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Abstract: Asthma is a multifactorial inflammatory disorder of the respiratory system characterized
by high diversity in clinical manifestations, underlying pathological mechanisms and response to
treatment. It is generally established that human microbiota plays an essential role in shaping a
healthy immune response, while its perturbation can cause chronic inflammation related to a wide
range of diseases, including asthma. Systems biology approaches encompassing microbiome analysis
can offer valuable platforms towards a global understanding of asthma complexity and improving
patients’ classification, status monitoring and therapeutic choices. In the present review, we summa-
rize recent studies exploring the contribution of microbiota dysbiosis to asthma pathogenesis and
heterogeneity in the context of asthma phenotypes—endotypes and administered medication. We
subsequently focus on emerging efforts to gain deeper insights into microbiota—host interactions
driving asthma complexity by integrating microbiome and host multi-omics data. One of the most
prominent achievements of these research efforts is the association of refractory neutrophilic asthma
with certain microbial signatures, including predominant pathogenic bacterial taxa (such as Proteobac-
teria phyla, Gammaproteobacteria class, especially species from Haemophilus and Moraxella genera).
Overall, despite existing challenges, large-scale multi-omics endeavors may provide promising
biomarkers and therapeutic targets for future development of novel microbe-based personalized
strategies for diagnosis, prevention and/or treatment of uncontrollable asthma.

Keywords: asthma; gut and airway microbiota; systems biology; multi-omics data integration;
bioinformatics; biomarkers; drug targets; precision medicine

1. Introduction

Asthma is a chronic inflammatory disease with multiple phenotypes that causes
immune and respiratory dysfunction and globally affects more than 300 million people,
leading to nearly half a million deaths [1]. Numerous studies within the last decade have
explored the multiple levels of asthma complexity and underlined the concept that asthma
rather represents an umbrella term covering distinct phenotypes and pathophysiological
mechanisms [2-4].

Disease initiation and subsequent exacerbations have been connected to several factors,
including an individual’s genetic susceptibility as well as exposure to environmental stimuli
and behavioral attributes, such as pathogenic microorganisms, allergens, air pollution,
tobacco smoke and diet [5]. Asthma symptoms vary broadly in severity, from wheezing and
shortness of breath to cough and chest tightness, as well as airflow obstruction. Regarding
management, asthma has been confronted for many years with a universal therapy with
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bronchodilators and inhaled corticosteroids (ICS), aiming to improve bronchoconstriction
and airway inflammation, yet not taking into account the diversity of the pathogenic
background underlying distinct disease subtypes. As a result, a wide spectrum of responses
to treatment has been observed, while a significant fraction of patients suffering from severe
symptoms remains under-treated, causing a substantial burden to individuals, families
and health care systems [5,6].

The concept of precision medicine ensuring that each patient is provided, in a timely
manner, with the appropriate prognosis, diagnosis and/or therapy, thus eliminating the
negative consequences and resulting in the maximum clinical benefit, is clearly relevant
to the heterogeneous nature of asthma [7-10]. Actually, research exploiting modern sys-
tems biology approaches that combine individuals” pathophysiological traits with high-
throughput profiling of molecular biomarkers in large, well-characterized cohorts of asth-
matics have significantly expanded our ability to better understand asthma complexity,
as well as to develop more targeted strategies to disease diagnosis, therapy and monitor-
ing [11,12]. In this same context, a substantial effort has focused on the investigation of
patients’ microbiota in the gut and upper/lower airways and its potential connection with
the different asthma subtypes [13].

Microbiota is the complex and dynamic community of microbes (bacteria, archaea,
viruses and eukaryotic microbes), both commensals and pathogens, that reside in and on
a host organism (human, animal, plant) and/or the environment. Microbiome mainly
refers to the genome representing the microbiota, yet both terms are often used inter-
changeably [14]. Human microbiota colonizes shortly after birth in the gastrointestinal
and respiratory tracts as well as in other multiple body sites, and from that point on is
continuously shaped by various environmental exposures and potentially host genetic
background. It is now widely accepted that these microbial communities, along with their
metabolites, support many vital biological processes in the host organism (regulation of the
immune system, metabolism, brain function, response to drugs, etc.), contributing either to
health or disease under eubiosis or dysbiosis conditions, respectively. In fact, dysbiosis, i.e.,
the imbalance of microbial diversity between beneficial and harmful pathogenic microbes
or simply the disturbance of the “normal” abundance of certain commensal microorgan-
isms, has been associated with numerous human disorders, including asthma. However,
whether the observed dysbiosis is primary or secondary to disease development remains a
subject of debate in most cases [13].

From a technological point of view, the rapid development of next-generation se-
quencing platforms, which have made sequencing much faster and cheaper, along with the
continuous advances of bioinformatics for large dataset analysis and integration, helped to
overcome the limitations of conventional microbiology methods and largely promoted un-
precedented advances in microbiome research and potential applications [15,16]. In terms
of sequencing approaches, amplicon sequencing that targets the bacterial 16S ribosomal
RNA (rRNA) gene has been the most widely used, offering the main body of available
knowledge regarding the composition and dynamics of bacterial communities. On the
other hand, shotgun sequencing of the whole metagenome, although significantly more
expensive, with high demands in analytical skills and quite challenging, especially with
low-biomass microbial communities, is lately gaining in popularity since it can capture the
entire microbial genomic content (bacteria, viruses and eukaryotic microorganisms) and
provide a complete taxonomic and functional characterization of the whole microbiota [17].

In this review, we first summarize recent works exploring asthma heterogeneity, espe-
cially at a comprehensive -omics analysis level. We then attempt to cover current advances
on host microbiome research, particularly considering potential correlations linking the
structure of microbial communities with asthma heterogeneous phenotypes/endotypes
and treatment. Subsequently, emphasis is given on studies integrating microbiome and host
multi-omics data using bioinformatics tools, mathematical models and machine learning
approaches. We finally discuss challenges to process, analyze, interpret and combine such
big biological datasets, as well as future directions towards precision medicine in asthma.
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2. Asthma Heterogeneity and Classification

Asthma was initially categorized in two main phenotypes, namely atopic or “extrinsic”
asthma, related to an allergic reaction upon exposure to environmental inhaled allergen(s),
and non-atopic or “intrinsic” asthma. Atopic asthma presents a higher prevalence in
childhood, whereas non-atopic asthma occurs mainly in older ages. The chronic inflam-
mation of atopic asthma is caused by an enhanced immune response against common,
non-pathogenic, environmental allergens. In contrast, non-atopic asthma is triggered by
various non-allergic factors such as viral infections, tobacco smoking, stress, etc. In both
types, patients are characterized by a genetic susceptibility [4,5,18].

Additional phenotypic classification for asthma has been mainly based on single
variables, such as the age of onset (childhood/early-onset asthma, adult/late-onset asthma,
elderly/very-late onset asthma), disease severity (mild, moderate and severe asthma) or
responsiveness to a specific treatment. Other common phenotypic variants in asthma
are based on the presence of comorbidities, as for example obesity-associated asthma,
or on specific irritants such as smoking-associated asthma and asthma induced by in-
gestion of aspirin. In addition to the large fraction of asthmatics that are responsive to
golden standard medication, basically including bronchodilators and ICS, a specific group
of patients presents refractory symptoms despite being administered intense and novel
therapies [18,19]. The pathological profile of these patients is generally classified as “severe
asthma” and represents 10-20% of the total [4,6]. The phenotypic-based classification has
not achieved so far to clearly distinguish discrete subtypes of asthmatic patients, and an
overlap between the different groups has been constantly observed.

Recently, an alternative arrangement of asthma patients into two major “endotypes”,
namely T-helper lymphocytes 2 high (Th2-high) or non-T-helper lymphocytes 2 high (non-
Th2), has been suggested based on predominant underlying inflammatory pathways and
involved specific biomarkers (Figure 1). The immune-pathogenesis of asthma has been
extensively reviewed elsewhere [18,20] and will only be shortly covered here. In brief,
T-helper (Th) cells, particularly Th2 and Th17, have been proved to play a central role in
asthma: by releasing a number of cytokines and orchestrating a cascade of inflammatory
signaling pathways, they can coordinate other immune cells such as B cells, eosinophils,
mast cells or neutrophils and ultimately lead to disease pathogenesis [18,21].

Asthma Endotypes
Common Inflammatory Biomarkers Therapies
) Phenotypes Mediators
Th2-high
+ICS, 0CS
+ Sputum/blood eosinophils - Biologics
+ Atopic «IL-4, IL-5, *IgE Mepolizumab
> Early on-set IL-9, IL-10, « Periostin Reslizumab
Late on-set IL-13 «FeNO Benralizumab
Dupilumab
Omalizumab
Non-Th2
+ Non-atopic
+IL-17, TNF-a, .
Late on-set IL-1b. IL-6 @ + Sputum/blood neutrophils +1CS, 0CS
—>| e
9 IL-22, 1L26
+ Obese

Figure 1. Main features of asthma endotypes. FeNO: fractional exhaled nitric oxide; IgE: immunoglob-
ulin E; IL: interleukin; ICS: inhaled corticosteroids; OCS: oral corticosteroids.

In the Th2-high endotype (often referred as eosinophilic asthma), which occurs in
approximately 50% of patients with asthma, Th2 cells produce various cytokines, such as
interleukins (IL)-4, IL-5, IL-9, IL-10 and IL-13 and induce the recruitment and activation
of eosinophils [22]. Among the released cytokines, IL-4 seems to centrally contribute to
atopy by stimulating B cells to produce Immunoglobulin E (IgE), which, in turn, boosts
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mast cells to release histamine, serotonin, and leukotrienes to cause bronchoconstriction
and medjiate allergic responses. Furthermore, IL-5 exerts pleiotropic effects on eosinophils
by promoting their proliferation, maturation, activation, survival and migration to airways.
Elevated sputum and blood eosinophils, as well as high levels of total serum IgE, proteins
derived from the bronchial epithelium such as serum periostin and fractional exhaled nitric
oxide (FeNO), are currently exploited as diagnostic biomarkers indicative of Th2-high type
asthma [23,24]. Common asthma phenotypes included in the Th2-high asthma endotype
are early-onset atopic asthma and late-onset eosinophilic asthma. The clinical symptoms in
Th2-high asthmatics can range from mild to severe, and usually, patients are responsive
to ICS standard treatment [4]. To tackle severe, persistent Th2-high inflammation, a more
precise approach has been recently applied to design novel biomarker-oriented “biologics”,
mainly monoclonal antibodies, such as omalizumab targeting peripheral IgE, mepolizumab,
reslizumab and benralizumab targeting IL-5 pathways and finally dupilumab that targets
IL-4 and IL-13 pathways [10]. The selection of the appropriate biological treatment strategy
depends on various factors, such as the levels of serum IgE or eosinophils. For exam-
ple, high periostin and IgE serum levels combined with blood eosinophils and elevated
FeNO can indicate the response to omalizumab therapy [25]. Sputum and blood levels of
eosinophils without IgE can predict the responsiveness to anti-IL-5 treatment [10].

Non-Th2 endotype, or non-eosinophilic asthma, is characterized by a lack of Th2-
dependent inflammation. Other Th cell types, mainly Th17, but also Th9, Th25, Th3 and
regulatory T cells (Tregs), have been shown to contribute to the inflammatory processes that
lead to the initiation or aggravation of asthma. Th17 cells produce potent pro-inflammatory
cytokines such as IL-17A, IL-17F, tumor necrosis factor alpha (TNF-c«), IL-1b, IL-6, IL-
8, IL-21, IL-22 and IL-26 [26-28] and coordinate the recruitment of neutrophils in the
airways [29]. According to the pattern of airway inflammation, non-Th2 asthma is classified
under the following subcategories: neutrophilic, mixed granulocytic and paucigranulocytic.
Diagnostically, neutrophilic asthma involves neutrophil cell counts in the sputum within
the range of 40-70%; mixed granulocytic inflammation is characterized by the presence
of both neutrophils and eosinophils; finally, paucigranulocytic asthma presents normal
eosinophils and neutrophils proportions in the sputum. Non-Th2, particularly neutrophilic,
asthma is related to non-atopic phenotype, old age, pollutants, viral/microbial infections,
tobacco smoking and obesity. Interestingly, it has been shown that neutrophilic asthma can
be induced by Moraxella, Streptococcus and Haemophilus species [30]. Non-Th2 asthma is
characterized by severe symptoms and poor response to inhaled and oral corticosteroids
(OCS) [31]. Levels of sputum neutrophils are considered as a biomarker for predicting
symptoms’ persistence despite standard treatment, and it is indicative for macrolides
administration in severe asthma [32]. Currently, IL-6 and metalloproteinase 9 (MMP9) are
suggested as novel biomarkers for non-Th2 asthma [4].

Based on the Th2-high and non-Th2 asthma classification according to specific inflam-
matory biomarkers and the emergence of new biologic therapies, the Global Initiative for
Asthma (GINA) has developed a Pocket Guide for helping health professionals to identify
and decide on the most appropriate treatment strategy that can effectively cure asthma
patients, especially those exhibiting persistent Th2-high inflammation [6]. However, the
mechanisms driving the refractory non-Th2 subtypes, such as neutrophilic asthma, are
still poorly understood and there is not, so far, an effective management for severely ill
asthmatics. Besides, the considerable side effects associated with high OCS administration
point to a more individualized choice of both the potentially beneficiary patients and
the optimum corticosteroid therapeutic doses [33]. These issues have urgently prompted
the further pursuit of precision medicine perspectives in modern asthma research using
systems biology approaches.

3. Insights from Host-Omics Research

During the last two decades, the rapid development of -omics approaches regarding
new technologies and novel systems biology computational analyses has inevitably in-
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filtrated asthma research, as clearly documented by relevant literature [34-37]. Scientific
efforts investigating asthma endotypes, identifying potential biomarkers, and dissect-
ing disease heterogeneity have been enhanced by an undeniable shift towards a holistic
systems-based perspective in asthma precision medicine. As a result, apart from vari-
ous relatively small-scale but highly informative efforts, additional large and centralized
consortia conducting comprehensive systems studies, such as the Unbiased Biomarkers
for the Prediction of Respiratory Disease Outcome (U-BIOPRED) [38,39] and the Severe
Asthma Research Program (SARP) [40,41], have tremendously aided to stratify asthma
patients and tailor new targeted treatment options. Although it is far from the focus of this
review to cover the extensive relevant literature, some meaningful insights from genomics,
epigenomics, transcriptomics, proteomics and metabolomics studies are provided below to
better understand the molecular basis of asthma heterogeneity.

3.1. Genomics-Epigenomics

Large-scale genome-wide association studies (GWAS) have identified numerous ge-
netic variations and genomic loci possibly associated with asthma characteristics [42,43].
However, only a handful of these results—mainly related to genomic variations identified
in the 17q12-21 locus (ORMDL3 and GSDMB genes)—are considered to be reproducible, es-
pecially in the case of early-onset childhood asthma [42,44,45]. Additionally, an important
number of conducted pharmacogenomic studies have highlighted a potential link between
some genetic variations within the ADRB2 gene and altered drug response against long-
acting beta agonists in asthmatic children [46-48], a notion that merits further investigation
towards a personalized medicine approach in asthma treatment.

Given the intrinsic multifaceted features of asthma, the role of environment-related
epigenetic DNA changes associated with asthma manifestation has gathered considerable
attention, providing complementary information to genomic research through epigenome-
wide association studies (EWAS) and meta-studies of DNA methylation. A meta-analysis
of 13 cohorts has identified thousands of differentially methylated sites of cytosine-guanine
dinucleotides (CpGs) in the blood of newborns and children, depending on the maternal
smoking status [49]. Some of the corresponding genes are asthma-related, indicating a
possible exposure—disease relationship in the case of maternal smoking. Two additional,
large meta-EWAS focusing on childhood asthma have identified specific differentially
methylated CpGs of interest in newborn and child blood samples [50,51]. Xu et al. identified
differentially methylated CpG sites in asthmatic children and their corresponding gene
expression profiles associated with T-cell cytotoxicity and activation of eosinophils [50].
Moreover, Reese et al., by analyzing blood samples from asthmatic newborns and children,
highlighted CpG sites and genomic regions as potential biomarkers of asthma risk and
related immune responses. The resulting CpGs of interest were also replicated to some
extent in datasets of nasal epithelium cells and eosinophils [51]. Lastly, an interesting DNA
methylation study including asthmatic (n = 74) and non-asthmatic adults (n = 41) has
revealed a putative epigenetic regulatory role of 17q12-21 locus associated with asthma
risk and ORMDL3 overexpression in the airways of asthmatic patients [52].

3.2. Transcriptomics—Proteomics

Transcriptomic studies have played a keystone role in systems-based investigations of
asthma, providing crucial information about gene expression association to observed phe-
notypes and relevant Th2-high and non-Th2 endotypes [53,54]. Although highly indicative
in some cases, transcriptomics cannot fully explain the observed protein expression. There-
fore, proteome studies have also been undertaken to complement and enhance research
endeavors regarding inflammation and immune response biomarkers in asthma. These
specific fields of systems studies in asthma have been pursued by large-scale consortia
such as U-BIOPRED and SARP initiatives.

In particular, the U-BIOPRED consortium has provided invaluable information re-
garding asthma severity in adults and children, both at the clinical and molecular level.
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Stable patient clusters—characterized by a distinct sputum transcriptomic and proteomic
profiling—have been identified using a small subset of clinical-physiologic variables as-
sociated with asthma severity [55]. A transcriptomic and gene set enrichment analysis of
epithelial brushings and bronchial biopsies from patients with moderate-to-severe asthma
revealed distinct subgroups of patients associated with eosinophilic or non-eosinophilic
inflammatory phenotypes [56]. At the same time, Kuo et al. explored the differential gene-
expression landscape between eosinophilic and non-eosinophilic inflammation in sputum
samples and obtained phenotypically relevant clusters based on transcriptomic molecular
features [57]. Additionally, gene expression and pathway analysis based on transcriptomic
profiling of peripheral blood in the U-BIOPRED cohorts has highlighted gene signatures
and implicated biological pathways associated with differential asthma severity but also in
comparisons between asthmatics and healthy controls [58]. A cross-sectional observational
study of adult asthmatics from U-BIOPRED has identified differentially enriched gene
signatures between adult-onset and childhood-onset severe asthma in nasal, sputum and
bronchial samples [59]. These signatures reveal differences in eosinophilic inflammation,
mast cell presence and lung injury. Moreover, sputum proteomics and airway cell transcrip-
tomics analyses from U-BIOPRED patients have been successfully implemented to explore
the distinct molecular features of smoker, ex-smoker and non-smoker severe asthmatics,
despite the similar clinical manifestation of asthma in these cases [60]. In 2019, Schofield
et al. presented a proteomic-based clustering of asthmatic patients from the U-BIOPRED
cohort, providing a valid molecular basis for the distinction of granulocytic inflammation
in asthma presentation [61].

The SARP consortium is another pivotal ongoing effort that provided valuable insights
into the transcriptomic and proteomic characteristics of asthma manifestation. By perform-
ing a gene co-expression network analysis in 155 asthmatics and healthy controls from
the SARP cohort, Modena et al. attempted to identify underlying mechanisms in severe
asthma [62]. The expression of several hub genes related to epithelial growth and repair,
located near the 17q12-21 locus, was notably decreased in severe asthmatics. Additionally,
there are remarkable efforts towards a proteomic characterization of asthma-associated
inflammation and immune responses inside the SARP consortium. By implementing ma-
chine learning models based on cytokine measurements from bronchoalveolar lavage (BAL)
samples from severe and non-severe asthmatics, Brasier et al. explored cytokine expression
patterns associated with distinct asthma phenotypes based on inflammation characteris-
tics [63]. Furthermore, in two different studies, Hastie et al. shed light on the complex
association of inflammatory protein mediators and asthma severity by stratifying patients
based on eosinophilic, neutrophilic or other non-eosinophilic characteristics and exploring
differential protein expression of cytokines, chemokines and growth factors [64,65].

3.3. Metabolomics

Metabolomics have also emerged as a continuously evolving and rapidly ascend-
ing field of -omics approaches in asthma research [66]. Blood plasma and serum, urine
and exhaled breath condensates (EBCs) pose as informative and easily accessible types
of biological samples for analysis by NMR, GC-MS or LC-MS approaches in asthma
metabolomics [66]. In particular, the case of “breathomics”—in which EBCs are analyzed
by GC-MS, NMR or e-Noses [67] for volatile organic compounds (VOCs) profiling—has
gathered a notable amount of attention. In a study involving asthmatics (n = 35) and
healthy controls (1 = 23), by implementing logistic regression models in breath sample
data analyzed by GC-MS, specific VOCs including various alkanes could classify asth-
matics and controls, as well as differentiate eosinophilic and neutrophilic phenotypes [68].
Similarly, in another study, utilizing random forest models and unsupervised k-means
clustering in NMR spectra from EBCs has provided a solid model of distinctive features,
including formate and hydroxybutyrate, towards the differentiation of asthmatics (n = 89)
and controls (n = 20), along with a clinically relevant formation of patient clusters partially
corresponding to previously established neutrophilic endotypes [69]. Compared to GC-MS
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and NMR that measure individual VOCs, e-Noses can only identify signal patterns of VOC
mixtures. Nevertheless, e-Noses have provided noteworthy results in asthma research
throughout the years [70,71]. Attempting to evaluate the ability of e-Nose-derived VOC
patterns to classify asthmatics and controls, along with predicting patient steroid response,
van der Schee et al. studied mild-to-moderate subjects and healthy controls [70]. e-Nose
VOCs analysis could classify asthmatics and controls with lower but similar accuracy to
FeNO and eosinophil counts in sputum as well as predict steroid response with a crucially
greater accuracy than both alternatives. A more recent study, based on e-Nose VOCs from
a U-BIOPRED subset of adults (n = 78), managed to identify three clusters of patients with
distinct inflammatory characteristics (blood neutrophils and eosinophils percentages) and
OCS use [71], along with assessing cluster stability over time.

Apart from EBCs, blood plasma and serum from asthmatic patients is another useful
biological sample source. A multivariate regression-based analysis of serum NMR spectra
from asthmatics (1 = 39) and healthy controls (1 = 26) provided a panel of potential asthma
biomarkers (increased levels of methionine, glutamine and histidine; decreased levels of
formate, methanol, acetate, choline, O-phosphocholine, arginine and glucose compared
to healthy controls) and revealed implicated hypermethylation, hypoxia and immune re-
sponse pathways [72]. Another study by Reinke et al. provided different “metabotypes” of
asthma by analyzing through high-resolution LC-MS serum samples from asthmatics (mild,
moderate, severe) and non-asthmatic controls [73]. Finally, in a relatively recent analysis
of blood plasma from 237 children (46 with current asthma and 191 controls), although a
partial least squares discriminant analysis could not identify significant between-group
metabolome changes, individual regression for each metabolite yielded some interesting
results [74]. A potential association of current childhood asthma with metabolite pertur-
bations related to nicotinamide and pyrimidine metabolism, production of bile salts and
heme catabolism was observed. Furthermore, higher levels of p-cresol sulfate—a microbial
metabolite from the gut microbiome—were linked to decreased odds of current asthma,
and this association was replicated in an independent cohort.

4. The Human Microbiome in Asthma Research

In addition to the above-mentioned intensive studies, a substantial body of research
aims towards the investigation of the asthmatics microbiome and its relationships to
environmental stimuli, disease subtypes and medication, as all these aspects are considered
very crucial for further understanding asthma in the context of precision medicine [75-77].

4.1. The Importance of the Initial Host Microbial Colonization

Several consistent findings have generally acknowledged a crucial role of the micro-
biome in atopy and asthma [78,79]. Epidemiological research has indicated that a rich
microbial environment in early life confers protection against the development of several
chronic inflammatory respiratory disorders [80,81]. The well-known “hygiene hypothesis”
from 1990, properly adapted to incorporate the relevance of host microorganisms, suggests
that perinatal microbial exposure along with early life contact with environmental mi-
crobes are necessary to ensure proper colonization of distinct body habitats (primarily gut,
respiratory tract, skin, genital tract, etc.). This, in turn, is essential for the development of
healthy immune functions, especially of tolerance, as well as for the competitive protection
against pathogenic microbes [82,83]. The time and mode of childbirth, maternal age, diet,
hospitalization, body mass index (BMI), smoking status, socioeconomic status, breastfeed-
ing and antibiotic use all shape the establishment of the infant microbiome, which reaches
its long-term stability for many microbial species at approximately two years of age [84].

In asthma, the positive or negative interplay between the exogenous microbiome and
the microbiome of mucosal respiratory tract surfaces has been shown to play a persistent
role in influencing the airways’ physiological equilibrium. For example, high microbial
diversity in the environment has been associated with lower asthma risk, particularly
in children exposed to farming [85,86]. On the other hand, viral respiratory infections



J. Pers. Med. 2021, 11, 1299

8 0f 30

with rhinovirus and respiratory syncytial virus during infancy have been shown to be
crucial in driving permanent wheeze and bronchiolitis that often precedes full-blown [87].
Furthermore, a recent investigation of the exogenous mycobiome and bacteriome in the
indoor dust of severe asthmatic patients identified notable relationships, with more medi-
cally relevant microbiome and higher mycobiome diversity to be associated with distinct
inflammatory asthma subtypes [88].

4.2. The Key Role of the Gut and Airway Microbiota Cross-Talk in Asthma

The gastrointestinal tract is by far the most abundant microbial ecosystem in the
human body. In the last decade, there has been an explosion of studies, strongly associating
gut microbiota dysbiosis with the pathophysiology and clinical manifestations of a wide
range of diseases, from bowel inflammatory disorders, mental diseases and cancer to allergy,
asthma and respiratory infections, including coronavirus disease [89-93]. It is well known
that gut microbiota acts as a major modulator of immune training and functions through its
complex interactions with the gut-associated lymphoid tissue, not only locally but at remote
sites as well, including the mucosal surfaces of the respiratory tract [94-96]. Furthermore,
gut bacteria interactions with therapeutic drugs can modulate their availability, efficacy
and host response to treatment [97,98].

A higher abundance of certain bacterial taxa (Faecalibacterium, Lachnospira, Rothia,
Bifidobacterium and Akkermansia, among others) in the gut microbiome, especially during the
first month of life, has been shown to associate with protection against allergic sensitization
and allergic asthma [99-101]. A potential link between the gut microbiota and atopy is
its influential role in the induction of Tregs, a subpopulation of T cells that modulate
immune system activity, maintain tolerance to self-antigens, and prevent autoimmune
disease development [102,103]. Some of the commensal gut bacteria have been also shown
capable of modulating the Th type 1/2 (Th1/Th2) balance [104] or directly stimulating
Th17 cell differentiation [103]. Furthermore, gut microbiome is an important producer
of key metabolites, such as short-chain fatty acids (SCFAs), polyunsaturated fatty acids,
tryptophan, gaseous molecules, etc., all actively implicated in host physiology [105]. For
example, Clostridium spp. are producers of propionic acid (PPA) following the fermentation
of complex carbohydrate fibers implicated in the modulation of cell signaling, activation of
Tregs, reduction in Th2 inflammation, and neurotransmitter synthesis and release [106-108].
Additionally, differences in SCFAs have been observed in infants at the age of three months
who later exhibited atopic wheeze by age one [99,100,109].

Although the gut microbiome significantly contributes to the immune regulation
and host response to allergens, asthma originates in airways, making the respiratory
microbiome more relevant to exert a direct, both acute and long-term, effect on disease
pathogenesis progress and control. Modern sequencing technologies have revealed that in
healthy individuals, the lung is not a sterile organ, but it rather harbors a low in density,
yet dynamic, microbial community, dominated by the bacteria phyla Bacteroidetes (mostly
Prevotella and Veilonella spp.), Actinobacteria and Firmicutes. To date, every study on res-
piratory microbiota in relation to any lung disease, from asthma and chronic obstructive
pulmonary disease (COPD) to cystic fibrosis and acute infections, has demonstrated clear
differences in bacterial colonization compared to the healthy state and suggested its di-
rect impact on local inflammatory processes [110-112]. Therefore, studying the dynamic
changes in the composition of the airway’s microbial communities and their association
with host and environmental factors can provide critical novel insights into respiratory
disease pathogenesis and may redefine clinical management [113].

There are several lines of evidence supporting the implication of respiratory micro-
biome in asthma initiation [114,115]. Due to a disruption of the delicate balance between
immigration and elimination of bacteria in the lower respiratory tract, asthmatics present
altered bacterial composition in their lungs compared to healthy subjects, though the
reported alterations are not always consistent in the various studies. Increased Proteobac-
teria populations (especially Haemophilus, Moraxella, Streptococcus and Neisseria taxa) and
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reduced Bacteroidetes and Fusobacteria communities within both young and adult patients’
airways microbiome have all been associated with the triggering of inflammatory responses,
asthma symptoms, hyper-responsiveness and exacerbation [116-118]. Remarkably, the
detection of asthma-related bacteria, especially after viral infections, in the first few months
of life has been associated with developing allergic asthma by the primary school age [80].
As mentioned above, asthma may also have its roots in dysbiosis occurring in the gut micro-
biome that can affect the integrity of the airways microbiome. Conversely, lung microbiome
aberrations in asthmatics may modulate the immune responses for microbiota residing in
the gut. Such mutual interactions mediated by locally resident microbes, circulating active
biomolecules (microbial metabolites, pro-inflammatory factors) and mucosa-associated
lymphoid tissue in concurrence with systemic immunity has led to the concept of the
“gut-lung axis” (Figure 2), pointing out that microbiomes at both niches may be significant
contributors to the pathogenesis of asthma [90,119]. However, further studies are needed
to fully understand the mechanism of such cross-talk [120].

Dysbiosis in Asthma

Inflammatory
mediators

Lung microbiome /sm Gut microbiome
immunity

Gut-lung axis

Systemic
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Figure 2. Schematic representation of dysbiosis in asthma. Exposome refers to factors such as
environmental microbiota, allergens, air pollution, tobacco smoke, diet, medication and early-life
exposures.

While most microbiome studies in asthma have focused on the identification of bacte-
rial communities, recent advances in sequencing approaches and taxonomic databases have
allowed the broad characterization of all the microorganisms within both gut and airways
ecosystems. Overall, current knowledge supports that the host microbiome implication in
asthma pathogenesis and heterogeneity is not limited solely to bacteria but also involves
various other microbes, such as fungi and viruses, that altogether interact and shape the
dominant host microbiota communities which either maintain the appropriate healthy
balance or lead to dysbiosis and consequently to asthma manifestation and exacerbations.
For instance, several lines of evidence have suggested a possible contribution of fungi
communities in immunomodulatory mechanisms developed in early life [121], while dif-
ferences between the airways fungi composition in asthmatic patients and healthy controls
have also been widely reported [122].
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4.3. Microbiome and Crucial Asthma Risk Factors

In addition to the well-studied role of environmental microbes, extensive research has
also underlined the importance of other host exposome features, i.e., factors a person is
exposed to throughout his life (including drugs, tobacco smoking, pollutants, allergens, diet,
etc.) in asthma [123]. Although there is still no clear mechanistic evidence on how exposome
affects asthma, many studies have recently indicated either direct or indirect contribution
to airway microbiome restructuring by either harmful or beneficial stimuli with subsequent
consequences in lung functionality and host immune training and modulation [77]. As the
detailed discussion of these aspects is considered to be beyond the scope of the present
review, we only briefly focus below on two well-established asthma risk factors, namely
tobacco smoking and obesity and their association with airway microbiome alterations.

4.3.1. Tobacco Smoking

Tobacco smoking has been extensively studied as it is recognized to induce non-Th2
neutrophilic inflammation, leading to severe steroid-resistant symptoms and mortality in
asthma patients [60,124,125]. Smoking cessation programs are considered important thera-
peutic interventions towards improving the clinical outcomes in asthmatic smokers [126].
Regarding microbiome, tobacco smoking per se has been associated with alterations of both
gut and upper respiratory tract microbial communities in healthy individuals [127-132].
More specifically, in a large meta-analysis, the oral microbiome composition of current
smokers compared to those who never smoked or former smokers has proved to be substan-
tially differentiated [128]. Biedermann et al. showed that healthy individuals undergoing
smoking cessation were characterized by an increase in bacteria in the gut [133]. However,
the relationship between smoking and bacterial profiles in the respiratory tract of patients
suffering from asthma is still not well studied. Colak et al. showed that smoking-induced
alterations in the lower airway microbiome might be related to an increased risk and
severity of pulmonary disorders in asthmatic smokers [134]. Munck et al. identified differ-
ences in bacterial diversity between tobacco smokers with asthma compared to healthy
non-smoking controls, but they failed to demonstrate any association between smoking
cessation and microbial alterations, probably due to the small sample size, short period of
follow-up and distinct asthma subtypes [135].

4.3.2. Diet and Obesity

Long-term dietary patterns with energy-dense nutrient-poor foods and primary obe-
sity are also associated with an increased incidence of asthma in adults [136,137]. Obese
asthma has been repeatedly included in asthmatic clusters mostly characterized by fe-
male, adult-onset, neutrophil-mediated and severe asthma, although there are also fewer
cases of obese asthmatic patients clustered in other asthma subgroups such as atopic
asthma [137-139]. Although the exact mechanisms that link asthma with diet and obesity
have not been clarified so far, interventions on obese asthmatics, including diet modifica-
tions or bariatric surgery, have led to efficient asthma control [139,140]. Increasing evidence
indicates that the gut microbiome may play a significant role in obese asthma [139]. Obesity
and diet can alter the gut microbiome composition [141-143], whereas other pathological
conditions directly linked with obesity, such as hyperglycemia, insulin resistance and
systemic inflammation, have a bidirectional relationship with the gut microbiome [144].
In turn, the imposed gut microbiome alterations could induce asthma via the gut-lung
axis and through the production of bacterial-derived or modified metabolites, such as
SCFAs. More clear indications of the microbiome involvement in obese asthma phenotype
include findings from studies in severe asthmatics, where BMI is associated with different
microbiome compositions, especially with Bacteroidetes (including Prevotella species) and
Firmicutes (e.g., Clostridium species) [137,145]. Most importantly, in severe asthmatics,
the lung and the gut microbiome present alterations between obese and non-obese sub-
jects [146]. In the study by Michalovich et al., an additive effect of asthma and obesity
has been shown to formulate the gut and lung microbiota inhabiting obese asthmatics.
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Interestingly, in the same study, Akkermansia muciniphila, which has been shown to present
protective effects in obese models, exhibits reduced levels in the gut microbiome of obese
compared to non-obese asthmatics [147].

5. Airway Microbiome Correlations with Asthma Subtypes

Several studies (Table 1) providing detailed clinical features of asthmatic participants
have shown distinct associations of airway microbial variation with different asthma phe-
notypes and endotypes [117,118,146,148-157]. Most of these works compare the microbial
structure amongst groups of patients with distinct severity, clinical features or inflam-
matory background versus healthy controls using specific metrics mainly represented by
alpha diversity (a measure of species richness and evenness) and beta diversity (a measure
of dissimilarity between different communities/samples). Typical variables that are ex-
amined include the total bacterial abundance (bacterial burden in samples), the microbial
richness (number of bacterial species in a community), the microbial evenness (level at
which the species within a studied community are evenly distributed) as well as the relative
abundance and the predominance of particular bacteria at family, genus or species levels.

Table 1. Overview of studies analyzing the airway bacterial microbiome association to asthma inflammatory endotypes.

Year Participants

Sample Type Key Findings Reference

2014 -28 severe asthmatics

-Neutrophilic asthmatics:
1 abundance of pathogenic bacterial species
(Haemophilus sp., Streptococcus sp.,
Moraxella catarrhalis)

Sputum [117]

2015 -40 severe asthmatics

-Eosinophils:
negative correlation with relative
abundance of Proteobacteria
(Moraxellaceae, Helicobacteraceae families), [146]
positive correlation with Actinobacteria
(Streptomyces
and Propionicimonas species)

Bronchial (Brushings)

2016 -30 asthmatics

-Neutrophilic vs.
non-neutrophilic asthmatics:
J evenness and richness of bacterial species,
1 Proteobacteria (Haemophilus influenzae)
} Actinobacteria, Firmicutes
-Eosinophilic asthmatics:
1 abundance of Actinobacteria
(Tropheryma whipplei)

Sputum [148]

-26 severe asthmatics
2016 -18 non-severe asthmatics Sputum
-12 healthy controls

-Eosinophils:

1 Firmicutes (Streptococcus sp.) [149]

-23 steroid-free asthmatics

-Eosinophilic asthmatics vs. healthy controls:
1 Neisseria, Bacteroides and Rothia
| Sphingomonas, Halomonas, Aeribacillus

2017 -10 healthy controls BAL! -Neutrophilic asthmatics vs. healthy controls: [150]
y differences in Flavobacterium, Phenylobacterium,
Brevundimonas, Bradyrhizobium, Sediminibacterium,
Gemella

-25 severe asthmatics non—e(-)]sai(r)is;nﬁli)lkilcﬂ;s&sr.natics'

2017 -24 non-severe asthmatics Sputum . P s [151]
T Actmomycetaceae, Enterobacteriaceae
-15 healthy controls .
family members

-42 atopic asthmatics
2017 -21 atopic non-asthmatics Bronchial (Brushings) -T2-high vs. non-Th2: [118]

-21 non-atopic healthy Oral wash J bronchial bacterial burden

controls




J. Pers. Med. 2021, 11, 1299 12 of 30
Table 1. Cont.
Year Participants Sample Type Key Findings Reference
-Neutrophilic vs.
non-neutrophilic asthmatics:
-20 neutrophilic asthmatics Lo T total }laacterlall burden, . .
. 1 Firmicutes, Actinobacteria, Saccharibacteria,
2018 -34 non-neutrophilic Sputum . [152]
. 1 Bacteroidetes phyla (Porphyromonas spp.,
asthmatics
Capnocytophaga spp.),
Proteobacteria
(Haemophilus spp., Moraxella spp.)
-Neutrophilic asthmatics
-84 eosinophilic asthmatics vs. all other endotypes:
-14 neutrophilic asthmatics 1 diversity, richness and evenness,
-60 paucigranulocytic 1 high relative abundance in pathogenic taxa
2018 asthmatics Sputum (Haemophilus and Moraxella), [153]
-9 mixed neutrophilic and 1 Streptococcus, Gemella and Porphyromonas
eosinophilic asthmatics -Eosinophilic vs other endotypes:
1 Haemophilus, Gemella, Rothia and Porphyromonas
-Neutrophilic asthmatics:
-32 asthmatics 1 Proteobacteria phyla )
2018 -73 COPD 2 patients Sputum -Eosinophilic asthmatics: [154]
1 Bacteroidetes
-Eosinophilic vs.
-10 eosinophilic asthmatics non-eosinophilic asthmatics:
-14 non-eosinophilic 1 richness, evenness and diversity,
2019 asthmatics Sputum 1 Glaciecola, Helicobacter [155]
-12 healthy controls | Scardovia, Bifidobacterium, Desulfobulbus,
Deinococcus
-32 atopic asthmatics Sputum
-18 atopic non-asthmatics P -T2-high vs. non-Th2:
2020 . BAL . [156]
-16 non-atopic healthy | Sputum bacterial burden
Oral wash
controls
-High neutrophilic vs. low neutrophilic
asthmatics:
| richness and diversity,
1 increased relative abundance of
2021 -100 severe asthmatics Sputum pathogenic species [157]

(Haemophilus influenzae,
Moraxella catarrhalis,
Streptococcus pseudopneumoniae)
| Veillonella, Prevotella and Neisseria

1 BAL: bronchoalveolar lavage; 2 COPD: chronic obstructive pulmonary disease.

An early study examining the microbiome within the sputum samples of 28 severe
asthma patients has related the predominance of Moraxella catarrhalis or of species belong-
ing to Haemophilus and Streptococcus genera with neutrophilic airway inflammation [117].
Huang et al., evaluating the bronchial airway microbiome of 40 severe asthmatic patients,
concluded that there was negative correlation between the bronchial eosinophil numbers
and the relative abundance of certain bacteria belonging to the Proteobacteria phyla (Moraxel-
laceae and Helicobacteraceae family members), as well as to a positive correlation between
the bronchial eosinophil numbers and proportions of Streptomyces and Propionicimonas
species [146]. Zhang et al., through the comparison of the lower airway microbiome of
severe and non-severe asthmatics with that of healthy controls, found that Firmicutes were
increased in severe asthmatics compared to controls, and more specifically, Streptococcus
spp. were associated with recent-onset asthma and sputum eosinophilia [149].

Sverrild et al. examined the BAL microbiome profile of a cohort of 23 asthmatic
patients. The main finding from this study was that the relative abundance of spe-
cific bacterial genera (Aeribacillus, Halomonas, Neisseria, Nesterenkonia, Rothia, Shewanella,
Sphingomonas, Actinomyces, Bacteroides and Virgibacillus) differed significantly between
eosinophilic asthmatics and healthy controls. Significant differences were also shown
regarding the relative abundance of specific bacteria (Flavobacterium, Phenylobacterium,
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Brevundimonas, Bradyrhizobium, Sediminibacterium, Gemella) between neutrophilic asthmatics
and healthy controls [150]. Another study that included patients suffering from severe
(n = 25) and non-severe asthma (n = 24) resulted in enriched Actinomycetaceae and En-
terobacteriaceae family members in eosinophilic as opposed to non-eosinophilic asthma
patients [151].

Two independent studies comparing the airway microbiome of neutrophilic with
non-neutrophilic asthmatic patients revealed a significantly lower proportion of Acti-
nobacteria and Firmicutes and a significantly higher proportion of Haemophilus influenzae
in neutrophilic asthmatics [148,152]. Interestingly, in the study by Taylor et al., among
167 asthma patients with neutrophilic, eosinophilic, paucigranulocytic or mixed gran-
ulocytic inflammatory endotypes, application of principal coordinates analysis (PCoA)
resulted in distinguishing neutrophilic samples from the rest endotypes based on their
microbiome composition. The greatest differences in composition were observed between
neutrophilic and eosinophilic asthma patients. The neutrophilic patients also displayed the
smaller diversity, richness and evenness in their sputum microbial composition. Significant
differences were once more observed in the airway bacterial taxa between the different en-
dotypes, with neutrophilic asthma exhibiting enrichment in pathogenic taxa. Namely, high
abundance of Haemophilus and Moraxella was observed in neutrophilic patients, whereas
negative correlation was observed between the eosinophilic percentage and Haemophilus
genera. The abundance of Gemella, Rothia and Porphyromonas in neutrophilics decreased
compared to the other examined inflammatory endotypes, while a significant correlation
was observed between Streptococcus I, Neisseria and Gemella genera and eosinophilia [153].

Ghebre et al. investigated the microbiome profiles of patients suffering from asthma
during exacerbations, resulting in biological clusters, each one including patients with
distinct bacterial composition associated with different inflammatory endotypes. Asthma
patients experiencing exacerbations with increased blood and sputum neutrophils were
grouped in the same cluster characterized by considerable proportions of the bacterial
phylum Proteobacteria. In contrast, asthma patients with increased eosinophils in blood and
sputum were clustered together with a higher proportion of Bacteroidetes [154].

Accordingly, a study conducted in Northeast China including patients with mild-
to-moderate asthma showed a significant decrease in microbial diversity, richness and
evenness in the sputum of non-eosinophilic compared to eosinophilic asthmatics. Moreover,
a distinct microbial taxonomic profile characterized the two groups of patients. More
specifically, Glaciecola and Helicobacter were more abundant at the genera level, whereas
Deinococcus, Scardovia, Bifidobacterium and Desulfobulbus were less abundant in eosinophilic
compared to non-eosinophilic asthmatics [155].

Two other works examining the composition of the bronchial and sputum micro-
biome of asthmatic patients revealed lower bronchial and sputum bacterial burden in
patients with Th2-high asthma compared to non-Th2 asthma patients [118,156]. Finally,
in a recent longitudinal study, Abdel-Aziz et al., by examining the sputum microbiome
profile of patients characterized by severe asthma phenotype, concluded into two distinct
microbiome-driven clusters which, among others, are also characterized by different neu-
trophilic content. The cluster characterized by higher sputum neutrophilic percentage
and greater asthma severity generally presented lower microbial richness and diversity as
well as a trend toward an increased relative abundance of some pathogenic species (such
as Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pseudopneumoniae) and
decreased abundance of species related to genera Veillonella, Prevotella, Rothia, Haemophilus
and Neisseria as compared to the cluster characterized by low-neutrophilic content [157].

As a general remark, neutrophilic asthmatics demonstrate a lower airway microbiome
diversity compared to healthy controls and other disease endotypes. Actually, a crosstalk
between neutrophil regulation and microbiota structure has been shown either in health
or disease [158]. For example, it has been shown that microbial metabolites may either
enhance or suppress neutrophilic functionality, and this interaction may be involved in the
progression of chronic inflammation-related diseases [159]. The involvement of microbial
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dysbiosis in patients with severe non-Th2 asthma is also supported by studies showing
that treatment with antibiotics, including macrolides, such as azithromycin, may result
in improved disease control, airway hyper-responsiveness and inflammation, especially
in neutrophilic asthmatics [151,160]. The microbiome profile in patients with the other
non-Th2 inflammatory endotypes has not been widely studied so far, but it is probably
distinct from the neutrophilic asthma-related microbiome.

In addition to the above investigations concentrating mainly on the analysis of airway
bacterial communities, further efforts aimed to examine the poorly considered associations
between airway mycobiome and asthma. Sharma et al. reported a combination of identified
fungi biomarkers along with other clinical features for distinguishing asthma endotypes.
More specifically, a lower fungal diversity in asthma patients with Th2-high compared to
non-Th2 inflammation was found in samples of bronchial brushes. Enrichment of Tricho-
derma species was found in Th2-high asthmatics, while an association between Alternaria,
Aspergillus and Fusarium species and neutrophils was observed. At the same time, en-
richment of fungal genera (Aspergillus, Cladosporium, Fusarium, Penicillium, Trichoderma
and Mycosphaerella) in BAL of asthmatics with T2-high inflammation was identified [161].
Recently, Huang et al. also attempted to characterize the airway microbiome of untreated
and ICS treated patients focusing on both mycobiome and bacteriome. The main findings
from this study include distinct mycobiome composition and biodiversity after comparing
the two groups of asthmatic patients and healthy controls; furthermore, network analy-
sis indicated unbalanced associations between bacteriome and mycobiome, suggesting
asthma-specific inter-kingdom alterations [162].

In general, there is a distinct microbiome profile corresponding to the different asthma
inflammatory pathways, and certain bacteria taxa could be considered as candidate mark-
ers for asthma endotypes. The presence of pathogenic bacterial species belonging to
Proteobacteria phyla or Gammaproteobacteria class, including species from Haemophilus and
Moraxella genera, have been shown to be more dominant in the airway microbiome of pa-
tients with neutrophilic inflammation. On the other hand, studies of asthmatics presenting
Th2-high inflammation, particularly eosinophilic phenotype, demonstrated more hetero-
geneous results concerning their microbiota content, although a correlation of bacteria
belonging to Actinobacteria phylum with eosinophilic asthma has been observed. This lack
of clear associations between specific bacteria and Th2-high inflammatory endotypes could
be attributed to a larger contribution of exogenous microorganisms or other exposome
factors such as allergens, rather than the host bacteriome, in the perpetuation of Th2-high
inflammation.

6. Relationships between Asthmatics Airway Microbiome and Treatment

The results accumulated thus far raise expectations concerning the exploitation of
microbiome characterization in the selection of a precision strategy for asthma management.
This approach must take into consideration the potential interactions between the patient’s
microbiome and the administered medication [97,98].

In this direction, several studies have tried to clarify the effect of therapeutic drugs
on airway microbiome structure and vice versa. A study by Denner et al. has shown that
the increasing administration of either ICS or a combination of OCS and ICS is associated
with alterations of the bacterial microbiome in epithelial brushes and specifically causes an
increase in Proteobacteria and a decrease in Bacteroidetes and Fusobacteria at the phylum level.
In addition, a decreased abundance of Veillonella species was related to ICS, whereas an
increase in Pseudomonas species was associated with OCS administration [163]. Accordingly,
Taylor et al. reported a significant correlation of bacterial diversity in induced sputum
of patients with moderate-to-severe asthma and ICS dose [153]. Furthermore, Sharma
et al. found a differential abundance of fungi belonging to genus Penicillium in BAL and
bronchial brushings between ICS treated and non-treated asthmatics [161]. The crucial role
of medication in the structure of asthmatics’ microbiome was underlined by studies that
did not detect any differences, at the phyla level, between healthy controls and steroid-
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naive patients [164]. However, McCauley et al. showed that nasal Moraxella was associated
with increased exacerbations and eosinophil activity in asthmatic children, but, although
treatment with omalizumab resulted in reduced exacerbations, the pathogenic nasal airway
microbiota was not significantly modified after treatment [165]. In addition, Martin et al.
could not identify significant differences in sputum bacterial load or overall community
composition between low- and high-dose ICS treatment of asthmatic patients. However,
they observed an association between high-dose fluticasone propionate and increased
abundance of the pathogen Haemophilus parainfluenzae [166].

On the other hand, to investigate the contribution of airway microbiota in the observed
heterogeneity of asthmatic patients’ responsiveness to treatment, several studies compared
the composition of microbial communities between responders and non-responders. Gol-
eva et al. found that the bacterial content in BAL of asthmatic patients that were sensitive
or resistant to corticosteroids differed significantly. The majority of non-responders pre-
sented increased proportions of microorganisms belonging to phyla Actinobacteria and
Proteobacteria and significantly lower proportions of bacteria belonging to Fusobacteria phy-
lum and Prevotella and Veillonella genera as compared to healthy controls. Most responders
presented increased proportions of bacteria from phylum Proteobacteria and significantly
reduced proportions of bacteria belonging to genera Prevotella and Veillonella compared
to healthy controls. Additionally, bacteria belonging to Neisseria, Haemophilus, Simonsiella,
Campylobacter, Leptotrichia, Tropheryma, Leuconostoc and Megasphaera genera were identified
in a subset of non-responders but were not present in corticosteroid-responsive asthmatics.
On the other hand, many bacteria belonging to genera Bradyrhizobium, Aquabacterium,
Limnobacter, Pasteurella, Fusobacterium and Streptophyta were only identified in a subset of
responders but not in non-responders [167]. These results corroborated previous evidence
supporting a positive correlation between FKBP5 gene expression—a steroid response
biomarker—and lung microbiome composition [146]. Durack et al. showed that in ini-
tially ICS-naive asthmatics, ICS-responsiveness is associated with distinct features of the
bronchial bacterial microbiota before treatment, with the responders” microbiome being
more similar to that of healthy controls. Non-responders presented higher abundance
of Microbacteriaceae and Pasteurellaceae, whereas Streptococcaceae, Fusobacteriaceae and Sph-
ingomonodaceae were enriched in responders [118]. A later study examining the sputum
microbiota of asthmatics before and after ICS treatment revealed that the composition
of sputum microbiota showed greater deviation in ICS non-responders as compared to
ICS responders [156]. Finally, Thorsen et al. found that in preschool children presenting
asthma-like symptomatology, the airway microbiota was a modifying factor concerning
the efficacy of azithromycin treatment during recurrent episodes [168].

Opverall, many of the aforementioned studies indicate that the microbiome composition
may trigger corticosteroid resistance or influence the efficacy of corticosteroid treatment.
Among the presented results, we could distinguish findings indicating a higher relative
abundance of bacteria belonging to the phylum of Fusobacteria in corticosteroid responders
and lower proportions of the same bacteria phylum in non-responders. However, further
research should be conducted in the specific field to conclude to useful and valid microbial-
markers that could be exploited in the future as prognostic signatures for resistance or
response to asthma treatments.

7. Integration of Microbiome and Multi-Omics Data from Asthma Patients

Although several studies have thus far investigated the role of host microbiome in
asthma and revealed a significant number of microbial biomarkers towards the elucidation of
disease heterogeneity, the field remains still in a relatively infant stage. Large-scale, longitudi-
nal studies involving high-quality metagenomic and other host -omics data from asthmatic
patients and carefully selected control groups are essential to further enrich current knowl-
edge. In particular, multi-level integrative explorations should be intensively pursued, as
understanding the complex interactions and networks of multi-layered molecular data offers
a more complete insight into the whole picture than the mere sum of the pieces involved.
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To that end, during the last decade, there have been notable—yet scarce—efforts towards a
more comprehensive, integrative, multi-omics investigation involving microbial abundances
as a core focus element. Additionally, a rising number of large-scale initiatives involving
microbiome data have been unfolding during the last years, aiming towards a systems-based
holistic investigation of asthma classification and severity.

7.1. Microbiome and Host Gene Expression Data Integration

Two of the earliest attempts involved a relatively small subset of asthmatic ver-
sus healthy (eight and six, respectively) children and adolescents from the AsthMaP
cohort [169] and could be characterized as complementary to each other [170,171]. Both
studies implemented a meta-transcriptomic-host transcriptomic gene expression analysis
performed on shotgun RNA sequencing data from nasal brushings, followed by a rudi-
mentary data integration process. In both cases, microbiome-host read separation was
conducted in silico through appropriate bioinformatic approaches. The first study by
Castro-Nallar et al. focused mainly on the microbial composition of patients and controls,
defined as the combined effect of microbiota and their corresponding gene expression.
Asthmatic patients presented a less diverse microbial profile compared to controls, with
Moraxella catarrhalis being the prevailing species in most asthmatic samples. Subsequent
PCoA revealed that patient samples highly abundant in this specific species tend to cluster
together and differentiate from controls and asthmatic patients with low levels of Moraxella
catarrhalis. Given the prevalence of Moraxella catarrhalis in most asthmatic patients, the
host gene expression for a particular gene signature known to be associated with immune
response against this species was evaluated and found to be able to distinguish asthmatic
and control samples. The strength of host immune response, as determined by the ex-
pression profile of this particular gene signature, was mostly concordant with Moraxella
catarrhalis abundance. In the complementary study of Pérez-Losada et al., a similar dual
transcriptomic profiling was implemented, this time focusing mainly on the functional
characteristics of the airway microbiome and their association to host immune and in-
flammatory response. Taxonomic profiles previously identified by Castro-Nallar et al.
were also utilized. A differential host gene expression between asthmatics and controls
was retrieved, and this core asthma signature was associated with upstream regulatory
mediators of inflammatory and immune responses. Additionally, the study highlighted
differences in microbial metabolic functions between groups, mostly connected to basic
metabolism, nitrogen metabolism, central carbohydrate metabolism, sugar alcohols, xeno-
biotic biodegradation, glycan biosynthesis and microbial adhesion. Finally, a multivariate
approach was implemented to discover associations between microbial metabolic func-
tions, taxa abundance and the identified host regulatory mediators in asthmatics. As a
result, a significant positive association of host ILIA upregulation and increased microbial
adhesion in asthmatics was documented, along with a potential link between Proteobacteria
abundance and IL1A expression changes.

Another study published in the same year focused mainly on the bronchial microbiome
of patients with severe corticosteroid refractory asthma (1 = 40) and its association to disease
severity and inflammatory characteristics [146]. Healthy controls (n = 7) and patients with
mild-to-moderate asthma (1 = 41) were also included. Microbial composition and function
prediction based on 165 rRNA gene arrays and appropriate data analyses were conducted
parallel to host gene expression investigation from separate epithelial brushes. Three gene
expression-based signature scores regarding a) steroid response (FKBP5 gene), b) Th2-high
inflammation and c) Th17 inflammation were used to explore a possible taxa abundance
interaction with host gene expression. Actinobacteria abundance and increased bacterial
diversity were positively correlated with FKBP5 expression and, therefore, possibly steroid
response. On the other hand, although no significant associations were detected between
taxa and the studied Th2-high inflammation signature, certain Proteobacteria (Pasteurellaceae,
Enterobacteriaceae) and Firmicutes (Bacillaceae) abundances were positively connected to Th17
inflammation, potentially involved in neutrophil recruitment and airway inflammation.
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Recently, an integrative network-based study explored the interplay between upper
and lower airway microbiome and host transcriptome in cases of severe persistent child-
hood asthma (1 = 27) and carefully selected healthy controls of similar age (n = 27) [172].
Nasal and bronchial samples were collected from patients for 165 rRNA gene sequencing
and RNA sequencing analyses, while nasal samples were obtained from controls due to
restrictions related to the invasive nature of bronchoscopy. Differential gene expression
between nasal and bronchial samples of patients led to the identification of differentially
enriched gene ontology functional terms regarding cilium assembly, morphogenesis and
movement, along with inflammatory response. Additionally, many genera were differ-
entially abundant between patient nasal (Corynebacterium, Staphylococcus and Moraxella)
and bronchial (Veillonella, Prevotella, Streptococcus and Neisseria) samples. By implement-
ing a custom method based on permutation-renormalization and bootstrapping of two
correlation measures and two dissimilarity measures, the authors constructed nasal mi-
crobiome, bronchial microbiome and nasal-bronchial microbiome networks in order to
explore underlying microbiome interactions. Hub genera, such as Moraxella, Alloiococcus
and Corynebacterium, were detected in patient nasal samples, while no hub members were
identified in bronchial samples. Examining the relations between nasal and bronchial
patient microbiota revealed that Porphyromonas in bronchial samples and nasal Corynebac-
terium had the highest number of associations with nasal and bronchial genera, respectively.
Two additional microbiome-transcriptome networks in the nasal and bronchial patient
samples were created using a highly similar computational method. As a result, Actino-
myces was found to be negatively associated with the expression of 157 bronchial genes
involved in inflammatory response, possibly suggesting a protective role of this hub genus
against bronchial inflammation. On the other hand, nasal Corynebacterium interacted
with an important number of genes; however, no terms enriched in those genes could
be identified as significant. Next, differentially expressed genes and abundant microbes
were identified between nasal samples from cases and controls. Genes associated with
ciliary function and innate immune response were highlighted, along with an increased
relative abundance of Streptococcus in asthmatic patients. Finally, in contrast to patient
samples, Corynebacterium, found to be once again a hub core member in the corresponding
microbiome-transcriptome network of healthy controls, demonstrated mostly negative in-
teractions with genes significantly connected to inflammatory and immune response terms,
along with chemotaxis. This suggests a potential protective mechanism of Corynebacterium
abundance—host gene expression in healthy controls, possibly impaired in asthmatic
children with persistent disease.

7.2. Microbiome and Host Metabolome/Proteome Data Integration

Apart from the aforementioned research endeavors, additional studies have attempted
integrating microbiome abundances with other levels of host -omics information such as
metabolomics and proteomics. A study focused on mite-sensitized allergic asthma in
children, through the scope of metagenomics and metabolomics, has explored connections
between respiratory microbes and circulating metabolites [173]. A cohort of 32 asthmatic
cases and 37 healthy controls provided oropharyngeal swabs for shotgun metagenome se-
quencing and blood serum samples for NMR spectroscopy to obtain metabolomic profiles.
Metagenomic analysis highlighted a more heterogeneous microbial community in cases
compared to controls. Neisseria elongata was prominently more abundant in the asthma
group, while healthy controls were more enriched for Eubacterium sulci, Leptotrichia wadei
and several Pretovella spp. Similarly, the metabolic profiling revealed a proline-glutamate
chimera and serine enrichment in asthmatics compared to controls, which in turn presented
an increase in circulating dimethylamine and dimethylglycine. Additionally, the abun-
dance of Prevotella sp. oral taxon 306 was positively correlated with levels of dimethylglycine,
and a more extensive set of species was positively associated with essential amino acids
and energy-related carboxylic acids while negatively correlated with circulating glucose
and pyridoxine. The subsequent functional analysis revealed that microbial genes involved
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in polycyclic aromatic hydrocarbon degradation were significantly enriched in healthy
controls. In contrast, bacterial genes related to glycosaminoglycan degradation, histidine
metabolism and membrane trafficking were enriched in the asthma group. Of notable
importance is the effort of this study to classify studied asthmatics and non-asthmatics
based on the available -omics data. Random forest predictive models were implemented
separately on metagenomic data, metabolomic data or a combination of both. The combi-
natorial nature of dual-omics features presented the best results based on total area under
the receiver operating characteristic curve (AUC) measurements, and Eubacterium sulci
emerged as a top discriminatory species between asthmatic and non-asthmatic children.

In addition, a noteworthy multi-omics approach involving metagenomics, metabolomics
