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Abstract: Aims: We tested the hypothesis that artificial intelligence (AI)-powered algorithms applied
to cardiac magnetic resonance (CMR) images could be able to detect the potential patterns of cardiac
amyloidosis (CA). Readers in CMR centers with a low volume of referrals for the detection of
myocardial storage diseases or a low volume of CMRs, in general, may overlook CA. In light of
the growing prevalence of the disease and emerging therapeutic options, there is an urgent need
to avoid misdiagnoses. Methods and Results: Using CMR data from 502 patients (CA: n = 82), we
trained convolutional neural networks (CNNs) to automatically diagnose patients with CA. We
compared the diagnostic accuracy of different state-of-the-art deep learning techniques on common
CMR imaging protocols in detecting imaging patterns associated with CA. As a result of a 10-fold
cross-validated evaluation, the best-performing fine-tuned CNN achieved an average ROC AUC
score of 0.96, resulting in a diagnostic accuracy of 94% sensitivity and 90% specificity. Conclusions:
Applying AI to CMR to diagnose CA may set a remarkable milestone in an attempt to establish a fully
computational diagnostic path for the diagnosis of CA, in order to support the complex diagnostic
work-up requiring a profound knowledge of experts from different disciplines.

Keywords: heart failure; cardiac amyloidosis; artificial intelligence; diagnostic ability

1. Introduction

Amyloidosis is a complex, multisystemic disease that is caused by the deposition
of misfolded protein fragments in the extracellular space of tissues [1,2]. Cardiac amy-
loidosis (CA) is associated with substantial morbidity and mortality. The increased use
of cardiac magnetic resonance imaging (CMR) in cardiology has revealed a previously
unrecognized prevalence of CA, which has emerged from a “rare” disease that was often
only diagnosed post mortem, to a condition of significant clinical relevance that every
cardiologist is confronted with. An autopsy study could demonstrate the presence of CA
in 25% of elderly people (≥85 years) [3]. Further studies showed that 14% of patients
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undergoing transcatheter aortic valve implantation, 13% of heart failure patients with
preserved ejection fraction (HFpEF), and 8% of severe aortic stenosis patients suffer from
concomitant CA [4–6].

The two predominant amyloid proteins found in the heart are transthyretin (TTR)
and immunoglobulin light chains (AL). The expansion of the extracellular space due
to amyloid deposition causes diastolic dysfunction of the left ventricle (LV). Eventually,
affected patients develop severe heart failure (HF) and face a dismal prognosis [7].

A comprehensive algorithm for diagnostic work-up of CA has recently been pub-
lished [8]. It includes CMR as one baseline diagnostic modality. However, the signs of CA
may be unspecific in CMR scans, and CMR may even appear unremarkable although CA
is present [9]. Furthermore, readers in CMR centers with a low volume of referrals for the
detection of myocardial storage diseases or a low volume of cardiac CMRs in general may
overlook nonspecific or rare signs of CA. In light of the high prevalence of the disease and
emerging therapeutic options [10], we feel that there is an urgent need to avoid lacking CA
diagnoses. We therefore used convolutional neural networks (CNNs) to develop a fully
automated algorithm for the diagnosis of CA using CMR.

2. Methods
2.1. Study Population

We enrolled consecutive adult patients between August 2010 and August 2018 who
underwent a complete CMR study at our tertiary care center at the Vienna General Hospital.
Our center is located at the Medical University of Vienna and has a high-volume cardiac
catheterization unit and a high-volume cardiac transplantation program. Moreover, we
are part of the European Reference Network for Amyloidosis and a national referral
center for patients with heart failure and preserved ejection fraction (HFpEF). Patients
underwent clinical and laboratory assessment, electrocardiogram (ECG), transthoracic
echocardiography, CMR, and, if any suspicion of CA was present, 99 mTc-DPD bone
scintigraphy, as well as blood and urine tests for the detection of pathological light chains.
The pre-CMR suspicion of CA was raised when patients presented with LV-hypertrophy,
in particular those with interventricular septum thickness ≥15 mm and shortness of breath.
In case of suspicion of AL-CA, myocardial biopsy was performed. In case of suspicion
of TTR-CA, endomyocardial biopsy (EMB) was performed until 2016, when the paper
by Gillmore et al. [8] on the diagnostic algorithm of CA was published. Thereafter, only
AL-CA cases and TTR-CA with presence of monoclonal protein underwent myocardial
biopsy. All patients provided written informed consent. The study was approved by the
Ethics Committee of the Medical University of Vienna (EK no. 796/2010).

2.2. Imaging Protocols and Data Preparation
Cardiac Magnetic Resonance Imaging

CMR examinations were performed on a 1.5-T scanner (MAGNETOM Avanto; Siemens
Healthcare GmbH, Erlangen, Germany), following standard protocols that included late
gadolinium enhancement imaging (0.1 mmol/kg gadobutrol (Gadovist; Bayer Vital GmbH,
Leverkusen, Germany)) if estimated glomerular filtration rate was ≥30 mL/min/1.73 m2 [11].
At the time of insertion of the intravenous cannula, blood was drawn for hematocrit and
serum creatinine measurement. For analysis of late gadolinium enhancement (LGE) images,
two independent reviewers judged whether a typical pattern for CA was present or not.
Electrocardiographically triggered modified look-locker inversion recovery (MOLLI) using
a 5(3)3 prototype (5 acquisition heartbeats followed by 3 recovery heartbeats and further
3 acquisition heartbeats) was applied for precontrast T1 mapping. This method generates
an inline, pixel-based T1 map by acquiring a series of images over several heartbeats with
shifted T1 times, inline motion correction, and inline calculation of the T1 relaxation curve
within 1 breath hold. T1 sequence parameters were as follows: starting inversion time
120 ms, inversion time increment 80 ms, reconstructed matrix size 256 × 218, and measured
matrix size 256 × 144 (phase-encoding resolution 66% and phase-encoding field of view



J. Pers. Med. 2021, 11, 1268 3 of 12

85%). T1 maps were created both before and 15 min after contrast agent application. For
postcontrast T1 mapping, a 4(1)3(1)2 prototype was used. T1 values from a midcavity
short-axis slice and a midcavity 4-chamber view were averaged for assessment of entire
LV myocardium. For extracellular volume (ECV) calculation, the following formula was
used [12]:

MOLLI − ECV = (1 − hematocrit)×

(
1

T1myopost

)
−

(
1

T1myopre

)
(

1
T1bloodpost

)
−

(
1

T1bloodpre

) (1)

T1 myo pre/T1 blood pre indicates myocardial/blood native T1 times and T1 myo
post/T1 blood post indicates T1 times of myocardium/blood 15 min after gadobutrol
application. The local reference range for normal MOLLI-ECV values is 25.4 ± 2.7%,
derived from 36 healthy sex-matched controls [13].

The core CMR data set (n = 502) included patients with EMB-proven CA (n = 82,
true positives) and 420 control patients with unrelated HF types (negative cases). In total,
our CMR dataset contained 16,343 LGE (2598 positives; 13,745 negatives); 30,630 MOLLI
(7649 positives; 28,032 negatives); and 309,702 CINE (53,878 positives; 255,824 negatives)
images. For each patient, these three imaging protocols produced heterogeneous, in terms
of size, sets of images.

2.3. Experimental Setting

To assess the performance of CNNs for fully automated CA diagnosis, we compared
three different modeling techniques. We refer to them throughout this paper as: from
scratch, feature extraction, and fine-tuning (Supplementary Figures S1–S3). From scratch is
a standard deep convolutional pipeline based on progressive image downsampling [13].
Feature extraction and fine-tuning are two transfer learning techniques [14]. We used a
pretrained VGG16 [15] CNN architecture on the ImageNet dataset for both pipelines. In
case of feature extraction, last convolutional feature map activations of the pretrained
VGG16 network were used as input features into a logistic regression classifier. For fine
tuning, we retrained the four last convolutional layers of the pretrained VGG16 network,
while keeping the weights of all other low-level layers intact.

All our computational results were achieved on a 2 × Intel Xeon CPU server (12 cores each,
base frequency 2.2 GHz) with 10 × NVIDIA GTX1080 TI GPU (11 GB GDDR5 each) and
8 × 32 Gb of RAM. For deep learning image classification pipelines, we used Keras Python
library (version 2.1.6) with Tensorflow-GPU (version 1.8) as a backend for GPU utilization.
Additionally, all our statistical and machine learning experiments were performed with the
open-source Scikit-Learn Python package (version 0.20).

2.4. Data Preprocessing

For a fair comparison of all models, heart images were preprocessed with the same
data preparation pipeline. All images corresponding to a specific imaging modality were
extracted from DICOM files. To all images, we applied the following transformations: (i)
histogram equalization to improve contrast, (ii) image resizing (target resolution 224 × 224)
to standardize input for pretrained networks, and (iii) Gaussian smoothing to prevent
aliasing due to downscaling. Moreover, each image was represented in three RGB channels
(original grayscale images were duplicated three times for three channels). During training,
we computed the mean pixel values for each channel of the training set and subtracted
them from all images, both in training and validation datasets; in our case, mean pixel
value for all the three channels was the same (per training set of images). These data
preparation steps ensured all models to receive similarly prepared inputs, and therefore
they facilitated a fair comparison of different methods.
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2.5. Statistical Analysis of Convolutional Neural Network Performance

To assess model’s performance and its statistical variance, we employed a 10-fold
cross-validation (CV) separately for each deep learning technique and imaging protocol.
To prevent information leakage from training and validation, each CV fold of imaging data
was split among patients—no overlapping patient images in training and validation sets.
Moreover, splits were generated in a stratified fashion preserving class sample ratio. Since
our classification problem is an imbalanced one, with more negative samples than positives,
area under the receiver-operating characteristic curve (ROC AUC) score was chosen as our
performance measure. For each averaged ROC curve, we also reported diagnostic accuracy
in terms of sensitivity and specificity. These were determined by extracting operating points
from the ROC curves. We used Youden’s J statistic [16] to determine optimal operating
points. In all our experiments, we reported and compared two classification scores per
model: image classification and patient classification. In case of image classification, each
image was treated as an independent measurement, i.e., two images of the same patient
were classified independently. For patient classification, averages of all patient image
predictions were compared, and patient classification was treated as average voting.

To prevent overfitting and ensure model generalization in each CV fold, training data
were further split into training and development sets in 80/20 ratio. All CNN models were
then trained for a maximum of 1000 epochs on the reduced training set using stochastic
gradient descent optimizer with momentum and weight decay [17], i.e., L2 regularization.
Furthermore, the training process was regularized with early stopping [18] on the ROC
AUC score on the development set training continued as long as the ROC AUC score on
the development set kept improving. To ensure gradual parameter update for fine-tuned
CNNs, we set the learning rate to 0.001; for from-scratch CNNs, the learning rate was set
to 0.01.

Our experimental setting thus allowed fair and statistical comparison of all models
considered. For all analyses, a p-value < 0.05 was considered statistically significant.

3. Results
3.1. Clinical Characteristics of Study Participants

The detailed clinical baseline characteristics for the 502 consecutively registered pa-
tients are displayed in Table 1. In brief, 82 (16.3%) were diagnosed with CA-associated HF
(positive cases), and the remaining 420 with unrelated HF types (negative cases). Among
the negatives, the predominant condition was HFpEF (n = 163), 107 patients were diag-
nosed with ischemic cardiomyopathy, 53 were diagnosed with hypertrophic and other
cardiomyopathies, 44 patients had valvular heart disease, 30 patients suffered from cardiac
sarcoidosis, 19 patients had HF condition linked with congenital heart disease, including
muscular dystrophies, and the remaining 4 patients were diagnosed with rare HF condi-
tions, such as pericardial disease (n = 3) and left atrial myxoma (n = 1). CA patients were
predominantly male (65.8% of CA patients and 44.9% of controls, p = 0.003) and older
(median age 75.0 years [68.0–82.5] vs. 66.0 years [50.0–75.0] in controls, p < 0.001). It is also
important to note that CA-related HF patients were in rather advanced disease stages when
compared to controls, as documented by higher NT-proBNP levels (median NT-proBNP in
pg/mL: 3002.0 [1282.5, 7453.0] in CA patients vs. 452.0 [143.9, 1380.0] in non-CA patients,
p < 0.001).
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Table 1. Baseline characteristics of the study population.

Non-Amyloidosis
Related HF (n = 420)

Amyloidosis
(n = 82)

p-Value
(Adjusted)

Clinical parameters, median (IQR)
Age, years 66.0 (50.0–75.0) 75.0 (68.0–82.5) <0.001

Male sex, no. (%) 188 (44.9) 52 (65.8) 0.003
Height, cm 169.5 (162.0–178.0) 167.0 (162.5–172.0) 0.578
Weight, kg 76.0 (65.8–88.2) 75.0 (65.0–79.5) 0.596

Body mass index, kg/m2 27.0 (23.9–31.0) 25.5 (23.9–28.7) 0.066
Laboratory parameters, median (IQR)

NT-proBNP, pg/mL 452.0 (143.9–1380.0) 3002.0 (1282.5–7453.0) <0.001
Serum creatinine, mg/dL 0.9 (0.8–1.1) 1.2 (1.0–1.6) <0.001

Estimated GFR, mL/min/1.73 m2 78.0 (55.0–106.0) 50.0 (38.8–60.5) <0.001
C-Reactive Protein, mg/dL 0.3 (0.1–0.7) 0.3 (0.2–0.7) 0.340

Troponin T, mg/L 17.0 (7.0–29.0) 79.0 (64.0–122.0) <0.001
NYHA functional class, no. (%) <0.001

I 167 (40.3) 10 (12.8)
II 125 (30.2) 24 (30.8)
III 107 (25.8) 40 (51.3)
IV 13 (3.1) 2 (2.6)

Missing data 2 (0.5) 2 (2.6)
Medical history, no. (%)

Hypertension 304 (72.7) 50 (63.3) 0.236
Atrial fibrillation 127 (30.8) 36 (46.2) 0.031

Coronary artery disease 110 (26.6) 20 (25.3) 0.917
Myocardial infarction 42 (10.2) 4 (5.1) 0.339

Percutaneous coronary intervention 57 (13.7) 8 (10.1) 0.591
Coronary artery bypass grafting 22 (5.3) 5 (6.3) 0.829

Diabetes mellitus type II 77 (18.4) 13 (16.5) 0.829
Treatment, no. (%) *
Oral anticoagulants 134 (32.4) 41 (52.6) 0.003

Diuretic agent 153 (37.0) 50 (64.1) <0.001
Mineralocorticoid-receptor antagonist 99 (24.0) 28 (35.9) 0.084

ACE inhibitor or ARB 229 (55.4) 36 (46.2) 0.278
Beta-blocker 232 (56.2) 36 (46.2) 0.245

Calcium channel antagonist 66 (16.0) 8 (10.3) 0.478
Statin 159 (38.4) 23 (29.5) 0.278

Cardiac magnetic resonance imaging
parameters, median (IQR)

Myocardial native T1 time, ms 1050.9 (998.1–1103.8) 1107.6 (1074.5–1140.7) <0.001
Extracellular volume, % 33.5 (28.8–38.3) 46.7 (40.6–52.8) <0.001

* Medication at the time point of referral to expert center. Values are given as median and interquartile range (IQR) or total numbers and
percent. Bold numbers indicate statistical significance with p-values < 0.05. HF indicates heart failure; NT-proBNP, n- terminal prohormone
of brain natriuretic peptide; GFR, glomerular filtration rate; NYHA, New York Heart Association; ACE, angiotensin converting enzyme;
and ARB, angiotensin receptor blocker.

3.2. Cardiac Magnetic Resonance Imaging-Based Diagnostic Ability of the Convolutional
Neural Network

In Table 2, we report average ROC AUC scores of a 10-fold cross-validation for image
and patient classifications for all three imaging protocols and the three convolutional
architectures. In what follows, we group these results according to the (1) respective
imaging protocol, (2) deep learning technique, and (3) effect of using multiple images vs.
a single image for CA prediction, and analyzed the effect on the diagnostic accuracy for
each group.
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Table 2. Ten-fold cross-validated performance of prediction models for different imaging protocols.

Imaging Protocol
Feature Extraction From Scratch Fine-Tuning

ROC AUC Se (Sp) ROC AUC Se (Sp) ROC AUC Se (Sp)

LGE
Patient 0.96 0.97 (0.81) 0.95 0.91 (0.91) 0.96 0.94 (0.9)
Image 0.87 0.8 (0.77) 0.89 0.82 (0.81) 0.93 0.82 (0.88)

MOLLI
Patient 0.92 0.85 (0.86) 0.92 0.86 (0.86) 0.93 0.91 (0.82)
Image 0.84 0.72 (0.8) 0.88 0.79 (0.82) 0.91 0.8 (0.87)

CINE
Patient 0.91 0.77 (0.95) 0.89 0.84 (0.82) 0.90 0.85 (0.86)
Image 0.81 0.69 (0.78) 0.84 0.72 (0.83) 0.88 0.78 (0.85)

Note: LGE—late gadolinium enhancement, MOLLI—modified look-locker inversion recovery, Patient—average prediction over all images
of a patient, and Image—prediction on one image. ROC AUC scores are averages of 10-fold cross-validation. Sensitivity and specificity are
computed from mean receiver operating curves with Youden’s J statistic. The best results are in bold. ROC AUC-Area under Receiver
Operating Characteristic Curve, Se-Sensitivity, Sp–Specificity.

3.3. The effect of Imaging Protocol on Diagnostic Accuracy

Expectedly, the imaging protocol had an important effect on the diagnostic accuracy
for all considered deep learning techniques and prediction protocols. Independent of the
deep learning technique, LGE-trained models achieved the best diagnostic performance
(Figure 1). The absolute best performance was observed with the fine-tuning deep learning
technique, with the ROC AUC score of 0.96, resulting in 94% sensitivity and 90% specificity,
respectively. Second best was a fine-tuned model trained on MOLLI images, with the
best ROC AUC score of 0.93, and the diagnostic accuracy of 91% and 82%. A detailed
performance of MOLLI images classification is depicted in Figure 2. CINE images were the
hardest to classify (ROC AUC 0.89–0.91, for all deep learning techniques), as exemplified
in Figure 3. The best diagnostic accuracy was achieved with a fine-tuned model, with 85%
sensitivity and 86% specificity.
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3.4. The Effect of the Deep Learning Technique on Diagnostic Accuracy

All three modeling techniques—feature extraction, from scratch, and fine-tuning—
achieved high ROC AUC scores (0.89–0.96) for patient classification. The best diagnostic
accuracy, in terms of sensitivity and specificity, was always obtained with the fine-tuning
transfer technique (Table 2). From scratch and fine-tuning had comparable mean ROC AUC
scores for all imaging protocols; however, the fine-tuning technique had a better diagnostic
accuracy (sensitivity range 0.85–0.94 vs. 0.84–0.91). While the performance of the feature
extraction technique, in terms of the mean ROC AUC score, stayed on par with the two
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other techniques, this technique recorded the lowest diagnostic accuracy performance for
all imaging protocols (sensitivity range 0.77–0.97). For instance, LGE and MOLLI imaging
protocols showed the closest performance in terms of the mean ROC AUC score. While
both feature-extraction and fine-tuning techniques achieved comparable ROC AUC scores
of 0.92 and 0.93, respectively, the fine-tuning model had a better operating point of 91%,
82% (sensitivity, specificity) vs. 85%, 86% for feature extraction.

3.5. The Effect of Prediction Protocol on Diagnostic Accuracy

In all cases, patient classification outperformed image prediction. In particular, it
boosted the ROC AUC score for all imaging protocols of the feature extraction technique
by 8–10%, by 4–5% for the “from-scratch” technique, and by 2–3% for the fine-tuning
technique.

4. Discussion

Although LGE CMR imaging represents a real alternative to myocardial biopsy for
diagnosing CA with an excellent diagnostic accuracy [19], readers in CMR centers with a
low volume of referrals for the detection of myocardial storage diseases or a low volume
of cardiac CMRs in general may overlook nonspecific or rare signs for CA. In light of
the high prevalence of the disease and emerging therapeutic options [10], we feel that
there is an urgent need to avoid lacking diagnoses with regard to CA. Herein, inspired by
the hugely successful applications of state-of-the-art deep learning techniques in image
understanding [13] and particularly transfer learning techniques in the medical imaging
domain [14], we used CNNs to develop a fully automated algorithm for the diagnosis
of CA using CMR. We were able to achieve highly accurate (average ROC AUC scores
0.90–0.96) fully automated CA prediction models validated on a cohort of 502 patients
(n = 82 positive CA patients with EMB ground-truth labels).

4.1. Cardiac Magnetic Resonance Imaging for the Diagnosis of Cardiac Amyloidosis

According to Chacko et al. [20] and Fontana et al. [21], CMR should always be used
if there is a suspicion of CA, because morphological changes in CMR are clearly visible.
Indeed, after the administration of an extrinsic gadolinium-based contrast agent, CMR
imaging can reveal characteristic LGE patterns alongside other morphological features,
such as myocardial thickening, atrial dilatation, and pericardial and/or pleural effusions.
It is furthermore possible to visually determine CA-specific gadolinium kinetics, such as
faster washout of gadolinium from myocardium, and blood pool when compared with that
of nonamyloid control subjects [22]. In addition, T1 mapping methods allow one to measure
this abnormal gadolinium kinetics [23]. In fact, Gillmore at al. published a comprehensive
algorithm for the diagnostic work-up of CA, which includes CMR as one baseline diagnostic
modality [8]. Previously, Austin et al. [24] concluded that LGE-CMR was the most accurate
noninvasive predictor of EMB-positive CA, with sensitivity, specificity, and positive and
negative predictive values of 88%, 95%, 93%, and 90%, respectively. Similarly, Bhatti
et al. [25,26] proposed a CMR pattern, which they applied to 251 CA patients (63 ± 10 years,
36% females), and achieved a sensitivity and NPV of 100%, and an ROC AUC score of 0.9.

However, there is evidence that in certain cases, CMR may not be enough to establish
a reliable CA diagnosis. For the diagnosis of TTR CA, the most meaningful test presently
is DPD bone scintigraphy. At the same time, in AL CA, DPD bone scintigraphy is not
reliable and may frequently be completely normal. Furthermore, the signs of AL CA may
be nonspecific on CMR scans, and CMR may even appear unremarkable although CA
is present [9]. This is important to notice, as AL CA seems to be at least as frequent as
TTR but affects younger patients and is characterized by a significantly higher morbidity
and mortality than TTR CA [10]. Importantly, however, underlying conditions such as
plasma cell dyscrasia (i.e., multiple myeloma) make AL CA an effectively treatable disease
today [10]. Thus, particularly for AL CA patients, the diagnosis based on CMR findings is
highly relevant.
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4.2. Role and Contribution of AI for CA Diagnosis

Recently, AI has been successfully used to automate the diagnosis of CA from different
data modalities. Goto et al. [27] have proposed two CNN-based prediction models for
ECG (CA, n = 130) and echocardiography (CA, n = 70) data, achieving 0.85 ROC AUC and
0.91 ROC AUC scores, respectively. Our group [28] built a gradient-boosted tree prediction
model for routinely available lab parameters (CA, n = 121) and achieved an ROC AUC
score of 0.86 on the test set. Martini et al. [29] trained a CNN-based prediction model for
LGE CMR images (CA, n = 107) and achieved an ROC AUC score of 0.982 on the test set.
Our work can be directly compared to that of Martini et al., with some notable differences.
First, we considered a larger patient cohort (n = 502 vs. n = 206) and a more realistic CA
prevalence in a specialized center of 16% vs. 52%; second, on top of the LGE MRI, we
also applied a CNN-based model to other imaging protocols, namely T1 mapping and
raw CINE images. Our results confirm that an AI prediction model does not require any
advanced knowledge of the disease and can potentially be agnostic of a specific imaging
protocol.

These recent results demonstrate a remarkable milestone in an attempt to establish
a fully computational diagnostic path for the diagnosis of CA to support the complex
diagnostic work-up requiring a profound knowledge of experts from different disciplines.
Comparing the performance of AI models on different data modalities, we can see that
those that process CMR images are the ones that give the best diagnostic accuracy overall.

In their review, Slomka et al. [30] hypothesized that, due to the precise delineation of
myocardial contours in LGE images, fully automatic feature extraction with deep learning
techniques should be relatively easy. Our results, as well as those of Martini et al. [29],
confirm this hypothesis. Therefore, we believe that at this point, it is almost inevitable
that AI is tightly incorporated into a routine CA diagnosis practice. However, the intrinsic
and extrinsic problems to AI most likely slow down its adoption rate at cardiac imaging
centers. One of the biggest concerns of AI models is their lack of interpretability. Some of
the noninvasive diagnostic algorithms rely on a list of accepted radiomic features, such as,
shape features and the number of connected voxels that share the same intensity, which is
widely accepted in clinical practice across the world. Current AI models do not necessarily
form their predictions based on these accepted numeric features. Hopefully, the research
on explainable AI (XAI) [31] may soon find an answer by translating low-level patterns
recognized by cryptic AI models into the language of accepted radiomic features. Extrinsic
to AI, data uniformity, as well as the lack of standardization of data acquisition pipelines,
are among the biggest challenges for reusable clinical prediction models [32]. To accelerate
a successful adoption of AI into a cardiac clinical practice, solving these intrinsic and
extrinsic to AI challenges should be prioritized next.

5. Limitations

AI algorithms are known to be data hungry and require significantly more positive
samples compared to traditional statistical clinical prediction models [33]. Therefore,
to increase the sample size of CA positives, we did not focus on the development of
separate patient profiles for AL and ATTR (61% of all CA patients in our dataset). However,
there is evidence that transmural and subendocardial LGE patterns may differentiate
AL from TTR (10)]. In addition, we observed differences extracellular volume in our
dataset (Supplementary Table S1). Therefore, it is our priority for future work to collect
representative sample sizes for MR images of both CA types and develop their patient
profiles using CNNs. In addition, we would like to test if adding T2 time values as a marker
would improve the diagnostic ability of the algorithm.

We are aware that this was a single-center study, and therefore, our developed algo-
rithm may not generalize well to the general population. For example, patients with renal
impairment (GFR < 30 mL/min/1.73 m2) did not undergo CMR imaging. Patients with
CA had elevated Troponin T levels (p < 0.001), which is a well-known hallmark of CA [34].
Furthermore, because most CA patients were in advanced HF stages, our current algorithm
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would most likely fail to identify individuals with early or preclinical disease, which is a
clear limitation of this study. However, our findings may fuel future research attempting to
perform early diagnosis of CA.

Another limitation of the study is a gender mismatch between patients and controls.
While it is known that males have a higher incidence of amyloidosis, which is also reflected
in our cohort, we had slightly more female patients among controls.

Lastly, in our control patient cohort, we did not perform EMB for the exclusion of
CA. However, control patients had alternative diagnoses with congruence between clinical
presentation and imaging.

Notwithstanding such limitations, we firmly believe that prediction systems become
more accurate if we are able to increase the available sample size. What we need for further
validation studies are more publicly available cardiac datasets, similar to what is happening
in the adjacent medical domains [35].

6. Conclusions

We demonstrate here that an automated classification of CA patients by CMR images
using state-of-the-art CNNs is possible and akin to human experts (ROC AUC 0.96 for LGE
CMR). This result likely contributes to the establishment of fully computational diagnostic
approaches operating on CMR images for CA. With a future perspective, we firmly believe
that our experience and guidelines for algorithmic construction of computational and
noninvasive diagnostic tools will support the less experienced CMR centers with a low
volume of CA. Our hope is that in future clinical practice, we will be able to avoid EMB
altogether and establish an accurate diagnosis of CA with noninvasive techniques, such as
CMR imaging, in the earliest stages of this rare disease.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11121268/s1, Supplementary Table S1. Cardiac magnetic resonance imaging parameters
for AL and ATTR, Supplementary Figure S1 Simplified convolutional neural network architecture
for automatic diagnosis of amyloidosis. Figure block (A) gives a high-level view of convolutional
pipeline-input image is fed through a composition of convolutional blocks (B), Supplementary Figure
S2 Amyloidosis prediction with feature extraction technique, Supplementary Figure S3 Amyloidosis
prediction by fine-tuning a pre-trained convolutional network.
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Abbreviations and Acronyms

CA cardiac amyloidosis
CMR cardiac magnetic resonance
HFpEF heart failure with preserved ejection fraction
HF heart failure
AL amyloid light chains
LV left ventricle
HF heart failure
CNN convolutional neural network
ECG electrocardiogram
EMB endomyocardial biopsy
LGE late gadolinium enhancement
MOLLI modified look-locker inversion recovery
ECV extracellular volume
CV cross-validation
ROC AUC varea under the receiver-operating characteristic curve
NT-proBNP N-terminal prohormone of brain natriuretic peptide
XAI explainable artificial intelligence
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