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Data collection and preprocessing 

We downloaded the cis eQTL data in SMR format from eQTLGEN website, which were 
derived from 26,609 participants. The methylation QTL data from McRea et al., which were 
derived from meta-analysis of 1980 participants, were downloaded from SMR website. The 
protein QTL data were obtained from Sun et al., which were derived from 3301 participants. 
We retained only QTL with p<1×10-5 and were within 1MB windows of the probes. Metabolite 
QTL and cytokine QTL were obtained from Kettunen et al. and Olli et al., and SNPs with p<1
×10-5 on the entire genome were retained. We used the 1000 Genome Phase 3 (1000G) 
European cohort as the reference population for linkage calculation of SMR and 2SMR. 
 We downloaded the GWAS summary statistics of SCZ, BP, MD, AN, ADHD, ANX, TS, 
OCD, ASD, ALD, and PTSD from PGC website. Data for AD, PD, and ND were downloaded 
from the corresponding consortiums curated at traitDB[1] database. Since some of the GWAS 
did not provide allele frequency information, we uniformly removed all allele frequencies and 
replace them by frequency in 1000G. Only SNP with Minor Allele Frequency (MAF)>0.01 in 
the European population of 1000G were included. We log-transformed all OR to obtain zero-
centered effect size for each SNP, and checked its direction to ensure that positive effect size 
was corresponded to increased disease risk. For SMR analysis, all data were transformed to .ma 
format required by SMR manually. In 2SMR analysis, for each molecule-disease pair, we 
extracted SNP with p<1×10-5 and were also recorded in the disease GWAS as instruments. They 
were then clumped to remove SNP with r2>0.001 with each other in 1000G. We harmonized 
the clumped instruments to remove incompatible alleles and make sure that the effect allele was 
uniform. These procedures were done by TwoSampleMR[2] R package separately for each 
molecule-disease pair. 
 We collected 13 cross-sectional blood RNA data of eight diseases and 11 blood 
methylation data of 6 diseases from GEO, ADNI repository, or directly from the corresponding 
authors. For diagnostic marker analysis, we removed all samples whose phenotypes were 
outside “case” and “control”. Detailed definition of phenotypes was provided in a case-by-case 
manner in below. For predictive marker analysis, only ADNI blood samples collected at “MCI” 
status were included. All array data were quantile-normalized and log-transformed, whereas 
RNA sequencing data were transformed into transcript-per-million (TPM) and log-transformed. 
Since covariates provided by each data were not uniform, we did not adjust for known 
covariates. Instead, we ran Surrogate Variable Analysis[3] (SVA) on each data and recorded all 
significant Surrogate variables (SVs). The normalized data were regressed against these SVs, 
and the scaled residual of regression was considered adjusted expression or methylation values. 
For multiple probes targeting the same genes, we retained the one with the largest average 
unadjusted values.  
 

Phenotype definition 

The methylation data of MD and BP was downloaded from Smith et al., which originally focused 
on the impact of childhood trauma. All participants of this study experienced childhood trauma to 



some extent. We defined those participants with current usage of antidepressant treatment as MD 
cases, those with current usage of Mood stabilizers as BP cases, and those without any psychiatric 
medication as control. 
 For ADNI data, we removed all samples with recovery from any type of dementia to mild 
cognition impairment (MCI) or normal status. For the diagnostic model, the status label was defined 
as the diagnosis received at the closest time point of the blood collection. For the predictive model, 
the outcome was defined as all diagnoses received after the time point of blood collection. 

Summary-based Mendelian Randomization (SMR) 

For the association between RNA, methylation, protein markers, and neuropsychiatric disorders, 
we applied multi-SNP based SMR[4], which utilized all cis-QTLs (p<5×10-8) within 1-MB 
window of the markers to estimate the p-value of association. In brief, for each cis-QTL i of a 
marker m, SMR first estimated the effect of m on a disease d (𝛽 ) by Wald ratio 𝛽 ( ) = 𝛽𝛽  

Where 𝛽  denoted effect of i on d (i.e., GWAS effect size of i) and 𝛽  denoted effect of i 
on m (i.e., QTL effect size of i). The SE (and corresponding statistics 𝑧 ) for each QTL was 
estimated by delta method 𝑆𝐸 ( ) = 𝑆𝐸𝛽  

. multi-SNP SMR then used the T statistic 𝑇 = 𝑧  

 
to generate the p-value of 𝛽  , where the null distribution of T was estimated by LD 
correlation matrix. We then applied HEIDI test on all cis-QTL with p<1×10-5 to examine 
whether 𝛽  was driven by different SNPs in strong LD. Details of HEIDI can be found at[4]. 
The p-value of SMR was adjusted by the Bonferroni method for each disease and each omic 
separately since the total number of available probes was slightly different for each disease.  

Two-sample Mendelian Randomization 

We applied 2SMR by TwoSampleMR R package using SNP with p<1×10-5 on the entire 
genome for the association between metabolite, cytokine markers, and neuropsychiatric 
disorders. Similar to SMR, we first estimated 𝛽  for each SNP (so-called instrument) by 
Wald ratio, then meta-analyzed by three methods: Inverse-Variance Weighted (IVW), Weighted 
Median (WM), and MR Egger regression. The significance threshold was defined as: adjusted 
IVW p <0.05, WM p<0.05, 𝛽  by IVW, WM and MR-Egger had the same direction. We 
adopted this threshold of significance to deal with the fact that we used a relative loose threshold 
for the inclusion of instruments (p<1×10-5), such that the influence of an invalid instrument 
should be taken into account. The 𝛽  estimated by IVW was considered the primary result. 
 For all molecule-disease pairs, we used the Wald Ratio (i.e., dividing SNP-molecule effect by 
SNP-disease effect) to calculate the per-SNP estimation of the causal effect. We then meta-analyzed 



all instruments by three methods: 
1) Inverse Variance-Weighted (IVW) method, which calculated weighted mean (βIVW) of all per-
SNP estimation. We directly applied exponential transformation on βIVW to generate the OR per 1-
SD increment in exposure, as reported in the Result section.  
2) Weighted Median (WM) estimation, which is the median of the weighted empirical distribution 
function of per-SNP estimation. WM can give precise estimation even when up to 50% of 
instruments are invalid. 
3) Egger regression, a weighted linear regression of SNP-molecule against SNP-disease effect. By 
allowing a non-zero intercept, Egger regression controls the unbalanced pleiotropy and provides 
valid estimation even if all SNPs are invalid instruments, with the cost of low statistical power. 
 To analyze whether 𝛽  reflected causal relation between marker m and disease d, we 
applied various sensitivity tests to rule out the possibility of horizontal pleiotropy[5], i.e., the 
causal SNP i impacts m and d via two distinct, horizontal mechanisms. P-value by any 
sensitivity test<0.05 indicated the existence of horizontal pleiotropy. These tests included: 
1) the Cochran’s Q test for IVW, a metric showing the extent to which all instruments deviated 
from the fitted line; 
2) the Rucker’s Q test for Egger regression, which also calculated the extent of instrument 
deviation, but also allowed for the non-zero intercept of the fitted line; 
3) Egger intercept test: a significant non-zero Egger intercept indicated the existence of 
directional pleiotropy; 
4) MR-PRESSO global test, which examined whether the observed residual sum of square 
(RSSobs) exceed expectation by permutation. 
If p values of at least one of the four tests <0.05, we further applied step-wise outlier removal 
test to get rid of the influence of pleiotropy. Specifically, we ranked all instruments in the 
descending order of RSSobs. We removed the top one instrument and repeated the three MR 
tests and four sensitivity tests on the remaining (n-1) instruments. If the p-value of at least one 
test was still smaller than 0.05, we repeated this procedure by removing top 2, top 3, … top (n-
3) instruments, until all sensitivity tests had p-value >0.05 (leftmost black point in Figure S4). 
The 𝛽  results at this point were denoted as the pleiotropy-free result. 

Sensitivity analysis results for causality validation 

As shown in Table S8, six out of seven cytokine-disorder associations, as well as 13 out of 22 
metabolite-disorder associations, had p>0.05 in the four heterogeneity tests, indicating no 
heterogeneity. Thus, the association among them credibly reflected causality. For ten 
associations that failed one or more of the four heterogeneity tests, removing 3.5% to 31.9% of 
top outlier SNPs could yield a homogenous result (Table S8). As a typical example, the 
association between Bis.DB.ratio and BP (Figure S4) had Cochran p=0.02 and Rucker p=0.03 
when all 47 instrument SNPs were included in the MR analysis. We then applied MR-
PRESSO[6] to find potential outliers from the 47 SNPs and sequentially removed top1, top2, … 
top 44 outliers. When we removed 15 outliers (Figure S4), the remaining SNPs gave 
homogenous (i.e., p-value for four sensitivity test>0.05, Table S8) and significant MR result (β
IVW=-0.14, p=1.93×10-5). Taken together, our 2SMR analysis not only found potential cytokine 
and metabolite biomarkers for neuropsychiatric disorders, but also found causality between 



them, which yielded insights into the disease mechanism. 

Functional and regional enrichment of SMR-identified markers 

 A list of genes preferentially expressed in the brain was downloaded from Genovese et al. 
[7]. To obtain the list of genes preferentially expressed in different brain cell types, we 
downloaded the single-cell data of Saunders et al. [8] and applied Expression Weighted Cell 
Type Enrichment[9] (EWCE) on it. Specifically, we applied “generate.celltype.data” function 
from EWCE R package to generate a gene×cell type specificity matrix, and we defined genes 
with top 20% specificity score of each major cell type as the preferentially expressed genes for 
this cell type. We tested whether RNA markers or proxy genes of methylation markers enriched 
in these gene lists by one-sided hypergeometric test, with background defined as all protein-
coding genes. As for functional enrichment, we applied GO-BP analysis by clusterProfiler[10] 
R package, with a background set as all genes with GO-BP annotation and the p-value adjusted 
by FDR method. 
 For methylation site enrichment analysis, we obtained genomic annotations from three 
sources: 
1) The following annotations were obtained from Illumina 450k documents: FANTOM 
methylation regions associated with promotor[11]; ENCODE enhancer[12]; DNase I 
Hypersensitivity Site[12]; CpG Island or shore; first exon, UTR, gene body, or 1500 bp around 
TSS of a gene. 
2) The following annotations were obtained from the Roadmap project[13]: H3K9me3, 
H3K4me3, H3K27me3, H3K36me3, H3K9ac, H3K27ac, and H3K4me1 peaks of dorsal lateral 
prefrontal cortex. 
3) The annotation of 15 core chromatin states was obtained from Ernst et al. [14]. 
 We tested whether significant methylation markers were significantly enriched in these 
annotations by hypergeometric test, with background defined as all methylation sites with at 
least one strong (p<5×10-8) cis-QTL.  

Simulation analysis 

 To quantify the classification power of markers from each omics, we generated simulation 
data with the hypothesis that SMR-estimated 𝛽   truly reflected reality, and with the 
consideration of estimation uncertainty and environmental influence. Specifically, for each 
omic-disease combination, we repeated the following procedure 1,000 times to generate 1,000 
simulation datasets: 
1) For marker m (m=1,2…n) from omic o of disease d, we generated normal distribution 𝛽 ~𝑁(𝛽 , 𝑆𝐸 ), where 𝛽  and 𝑆𝐸  were effect size and SE obtained from SMR or 
2SMR. We then generated a random 𝛽  from the normal distribution, which formed an effect 

size vector 𝐵 = 𝛽 , ,… . 

2) We then generated a random expression matrix 𝐸 , ×  by generating n random vectors 
of length 10,000 from 𝑁(0, 1). This was because that all OR from GWAS or QTL analysis has 
been standardized, such that 𝛽  corresponded to log odds of d per 1-SD increment of m. To 



account for environmental confounders, we added a random noise of 𝑁(0, 0.01)  on each 
vector. 
3) We calculated the odds of d as 𝑂𝐷𝐷(𝑑) = 𝑜𝑑𝑑 , ,… , = 𝐸 × 𝐵 , and subsequently, 

the probability of d as 𝑃(𝑑) = 𝑝 , ,… , = , ,… ,  . For simplicity, the 

intercept term was set as zero, i.e., the number of cases of d is set to be identical to that of 
control. 
4) The label (case or control) for each of the 10,000 simulated samples was randomly decided , 
with the probability of being a case =𝑃(𝑑). 
 On each of the simulation datasets, we applied Logistic regression by rms R package, and 
recorded the AUC and R2. We took the median AUC and R2 across 1,000 simulation for 
comparison as in Figure 2.  
 For cross-omic analysis, we pooled all markers of a disease, ranked them according to the 
absolute effect size, and generated simulation datasets of all these markers by the same 
procedure. In each simulation data, we sequentially applied Logistic regression on top 1, 
top2, …top n markers and recorded the AUC, R2, and AIC (by MASS R package). We 
calculated the median values across 1,000 simulations, and chose the optimal model with the 
lowest median AIC. All the above simulation analysis was done separately for HEIDI(+) and 
HEIDI(-) markers. 

Published transcriptome and methylome data analysis 

The public transcriptome or methylome data, as mentioned above, were first adjusted and 
scaled. We extracted the value of HEIDI(+) and HEIDI(-) markers, applied Logistic regression, 
and recorded the AUC. If more than one dataset were available for one disease, they were 
analyzed and recorded separately. The obtained AUC was compared to the corresponding 
simulation AUC (restricted to markers available in the real data).  
 To compare the power of HEIDI(+) and HEIDI(-) markers, we ranked the HEIDI(-) 
markers according to their SMR p-value and chose top markers with the same number of 
HEIDI(+) markers. We applied Logistic regression on these two sets of markers of the same 
number and compared their AUC, log-likelihood, and the number of markers with Wald test 
p<0.05 (and adjusted p<0.05).  
 We collected 12 cross-sectional blood RNA data[15, 16, 25, 26, 17–24] of seven diseases 
and 11 blood methylation data[27–35] of 6 diseases to evaluate the efficiency of RNA and 
methylation markers. We did not analyze protein, cytokine, and metabolite markers since 
limited public data is available. As shown in Figure S7, methylation markers of AD, BP, MD, 
and AN generally had higher AUC in real data than in simulation data, especially HEIDI(-) 
markers of AN (real AUC=0.85, simulation AUC=0.63). On the other hand, RNA and 
methylation markers of SCZ and PD tended to have lower AUC in the real data, suggesting that 
only a small proportion truly took effect among the large number of SMR-identified markers 
of SCZ and PD.  
 We then investigated whether the power of HEIDI(-) markers was comparable to HEIDI(+) 
markers. We observed that HEIDI(+) and HEIDI(-) markers generally had similar AUC. 
Despite a few exceptions like methylation markers of AN (HEIDI(+) AUC=0.76, HEIDI(-) 



AUC=0.65), the difference of AUC of HEIDI(+) and HEIDI(-) markers were generally smaller 
than 0.05. Concordantly, the Likelihood ratio and the number of significant variables of Logistic 
regression were also similar for HEIDI(+) and HEIDI(-) markers (Table S10), which suggested 
that their classification power and significance were similar.  
 

Diagnostic model construction 

For SCZ methylation markers, we used the smaller data set (N=675) from Hannon et al. [35] 
as a feature selection set. Specifically, we calculated the Spearman correlation coefficient ρ 
between each of the 1897 SMR-identified markers (both HEIDI(+) and HEIDI(-)) and 
diagnostic status, and retained only those with 1) ρ and SMR β of the same direction; 2) |ρ
|>0.05. Then, we applied a Bayesian LASSO (bLASSO) regression by “monomvn” R package 
on the remaining 480 markers. “bLASSO” took SMR β as prior coefficients for each marker, 
then applied a Markov chain Monte Carlo (MCMC) with chain length=1000 to generate 
posterior βdistribution. The initial LASSO penalty parameter was set at λ2=0.01, and was not 
fixed along MCMC. All other parameters were set at the default of blasso() function. All 
markers with median posterior coefficients not equal to zero were chosen as candidate markers. 
In the training set (N=547, a subset from a larger dataset of Hannon et al. [35]), we applied 
classical LASSO regression on the candidate markers and estimated the coefficient with λ 
equal to minimum λ  plus 1 SE. All remaining markers, together with their non-zero 
coefficients, constructed the final diagnostic model. Using this model, we calculated the 
diagnostic score for each sample and determined the optimal cut point using “cutpointr” R 
package by maximizing the Youden’s index. The 95% confidence interval (CI) for ROC was 
evaluated by bootstrap using “ci.auc()” function, and the p-value of AUC was estimated by the 
z score method from the 95% CI. Finally, the coefficient, as well as cut point of the identified 
model, were fixed and applied to the validation set, and the AUC and accuracy were calculated 
similarly. 
 For the AD and PD methylation model as well as the BP RNA model, the number of SMR-
identified markers was much lower. Thus, we did not use a feature selection set to pre-filter the 
candidate marker. Instead, we directly calculated Spearman ρ in the training set and removed 
discordant markers, as described above.  

Predictive model construction 

We downloaded from the ADNI repository[27] all blood methylation data for which the 
diagnosis at sample collection was “MCI”, except those recovered from dementia status. Data 
were randomly separated into training (N=600) and validation (N=356) sets. According to 
whether the participants converted to AD in the entire follow-up period recorded by ADNI, we 
classified samples in the training set as converter and non-converter. We first carried out 
Spearman correlation analysis and LASSO regression similar to the diagnostic model and 
obtained a model that could distinguish converters from non-converters. Then, we applied this 
model to define high conversion risk and low-risk groups in the validation set. Hazard ratio and 
its p-value were calculated by univariate Cox regression using survival and “survminer” R 



package. The endpoint of each sample was either conversion or cessation (last follow-up 
record). 
 
 
 
 
 
 
 
 
 
 

Supplementary Table S1-S5 All significant SMR result for transcriptome, 

methylome, proteome, cytokines, and metabolome 

Provided as a separate excel file. 
 

Supplementary Table S6 tissue- and cell type-specific expression 

term RNA methylation site 
p OR p OR 

Brain preferentially 
expressed 

0.10 1.22 0.01 1.59 

ASTROCYTE 0.54 0.99 0.13 1.29 
CHOROID_PLEXUS 1.00 0.00 1.00 0.00 

ENDOTHELIAL 1.00 0.19 1.00 0.00 
EPENDYMAL 1.00 0.00 1.00 0.00 

MACROPHAGE 0.34 1.09 0.42 1.09 
MICROGLIA 1.00 0.00 1.00 0.00 

MITOTIC 1.00 0.00 1.00 0.00 
MURAL 0.37 1.07 0.22 1.22 

NEUROGENESIS 1.00 0.00 1.00 0.00 
NEURON 1.00 0.00 1.00 0.00 

OLIGODENDROCYTE 1.00 0.00 1.00 0.00 
POLYDENDROCYTE 1.00 0.00 1.00 0.00 

P and Odds Ratio are calculated by two-sided Fisher Exact test. 
  



 

Supplementary Table S7 regional enrichment of methylation markers 

term 
All HEIDI(+) HEIDI(-) 

p OR p OR p OR 
phantom 8.04E-02 1.35E+00 6.73E-01 8.72E-01 5.20E-02 1.46E+00 
enhancer 8.04E-02 1.35E+00 6.73E-01 8.72E-01 5.20E-02 1.46E+00 
DHS 9.10E-05 1.42E+00 3.45E-02 1.46E+00 2.59E-04 1.44E+00 
Island 6.58E-01 9.68E-01 7.63E-01 8.85E-01 5.91E-01 9.82E-01 
Shore 1.70E-02 1.17E+00 1.52E-03 1.61E+00 2.32E-01 1.07E+00 
geneA 9.96E-02 1.62E+00 4.78E-02 3.01E+00 3.77E-01 1.21E+00 
promoterA 1.99E-05 1.51E+00 2.69E-03 1.80E+00 1.37E-04 1.51E+00 
fExon 8.72E-03 1.60E+00 1.77E-01 1.55E+00 2.01E-02 1.58E+00 
UTR 6.51E-02 1.19E+00 5.46E-01 9.94E-01 7.35E-02 1.21E+00 
body 3.32E-04 1.30E+00 5.15E-05 1.87E+00 6.13E-02 1.14E+00 
TSS 4.16E-01 1.02E+00 8.16E-01 8.53E-01 1.27E-01 1.12E+00 
h3k27ac 1.87E-06 1.49E+00 1.34E-02 1.53E+00 7.91E-06 1.52E+00 
h3k27me3 1.00E+00 6.14E-01 1.00E+00 4.95E-01 1.00E+00 6.48E-01 
h3k36me3 2.68E-17 1.88E+00 1.06E-08 2.46E+00 3.77E-12 1.78E+00 
h3k4me1 4.48E-03 1.24E+00 6.91E-02 1.32E+00 1.88E-02 1.21E+00 
h3k4me3 8.53E-04 1.28E+00 4.70E-02 1.34E+00 3.33E-03 1.27E+00 
h3k9me3 9.53E-01 8.63E-01 9.69E-01 7.00E-01 8.33E-01 9.12E-01 
1_TssA 2.10E-03 1.29E+00 1.76E-01 1.21E+00 1.32E-03 1.35E+00 
13_ReprPC 9.92E-01 6.53E-01 9.95E-01 3.17E-01 9.48E-01 7.38E-01 
2_TssAFlnk 2.40E-02 1.29E+00 9.61E-02 1.44E+00 4.82E-02 1.28E+00 
11_BivFlnk 9.51E-01 5.11E-01 1.00E+00 0.00E+00 8.65E-01 6.45E-01 
15_Quies 1.00E+00 6.38E-01 9.89E-01 6.30E-01 1.00E+00 6.38E-01 
7_Enh 4.40E-01 1.03E+00 1.63E-01 1.32E+00 7.04E-01 9.30E-01 
10_TssBiv 9.22E-01 7.12E-01 9.86E-01 2.31E-01 7.75E-01 8.35E-01 
14_ReprPCWk 1.00E+00 6.09E-01 9.70E-01 6.27E-01 1.00E+00 5.82E-01 
4_Tx 6.06E-02 1.32E+00 4.78E-01 1.08E+00 4.01E-02 1.41E+00 
5_TxWk 1.23E-06 1.57E+00 4.34E-04 1.95E+00 2.80E-04 1.46E+00 
6_EnhG 2.12E-02 1.89E+00 8.07E-01 6.09E-01 8.16E-03 2.21E+00 
12_EnhBiv 9.18E-01 5.99E-01 5.38E-01 1.11E+00 9.61E-01 4.51E-01 
9_Het 9.30E-01 3.75E-01 1.00E+00 0.00E+00 8.79E-01 4.73E-01 
3_TxFlnk 2.46E-01 1.77E+00 1.00E+00 0.00E+00 1.57E-01 2.23E+00 
8_ZNF/Rpts 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00 

  



 

Supplementary Table S8 Sensitivity tests for all heterogeneous MR result  

Provided as a separate excel file. 
 

Supplementary Table S9 Simulation analysis for BP  

 
LR N.marker AUC R2 AIC 

744.783 1 0.652733 0.095697 13136.52 
1350.438 2 0.70446 0.168436 12538.95 
1791.641 3 0.735199 0.218714 12106.96 
1962.947 4 0.745699 0.23765 11945.14 
2178.82 5 0.75768 0.261047 11738.35 

2261.588 6 0.762734 0.269893 11664.13 
2338.397 7 0.766577 0.278021 11597.61 
2385.576 8 0.769458 0.282991 11559.02 
2424.841 9 0.771612 0.287099 11530.12 
2468.25 10 0.773849 0.291656 11494.8 

2484.299 11 0.774747 0.293307 11487.69 
2562.408 12 0.778719 0.301395 11420.08 
2620.169 13 0.781526 0.307355 11370.93 
2635.585 14 0.78232 0.30892 11364.45 
2644.516 15 0.782872 0.309832 11365.69 
2682.738 16 0.784786 0.313736 11336.31 
2717.489 17 0.786523 0.317281 11310.88 
2725.784 18 0.786894 0.318126 11311.4 
2761.764 19 0.788713 0.321763 11284.76 
2781.055 20 0.789447 0.323731 11273.02 
2794.366 21 0.790185 0.325066 11270.41 
2805.592 22 0.790728 0.326186 11268.41 
2812.766 23 0.791265 0.326924 11269.66 
2814.079 24 0.791315 0.327053 11277.46 
2816.763 25 0.791299 0.327319 11284.88 

They corresponded to Figure 2B. For the ease of visualization, AIC was log-transformed and scaled 
in Figure 2B. 

Supplementary Table S10 summary of results of real data analysis 

Provided as a separate excel file 



Supplementary Table S11 Summary and comparison of blood multi-omic 

biomarkers  

Provided as a separate excel file 
 
  



Supplementary Figure S1 Flowchart and data summary of the study 

 

 

 

Supplementary Figure S2 summary of SMR HEIDI(-) results for each omic and 

disease 

 
They corresponded to Figure 1A. 
  



 

Supplementary Figure S3 methylation markers and its biological interpretation 

A: Manhattan plot of SMR methylation analysis. For the ease of visualization, we randomly 
removed 80% of points with p>0.01 as well as points within the MHC region. B: GO-BP analysis 
of proxy genes of SMR-identified methylation markers. 
 
 

Supplementary Figure S4 Step-wise outlier removal test for Bis.DB.ratio 

 

A: Each dot and its error bar showed IVW result after removing top outliers (x-axis). If the four 
sensitivity tests all had p>0.05, the dot was colored black. B: scatter plot of MR analysis with all 
instruments. C: scatter plot of MR analysis after removing outliers (corresponded to the first black 
dot in A). 
 



Supplementary Figure S5 Simulation analysis of AN markers 

 

Similar to Figure 2B, but for AN. 

Supplementary Figure S6 Simulation analysis of AD markers 

 
Similar to Figure 2B and C, but for AD. 



Supplementary Figure S7 Comparison of HEIDI(+) and HEIDI(-) markers in real-

world data 

 
 
 
  



Supplementary Figure S8 Diagnostic model of PD by methylation markers 

 

Similar to Figure 3, but for PD. 
  



Supplementary Figure S9 Diagnostic model of BP by RNA markers 

 
Similar to Figure 4, but for BP RNA markers. 
  



 

Supplementary Figure S10 Validation of methylation diagnostic markers of AD. 

Similar to Figure 3, but for AD. 
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