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Abstract: High throughput technologies such as deep sequencing and proteomics are increasingly be-
coming mainstream in clinical practice and support diagnosis and patient stratification. Developing
computational models that recapitulate cell physiology and its perturbations in disease is a required
step to help with the interpretation of results of high content experiments and to devise personalized
treatments. As complete cell-models are difficult to achieve, given limited experimental informa-
tion and insurmountable computational problems, approximate approaches should be considered.
We present here a general approach to modeling complex diseases by embedding patient-specific
genomics data into actionable logic models that take into account prior knowledge. We apply the
strategy to acute myeloid leukemia (AML) and assemble a network of logical relationships linking
most of the genes that are found frequently mutated in AML patients. We derive Boolean models
from this network and we show that by priming the model with genomic data we can infer relevant
patient-specific clinical features. Here we propose that the integration of literature-derived causal
networks with patient-specific data should be explored to help bedside decisions.

Keywords: Boolean networks; logic modelling; acute myeloid leukemia; signaling

1. Introduction

Some diseases are caused by mutations in a single gene, or in a few genes [1]. Under-
standing the function(s) of the mutated gene(s) can shed light on the molecular mechanisms
that are altered in the disease condition. At least in principle, therapeutic interventions can
be rationally planned by negatively or positively targeting the molecular path influenced
by the disease gene(s) [2]. More often, however, whole genome association studies of large
cohorts of patients reveal the association of a specific medical condition to variants in a
large number of loci, each contributing to a variable quota for the disease manifestation [3].
No single gene can be held responsible for the condition and many genes cooperate to
modify the functioning of a large network governing a complex physiological function.
In this latter case understanding how the disease genes cooperate and delineating the
connections of the underlying molecular networks, although essential, often turns out to be
a daunting task. In this case tracing therapeutic strategies requires a complete quantitative
understanding of the mechanisms by which the disease genes talk to each other and of
how these interactions, or lack of them, induce a perturbation of the network causing the
disease.

AML is a life-threatening, complex and heterogeneous disease caused by the uncon-
trolled expansion of myeloid precursors [4]. Exon and whole genome sequencing studies
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have revealed genetic alterations in multiple genes, thus providing a wealth of genetic
information, much of which remains to be interpreted mechanistically. Gilliland and
Griffin have observed some regularities in the mutational profiles of AML patients and
have proposed a two-hit model [5]. According to this model, most AML cases are largely
caused by the co-occurrence of driver mutations that can be grouped into two different
classes. Class I mutations occur in genes (such as FLT3, NRAS, PTPN11) involved in signal
transduction and conferring a proliferative advantage, while class II mutations hit epige-
netic modulators or transcription factors (DNMT3A, CEBPA, CREBBP, EP300) impacting
hematopoietic differentiation. This model enabled, to some degree, the rationalization
of the mutational path and the molecular mechanisms causing AML, a disease triggered
by a differentiation block and uncontrolled proliferation. Although useful, this model
does not comprehensively explain all AML cases. As the number of fully characterized
patient genomes has dramatically increased, it has become clear that often patients are
mutated in genes that do not fit into one of the two previously described classes [6] and that
AML is a dynamic disease, characterized by multiple competing clones evolving over time
and carrying diverse infrequent mutations [7]. Systematic collaborative projects aimed at
the characterization of the mutational landscape of AML patients have generated a large
catalogue of leukemia genes that is increasingly comprehensive [8,9]. Importantly, it was
shown that the prognostic value of individual mutations is often significantly altered by
the co-occurrence of additional driver mutations. An increasing number of studies have
already successfully combined tumor profiles with network-based approaches to stratify
patients or to obtain cancer pathway maps [10].

Given the increasing availability of genome-scale mutational profiles, we propose a
novel network-based approach combining a literature-derived AML causal network with
patient-specific genetic profiles. In our strategy, we apply Boolean logic to investigate in
silico some of the somatic mutations on the activation level of hallmark processes and
predict clinical outcomes. Our work aims at developing strategies to exploit large-scale
patient genomic information to infer clinical outcomes and design effective personalized

therapy.

2. Materials and Methods
2.1. Curation of AML-Relevant Causal Information

To assemble a network underlying the molecular mechanisms that are disrupted in
the different forms of AML we first defined a list of “AML driver genes” by surveying the
genes frequently mutated in AML as listed by four international sequencing consortia or
online resources [8,9,11,12]. The 31 genes mentioned in at least two of the four lists were
considered. We also considered as “AML driver genes” MYC, ETV6 and CBFB as they
are highly interconnected in the AML network. Finally, we added the six fusion proteins
(AML1-ETO, BCR-ABL, CBFbeta-MYH11, MLL-fusions, PML-RARalpha NUP98 fusion
proteins) caused by genome rearrangements, as they are frequently observed in AML
patients. In a second step, we performed a literature search by standard methods (PubMed
and Google searches) looking for scientific reports describing the molecular mechanisms or
causal relationships connecting driver genes to AML hallmark phenotypes (apoptosis, dif-
ferentiation and proliferation). Relevant information was manually annotated in SIGNOR
according to the database curation rules [11].

2.2. Assembly and Curation of a Network Linking Driver Genes and Cancer Hallmarks by Causal
Relationships

The dedicated curation effort described in the previous section captured results of
experiments in a total of 81 articles and resulted in the annotation of 200 new AML-related
causal relationships. This information, available at https://signor.uniroma2.it/, was used
to connect the driver genes and the hallmark phenotypes via causal relationships. To
this end we took advantage of CancerGeneNet [12], a resource designed to investigate
signaling paths between any gene and cancer hallmarks. We used a tool offered by the
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resource to link the 40 AML driver genes and the cancer hallmarks’ proliferation, differ-
entiation and apoptosis. The tool returned a network of 517 nodes and 2508 edges which
was first filtered to remove genes that are not expressed in leukemia cell lines and/or pa-
tients (Figure A1), according to previously published proteomic and transcriptomic AML
datasets [9,13]. Next, the network was further refined by expert curators to yield a graph
of 81 nodes and 130 edges, dubbed the “AML network”. For Boolean simulations aimed at
investigating the crosstalk between genes that are frequently comutated in patients, we
extracted a simpler network of approximately 30 nodes (AML modules), which connects
the relevant driver genes to hallmark phenotypes. All the networks and modules described
in this report can be downloaded from the module section of the CancerGeneNet database
(https:/ /signor.uniroma2.it/CancerGeneNet/).

2.3. Developing Boolean Models from Logic Networks

Boolean models were derived from the logical networks by associating a Boolean rule
to each node of the network (Table A1) using the Boolean operators “AND,” “OR” and
“NOT” or a combination of them in an effort to best describe the activation logic of the
node according to available experimental evidence. Whenever two or more activating or
inhibiting interactions converged to a single node they were put in “OR” with exception
for known “AND” constraints. Thus, each node of the network is associated to a Boolean
expression, describing how the value of the node changes depending on the activities
of the upstream regulatory nodes. Whenever a node receives more than one input it is
necessary to have information on the combined effect of the multiple signals in order to
implement logic gates governed by Boolean operators. Most of the times this information is,
however, not available. To overcome this stumbling block, in the absence of experimental
information, we used the following arbitrary “inhibitor wins” approach for combining
the effect of different inputs [14]. Two inputs of the same sign are linked by an “OR”
operator while, in the few cases where a node receives inputs of different sign, we assume
that inhibitions wins over activations. The state of the network is described by a vector
of zero and one values each representing the activation of a node in the network. The
simulation ends when the network reaches a stable configuration, remaining unchanged
over time. We used the R package Boolnet [15] to assemble the model and to compute its
steady states. These network configurations correspond to stable patterns of expression
that can be reasonably associated to biological states. Nodes corresponding to loss of
function mutations were set to 0 and were not changed during simulation irrespective of
the activation states of the upstream nodes (in silico knockout). Constitutive oncogene
expression is simulated by fixing to 1 the value of the corresponding node.

3. Results
3.1. A Network-Based Strategy

We aim to develop a generally applicable approach to improve inference of patient
clinical outcomes from genomic data. Recently, different network approaches have been
developed, already providing some value in patient diagnosis and prognosis [11-13]. Here
we reason that imposing an additional level of information about gene and gene products’
causal interactions, including directionality and sign, might help to improve inference of
disease (here AML) clinical outcomes from patient genomic data.

To this end we developed a four step-strategy that can be generally applied to complex
diseases (Figure 1).

1. Identification of driver genes. First, we took advantage of different disease mutation
databases to annotate as disease genes those genes that are found frequently mutated
in patients diagnosed with the specific pathology.

2. Connecting driver genes to hallmark processes. Next, we used CancerGeneNet, a
tool implemented in the resource SIGNOR, to connect the disease genes to hallmark
disease phenotypes by causal relationships, obtaining a naive network of cause—effect
interactions.
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3.  Generation of pathway modules. This large network is broken down into smaller
modules representing functional path detailing how the most common co-occurring
mutations may functionally interact to regulate hallmark phenotypes.

4. Development of disease-specific Boolean network. The logic information underlying
the module network-topology is translated into actionable Boolean models to be used
to infer the combined effect of the different mutations on patient prognosis.

In the next paragraphs we will describe how we applied this strategy to obtain AML
predictive logic models.

2. From disease genes to hallmark 3. Disease-specific 4. Patient-specific predictive
phenotypes through causal interactions causal network logic model
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Figure 1. Schematic representation of the network-based strategy.

3.2. Identification of AML Driver Genes

As a first step we used available information on genes frequently mutated in AML
patients to define AML driver genes. Several collaborative studies have reported the
genomic characterization of AML patients [8,9,14,15]. These data are annotated in a
number of resources and publications [16]. We screened the literature and online resources
to capture and integrate these data in order to obtain a comprehensive and reliable list of
genes whose genetic alteration causes AML. We integrated the information contained in
four independent gene lists:

e The TCGA AML dataset, consisting of genomic data of 200 clinically annotated adult
cases of de novo AML patients. Fifty cases were characterized by whole-genome
sequencing while for the remaining 150 only the exomes were sequenced. This study,
which is one of the sequencing projects of the landmark cancer genomics program
TCGA, enabled the identification of 23 significantly and recurrently mutated genes [9].

e Papaemmanuil et al., NEJM 2016, reported the mutational profile of 111 cancer driver
genes in 1540 patients enrolled in three clinical trials. For each patient cytogenetic and
clinical data are also available [8].

e Cancer Gene Census, a continuously updated resource storing a manually expert-
annotated catalogue of genes containing mutations that have been causally implicated
in cancer onset or progression [16].

e DisGeNET, a resource containing one of the largest collections of gene lists associated
with human diseases [17]. The list of genes that this resource links to AML is very
large (102 genes). We only considered the 33 genes significantly associated to AML
(Score_dga > 0.02).

Perhaps surprisingly, we observed little overlap between these four lists (Figure 2a).
This could be explained by taking into consideration that the two clinical studies only
investigate adult cases of de novo AML, while both Cancer Gene Census and DisGeNET
list genes mutated in both pediatric and adult AML patients in both de novo and therapy-
related AML.
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Figure 2. Acute myeloid leukemia (AML) cancer driver genes. (a) Venn diagram illustrating the overlap of the AML driver
genes annotated in four independent resources and datasets. (b) Heatmap showing the 31 AML driver genes identified
(blue rectangles) or not identified (white rectangles) in each indicated dataset. Only genes annotated in at least two resources

are shown.

Additionally, while Papaemmanuil et al. sequenced a subset of about 100 selected
cancer genes, in the TCGA study whole exome sequencing is performed to obtain an
unbiased list of mutated genes. Finally, Papaemmanuil et al. did not consider fusion
proteins, which are present in the other lists.

Thus, the four datasets were generated by applying different experimental strategies
to heterogeneous cohorts. However, considering as drivers all the genes annotated in
the four independent resources has the advantage of being a comprehensive approach,
at the cost of risking the inclusion of false positives. This would generate a very large
network whose dynamic behavior might be too complex to interpret. On the other hand,
considering only driver genes that are annotated by two or more resources would result in
a more reliable yet smaller network.

For the scope of this analysis, we adopted a more conservative approach and consid-
ered 31 genes as AML drivers, selecting only those genes that were annotated as drivers in
at least two out of the four resources (Figure 2b). In addition, MYC, ETV6 and CBFB were
retained in the list as they are highly connected with the other driver genes [8].

In addition, we have also included in the AML driver-gene list the six fusion proteins
most commonly identified in AML patients: AML1-ETO, BCR-ABL, CBFbeta-MYH11,
MLL-fusions and PML-RARalpha and those involving the NUP98 gene, as about 20% of
AML patients show chromosomal translocations, which often cause gene fusions encoding
onco-fusion proteins [18].
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3.3. Connecting AML Driver Genes to Hallmark Processes

7

Next, we aimed at connecting, via causal relationships, the 40 “AML driver genes’
and linking them to cancer hallmarks. Although AML subtypes can have rather different
and recognizable morphological and clinical manifestations, they are all characterized by a
hematopoietic differentiation-block accompanied by uncontrolled replication of nondif-
ferentiated cells. Thus, we reasoned that the different observed AML driver mutations,
although sometimes apparently unconnected, would contribute to modulate the func-
tioning of a large connected network affecting the three cancer hallmarks’” phenotypes,
differentiation, proliferation and apoptosis.

Briefly, using the causal relationships annotated in the SIGNOR database [11] we
generated a large network that aims at describing how AML cancer driver genes talk to
each other and may interact to modulate the disease phenotypes. Differently from other
network approaches that are based on binary physical interactions [19-21], the network
that we generated is represented as a signed directed graph of cause—effect relationships
that can be used to draw actionable Boolean models.

To generate such a network, we exploited CancerGeneNet. However, a preliminary
evaluation showed that only 20 of the 40 AML driver genes were annotated with causal
relationships in the resource. To fill this gap, we embarked on a literature curation effort
to link driver genes to the hallmark phenotypes “proliferation”, “differentiation” and
“apoptosis” by capturing relevant experimental evidence.

The resulting network was filtered to include only proteins expressed in leukemic cells.
This information was gathered from the tissue-specific transcriptome and proteome profiles
of leukemia patients and AML cell lines. This approach yielded an AML-specific directed
network of 111 nodes and 517 edges (Figure A1). This automatically generated network
was further reviewed and pruned, taking into account expert consensus as extrapolated
from highly cited reviews [22,23] to generate a simpler graph of 81 nodes, 40 of which are
AML driver genes, and 130 edges (Figure 3a). As the information used to generate the
network is causal, the edges linking the proteins in the network have a direction and a sign
that are represented with arrow or T shaped edges and colors in Figure 4a.

The procedure that we used to generate the AML specific causal network, although
general, is affected by a degree of arbitrariness. As a test of the self-consistency and
the predictive value of the assembled AML network, we assessed whether the network
topology and the signs of the graph edges would allow us to correctly classify the network
nodes representing driver genes as oncogenes or tumor suppressors. To this end we defined
as oncogenes those genes stimulating cell proliferation and/or inhibiting differentiation
or apoptosis, while the genes activating differentiation or apoptosis and/or suppressing
proliferation were classified as onco-suppressors. This approach enabled us to classify
18 genes as oncogenes and 19 as tumor suppressors (Figure 3b). We found that three
additional genes were connected to hallmark phenotypes by different paths that were
compatible with an oncogenic or a tumor suppressor potential depending on the signaling
path. We next compared our automatic unbiased classification with that provided by the
experts of the Cancer Gene Census. Remarkably, 24 genes obtained the same classification
by both approaches. The Cancer Gene Census annotates nine genes as both oncogenes and
onco-suppressors depending on the context and tissue specificity [24-27]. Thanks to our
AML-specific network approach, we were able to assign an unambiguous classification to
these nine genes: eight of these had paths that were compatible with tumor suppressor
activity, one with an oncogenic potential.
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Figure 3. The AML causal network. (a) AML drivers are connected in a signed directed logic network to the three hallmark

phenotypes. Each node and edge is color-coded as described in the legend. (b) Classification of AML driver genes as

oncogenes or tumor suppressors based on inference from network connectivity and comparison with the annotation of the

Cancer Gene Census.

3.4. AML Modules

Causal networks can be relatively easily converted into actionable Boolean models
provided that experimental evidence is available to implement AND/OR operators into
logic gates. Boolean models, although somewhat simplistic, have been shown to be valuable
in capturing the basic properties of a biological system and its dynamics [16-22]. Each
node of the network is associated to a Boolean expression, describing how the value of the
node changes depending on the activities of the upstream regulatory nodes. Equilibria of
the system may be often associated to a specific cell phenotype. An additional advantage
of Boolean models is their scalability. However, Boolean simulations of large networks are
not only computationally challenging, but also generate complex results, often offering
unclear biological insights.

The AML network that we generated, consisting of 81 nodes connected by 130 edges,
is large and complex and as such of limited practicality. Thus, we aimed at simplifying it by
extracting different independent network modules illustrating how the most frequent pairs
or triplets of co-occurring mutations impact the cancer hallmark phenotypes’ proliferation,
differentiation and apoptosis. Thus, we generated four network modules representing
the molecular mechanisms connecting the gene products that are frequently comutated in
AML patients (Figure 4). These simplified pathways consist of 20-30 nodes connected by
about 35 edges, and are more practical for model simulations.

As shown in Figure 5, these models are still generic as they do not include any patient-
specific information. Additionally, these simplified models are assembled by integrating
incomplete experimental evidence and are somewhat arbitrary in the choice of the nodes
and the edges that better embody prior knowledge. Nevertheless, we reasoned that these
models could represent a testable framework whose biological/clinical significance can
be challenged by comparing their predictions with observed biological or clinical data. In
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the following sections we report a use case where patient-specific genomic data are fed to
Boolean models and used to infer clinical data.
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Figure 4. AML modules. Schematic of four AML-specific pathways recapitulating the mechanisms modulated by the most
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gene combinations that are frequently found mutated in patients are listed below the graph and assigned a colored square.

In parenthesis are the number of occurrences in the cohort of 1540 AML patients [8]. The colored squares, assigned to the

gene combinations, are used in the graphs to label the co-occurring genes.

3.5. The FLT3-NPM1-DNMT3A Boolean Model

As a first test we asked whether model perturbations caused by mutations observed in
the driver genes in patients” genomes would change the model output to match clinical data.
We focused on the NPM1-DNMT3A-FLT3 causal module. This comutation pattern was
found as the most frequent in the 1540 patient genomes characterized by Papaemmanuil
et al. Interestingly, it was observed that the oncogenic impact of the FLT3-ITD mutation was
most severe in patients with concomitant NPM1 and DNMT3A mutations, indicating that
the prognostic value of one gene may be significantly altered if another gene is comutated.

We used an NPM1-DNMT3A-FLT3 causal network encompassing 21 protein nodes
and 3 phenotypes (Figure 5a and Table A1) to build a Boolean model and we recorded its
predictions when different genomic profiles were considered as input to define the initial
state of the network and its dynamics.

In silico simulations were performed for different genomic profiles, including loss of
function of NPM1 and/or DNMT3A and/or gain of function of FLT3. In our Boolean model
simulation, oncogenes and TSG were set to fixed values of 1 and 0, respectively. Each node
of the network is associated to a Boolean expression, describing how the value of the node
changes depending on the activities of the upstream regulatory nodes. Nonmutated genes
were considered active or inactive depending on the activities of the upstream regulatory
nodes. This approach enabled to generate eight “mutation-specific” models. To estimate the
level of activation of each phenotype, we assumed that the activities of the nodes directly
linked to a phenotype have an additive effect on the value of the phenotype. Hence, we
estimated phenotype activation by adding up the contribution of the upstream activators
and subtracting that of the upstream inhibitors. Thus, a phenotype is considered “most
active” whenever all activator nodes are on and inhibitors off at a steady state (Figure 5).
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Figure 5. Boolean network simulations of the FLT3/DNMT3A /NPM1 module. In silico simulations of different genomic
profiles, including wt (a), loss of function of NPM1 and/or DNMT3A and/or gain of function of FLT3 (b-h). The nodes are
color-coded according to activation level at equilibrium.

This strategy yielded mutation-specific models integrating different genetic back-
grounds into a causal network. Boolean simulations lead to equilibrium states characterized
by different activation of the three AML hallmark phenotypes (Figure 5b-h).

3.6. Predictive Power of Boolean Models

We next evaluated whether we could use these models to infer some clinical outcomes
of patients carrying mutations in NPM1 and/or DNMT3A and/or FLT3. To this end
we made use of the clinical information provided by Papaemmanuil et al. reporting the
impact of somatic mutations on overall survival and we compared the mutation-specific
hazard ratios with the predictions of our models. As a proxy for the predictive power
of our model, we defined the “integrated network phenotype” score, which is calculated
by subtracting from the activation value of the phenotype “proliferation” the values of
“apoptosis” and “differentiation”. As shown in Figure 6 (panels a—d), the phenotype scores
correlate significantly with the death hazard ratio; the integrated network phenotype
score shows the highest correlation. These conclusions were not affected by repeating
the simulations with a model where the logic gates were based on an “activator wins”
hypothesis. We next investigated the prognostic power of our model by comparing it with
additional clinical features derived from the AML TGCA dataset. Specifically, we compared
the mutation-specific peripheral blood (PB) and bone marrow (BM) blast percentages with
the predictions of our models. As shown in Figure 6 (panels e and f), the integrated
network phenotype score correlates nicely with the peripheral blood and bone marrow
blast percentages (panels e-f). Additionally, as previously observed in the comparison
with the death hazard ratio, the integrated network phenotype score shows the highest
correlation as compared with single phenotypes (Figure 6g). Thus, we conclude that the
prior experimental information embodied in our models is sufficient to replicate important
clinical readouts in patients with different genomic profiles.
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Figure 6. Predictive power of Boolean models. Scatterplot comparing the mutation-specific hazard

ratios with the predictions of our models, as revealed by the network-score (a) and integrated network

phenotypes-score (b—d). Scatterplot comparing the mutation-specific peripheral blood (PB) and bone
marrow (BM) blast percentages with the integrated network phenotypes-score (e—f). (g) Heatmap
showing the Pearson Correlation (PC) between clinical features (columns) and network phenotype

scores (rows).

4. Discussion

The rational design of drugs to cure complex diseases requires an understanding
of the intricate crosstalk between genes whose mutations cause or modify the disease
phenotype. This would allow the development of computational models to help infer the
consequences of perturbing any given disease gene by candidate drugs. Modeling the
molecular pathways that are perturbed in a polygenic disease, however, poses challenges.
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On the one hand, cell physiology is governed by a large network of interactions between
many thousands of gene-products, a network whose details are often poorly understood.
The assembly of a “complete” model faithfully reproducing cell physiology and pathology
is beyond our current capabilities. Thus, approximate approaches should be pursued. On
the other hand, setting boundaries delimiting the relatively isolated areas of the protein
interaction network that are relevant to model a disease is hard. Over the last decades,
network-based approaches have been applied to elucidate the molecular mechanisms
underlying complex diseases [23,24].

In some cases, these strategies have been successfully employed to stratify patients
and to identify new promising potential therapeutic targets in cancer [25-27].

Assembling a disease-relevant predictive network is not straightforward and differ-
ent approaches have been proposed [28]. Some of these are unbiased while others are
based on prior knowledge and rely on expert decisions. Reverse engineering approaches
allow researchers to draw networks in an unbiased manner by using genomewide gene
expression data to infer relationships between genes [29]. To make it simple, if two genes
are coexpressed they are inferred to be functionally correlated and are linked in a gene
regulatory network. The network resulting from these unbiased approaches is useful for
building scaffolds when little information is available on the biological problem under
study but is not appropriate when the goal is that of obtaining logic models to be used in
Boolean simulations. In addition, reverse engineering approaches rely on genomewide
expression studies that provide information for determining gene regulatory networks but
say little about signaling networks where protein modification and modulation of stability
play an important role that cannot be inferred from genomewide transcriptomics. Another
approach consists of identifying genes that are frequently mutated in a disease and linking
them, taking advantage of prior knowledge. The method builds an ensemble of logic-based
dynamic models and trains them to experimental perturbations. The predictions of the
model ensemble are finally combined into an ensemble prediction [24,30]. Networks solely
based on physical interactions, however, miss an important piece of information as they
do not consider the functional consequences of the interactions (activation, inhibition).
To our knowledge, only a few network-based studies take advantage of causal informa-
tion [10,19,31,32]. This could be explained by the limited information coverage on causal
relationships as compared to physical interactions. Importantly, the value of causal inter-
actions in network-based approaches has now been widely recognized and recently new
resources annotating these types of relationships have been developed [11,31].

Here, we propose a novel—generally applicable—network-based strategy to obtain
predictive logic models inferring relevant patient-specific clinical features. Our four-step
strategy is based on the combination of expert curation with bioinformatics tools developed
in two resources, SIGNOR and CancerGeneNet [11,12]. A catalogue of genes associated
with a given disease represents the first step of our strategy. We next take advantage of the
causal relationships annotated in the SIGNOR database to connect these disease-specific
genes and to link them to key phenotypes, e.g., cancer hallmarks, to automatically obtain
a “disease-specific network”. However, as in complex diseases the number of disease
genes tends to be large, the network assembled by this approach is often too complex and
unsuitable for Boolean modeling. In addition, it may contain relationships that are not
relevant in the pertinent biological context. For these reasons, we recommend applying
bioinformatics and “expert curator” filters to obtain a compressed disease-specific network,
which is more suitable for logic modelling.

One concern regards the “expert curator” filter, which gives our approach a certain
degree of arbitrariness as it is left to the curator to decide which of the possible relationships
are most functionally relevant. In principle, this step could be avoided if context-specific
weighed directed graphs were available. We anticipate that in the near future the emerging
growth of omic data will enable researchers to give a “context-dependent score” to each
causal relationship. This would contribute to making our strategy unbiased. As a final
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result, we aim to obtain a network that is a compromised between coverage and simplicity
and is intended as a functional framework to help in diagnosis and therapy-decisions.

As a use case, here we applied our strategy to acute myeloid leukemia, a com-
plex and heterogeneous cancer impacting the regulation of the hematopoietic differ-
entiation process [32]. Our approach generated a signed directed “AML network” re-
capitulating literature-derived molecular mechanisms linking AML cancer driver genes
to cancer hallmarks. Here we show that by combining patient-specific mutation pro-
files with the AML network, we obtain actionable Boolean models that enable to infer
how genetic perturbation of a node impacts the cancer hallmarks. These assembled net-
works, together with the annotation of the experimental evidence supporting each relation-
ship, can be visualized and downloaded from the CancerGeneNet resource for local use
(https:/ /signor.uniroma2.it/CancerGeneNet/). Importantly, these networks should not be
considered as established definitive descriptions of the disease, but rather as continuously
updatable models, whose predictions should be challenged with new experimental findings.

Our results show that already in its present form the model can infer, with good
accuracy, whether any of the nodes mutated in the tumor can be classified as an oncogene or
a tumor suppressor, as the automatic prediction is largely in accord with expert annotation.
In addition, a Boolean model derived from a smaller network-module representing the
crosstalk between FLT3, DNMT3A, NPM1 and cancer hallmarks, when primed with patient-
specific genomic profiles, yielded predictions that are in accord with patients’ clinical data.

Although successful, our strategy has some limitations that should be addressed in
the near future. The module models that we have developed only aim at capturing the
contribution of cancer driver genes to the development of cell phenotypes. Additional
expert curation would be required to produce every subnetwork recapitulating each patient
mutation profile. The long-range effects from modifier genes are not considered. In addi-
tion, cell phenotypes are not only determined by the mutational profiles, as environmental
perturbations may have an impact on clinical phenotypes. These long-range effects and
epigenetic contributions, however, could be captured from the analysis of perturbation
of patient expression profiles, which are becoming increasingly more available in clinical
settings. In a few cases, these profiles have already demonstrated some value in predicting
clinical outcomes [33-36]. As gene expression data are modulated both by genomewide
genetic and epigenetic information, patient-specific gene expression profiles should be
overlaid onto the Boolean models, for instance by priming the model initial state This might
contribute to tune the model predictions. Our strategy addresses the problem of assembling
a disease network by exploiting a resource of annotated causal protein interactions. We
have also shown that the generated networks can be turned into patient-specific actionable
Boolean models that predict clinical outcomes. Logic modelling has already been used
to model cancer pathways [37,38]. Others have used publicly available causal models
and have challenged their predictions with perturbation data to obtain context-specific
models [15,39,40]. The PROFILE method integrates mutation data, copy number alterations
and expression to obtain patient-specific models. The novelty of our approach consists in
the combination of disease-specific causal networks with patient-mutation profiles.

Finally, here we have demonstrated that minimal models that only consider the causal
interactions between a few gene products can help rationalize and possibly infer relevant
diagnostic and prognostic patient-specific features.

The strategy that we have proposed is generally applicable and can be used to integrate
tumor mutation profiles into molecular networks that are both biologically and clinically
informative.
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Figure A1. Network-based approach. (a) Human naive signaling network, as derived from SIGNOR,
was filtered to keep only the paths connecting the 40 AML driver genes to AML hallmarks (b). This
network was filtered excluding proteins not expressed in AML (c) and other bioinformatic filters
were applied (d).


signor.uniroma2.it/CancerGeneNet
signor.uniroma2.it/CancerGeneNet
https://www.cancer.gov/tcga

J. Pers. Med. 2021, 11, 117 14 of 15

Table A1l. The NPM1, DNMT3A, FLT3 Boolean model.

Targets Factors
flt3 flt3
npm1 npml
akt flt3
Apoptosis tp53 & !bcl2
arf npm1
bcl2 erk & !tp53
cendl !(dnmt3a | gsk3b)
cebpa 'flt3
Differentiation (cebpa | etv6) & !meisl
erk flt3
etvé lerk
foxw7 npm1
gsk3b lakt
hoxa9 Inpm1
meisl I(dnmt3a & hoxa9)
myc erk & !(fbxw?7 & gsk3b)
Proliferation (myc | cendl | sox4 | meisl | stat5a)
sox4 Icebpa
statba flt3
tp53 arf
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