087, ZINC72318117, ZINC72318118, ZINC73163075,
ZINC73165724, ZINC73196196, and ZINC72318119 have been shown to demonstrate ef-
fective anti-proliferative activity against a panel of c-Met-amplified gastric cancer cell
lines [31]. We propose that these ZINC compounds should also be evaluated with experi-
mental studies for RCC cell lines and we conclude that these molecules might be potential
therapeutics for the management of the pRCC. Further in vitro/in vivo pharmacological
evaluations and clinical validations are needed for approval of these candidate drugs.

The major limitation of the study is the lack of experimental validations of the iden-
tified ZINC compounds on the RCC samples or cell lines. Future in vitro studies need
to be conducted to evaluate the effects of ZINC compounds identified on cell viability,
proliferation, and migration. Moreover, the mechanism of actions of these molecules
need to be investigated in detail to elucidate their effect on molecular pathways such as
apoptosis and cell cycle. Rather than being considered as a single agent, these compounds
can also be regarded as adjuvant therapy to the baseline therapeutics, then, the critical
extension of this work would be to learn whether the observations of in vitro studies can
be recapitulated by in vivo studies and eventually in clinical trials. Another point that has
a crucial role in translation to the clinic is sampling where body fluids are favorable for
the detection of the biomarkers. Proteomics studies also need be verified for the proteins
exhibiting significantly high diagnostic and prognostic performance for relevant subtypes.
Moreover, these biomarkers could also assist oncologists to assist in optimal diagnosis and
prognosis management.
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Abbreviations

ccRCC Clear Cell Renal Cell Carcinoma
chRCC Chromophobe Renal Cell Carcinoma
DIP Differentially interacting protein
dPPI Differential protein–protein interaction
HR Hazard ratio
KICH Kidney Chromophobe
KIRC Kidney Renal Clear Cell Carcinoma
KIRP Kidney Renal Papillary Cell Carcinoma
LE Ligand efficiency
ns-DIP Non-secreted DIP
PC Principle component
PCA Principal component analysis
PDB Protein data bank
PPI Protein–protein interaction
pRCC Papillary Renal Cell Carcinoma
RCC Renal cell carcinoma
s-DIP Secreted DIP
TCGA The Cancer Genome Atlas
ZINC ZINC Is Not Commercial
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