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Abstract: Background: Recently, artificial intelligence (AI) with computerized imaging analysis is
attracting the attention of clinicians, in particular for its potential applications in improving cancer
diagnosis. This review aims to investigate the contribution of radiomics and AI on the radiological
preoperative assessment of patients with uterine sarcomas (USs). Methods: Our literature review
involved a systematic search conducted in the last ten years about diagnosis, staging and treatments
with radiomics and AI in USs. The protocol was drafted according to the systematic review and
meta-analysis preferred reporting project (PRISMA-P) and was registered in the PROSPERO database
(CRD42021253535). Results: The initial search identified 754 articles; of these, six papers responded to
the characteristics required for the revision and were included in the final analysis. The predominant
technique tested was magnetic resonance imaging. The analyzed studies revealed that even though
sometimes complex models included AI-related algorithms, they are still too complex for translation
into clinical practice. Furthermore, since these results are extracted by retrospective series and do
not include external validations, currently it is hard to predict the chances of their application in
different study groups. Conclusion: To date, insufficient evidence supports the benefit of radiomics
in USs. Nevertheless, this field is promising but the quality of studies should be a priority in these
new technologies.

Keywords: uterine tumors; uterine sarcoma; fibroids; radiomics; artificial intelligence; deep learning;
machine learning
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1. Introduction

Uterine body tumours (UBTs) are represented by endometrial carcinomas (ECs) and
sarcomas (USs). ECs are the most common female cancers of the reproductive system in
high-income countries, with a favourable prognosis in most patients [1,2]. On the contrary,
USs are rare and among the most lethal gynaecological cancers [3].The clinical management
of UBTs is complicated by the tumour heterogeneity and by the difficult classification both
in terms of histological types and risk classes. Hence, UBTs require a detailed assessment
of multiple variables, including, but not limited to, clinical, radiological, pathological
and genomic parameters, to achieve the risk stratification needed to plan the treatment.
Unfortunately, the assessment of most of these parameters is operator-dependent and
therefore potentially affected by inaccuracies even by experienced operators. Moreover,
the need to include different parameters into the risk assessment, each associated with
some risk of error, amplifies the likelihood of incorrect prognostic stratification. This issue
is of particular importance in ECs where risk stratification, as reported by the European
Society of Medical Oncology (ESMO)-risk, is based almost entirely on parameters that
are difficult to reproduce, in particular histological type and degree of differentiation [4].
Furthermore, these issues are even more evident in high-grade ECs, and the integration
between various risk factors (histopathological and molecular) is nowadays an open
question [5]. With regard to the USs, the problem is even more complex. The paucity of
parameters useful for risk stratification is worsened by the lack of accurate imaging criteria
able to differentiate, before surgery, USs from their benign counterparts (fibroids) [6].
Indeed, the histological examination of the surgical specimen is the only way to reach
a definitive diagnosis. There are still some unsolved problems for certain borderline
tumours, such as atypical fibroids, where it is difficult to classify individual cases between
benign and malignant categories. Nevertheless, the use of fertility-sparing interventions,
minimally invasive surgical techniques or technically inadequate resections, such as in
cases of intraoperative tumour fragmentation (morcellation), can dramatically impact
both quality of life and prognosis [7]. Therefore, the technical details of surgical resection
should be also considered in US risk stratification. Based on this background, US treatment
lacks a personalized approach and the opportunities of precision medicine. However,
in the near future an increasing number of data deriving from the various -omics will be
increasingly available also in these types of tumours. The potential refinement of risk
stratification systems resulting from this new scenario will require the ability to manage
and analyse large databases. To this purpose, analyses based on artificial intelligence (AI)
systems could be able to overcome the human cognitive possibilities and therefore are
considered very attractive [8,9]. Over the last decade there has been an increasing focus on
AI methods applied to medicine and, particularly, to oncology. The main reasons of this
growing interest are the advantages of personalised medicine based on predictive models
developed through the analysis of large databases; an additional reason is the possibility to
standardize the evaluation of several parameters (e.g., histopathological and radiological)
based on an automated assessment. Furthermore, awareness is growing due to the fact
that tumours and their response rates, during and after treatment, greatly differ between
specific cancers and inter-patients and, thus, different adaptive strategies are required
to optimize cancer control and minimize toxicity [10,11]. Therefore, during the clinical
pathways, data collected in medical records and radiological images are used to generate a
flow of information (dataflow) which reconstructs the natural history of the disease. All
these considerations together allow us to shed light on all the possible nuances of each
patient’s tumour characteristics. All this information represents an increasingly important
body of data in the scientific literature and is the basis for the construction of artificial
intelligence algorithms. The ultimate goal of this process is to help physicians to shape a
personalized view of the patient before and during the treatment process and then to guide
medical decisions [12].

Given the clinical management issues of USs, AI and more specifically radiomics
could promote a more efficient identification of new biomarkers and new diagnostic and
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prognostic criteria, playing a key role in improving the currently available prognostic
stratification systems and developing new ones.

Therefore, the purpose of this systematic review was to assess the state of the art of
imaging-based AI techniques (including radiomics) applied to USs.

2. Materials and Methods
2.1. Eligibility Criteria

The PICOS framework (population, intervention, comparison, outcomes, study de-
sign) was used to formulate the questions for this study: (1) patients with malignant uterine
sarcomas (population), (2) assessed with radiomics/AI (interventions), (3) and/or with
standard radiological exams (comparisons), (4) diagnosis, and/or prognosis (outcomes),
and (5) all types of cohort studies, including randomized controlled trials, case series and
case reports (study design). The focused question was “What are the potential contributing
factors on diagnosis and prognosis of radiomics/AI compared to standard radiological
imaging in malignant uterine sarcomas?”. They were included in this review if they met
the PICOS criteria.

2.2. Information Source and Search Strategies

The protocol was drafted according to the systematic review and meta-analysis pre-
ferred reporting project (PRISMA-P) [13]. The protocol was registered in the PROSPERO
international register on 6 June 2021 (CRD42021253535) [14]. Our literature review in-
volved a systematic search conducted on 20 October 2021. PubMed, Scopus, and Cochrane
Library databases were systematically searched for original articles analysing the impact of
radiological imaging-based AI techniques on uterine sarcomas.

2.3. Study Selection and Data Extraction

Relevant studies were selected using the Boolean combination of the key terms re-
ported in Table S1. Additionally, the reference list of reviews, meta-analyses, and all
selected papers were hand-searched to acquire further relevant studies missed from the ini-
tial electronic search. Eligible studies included retrospective and prospective studies, case
series and clinical trials. Exclusion criteria were as follows: preclinical studies, duplicate
data, study protocols, systematic or narrative reviews, meta-analyses, letter commentaries,
editorials, planning studies, imaging studies, surveys, guidelines and recommendations.
After removing duplicate studies, four independent investigators (GR: biologist and expert
in basic cancer research, MF: radiation oncologist and expert in gynecological cancers, SR:
radiologist and expert in radiomics analyses and AMP: gynaecological oncologist and
expert in clinical research) carefully read the titles and abstracts of the relevant articles and
judged their eligibility. Then, the entire text of potentially eligible studies was evaluated
to assess the appropriateness for inclusion. Disagreements were resolved by consensus.
Potentially relevant papers were screened using title and abstract and articles that did not
meet the inclusion criteria were excluded. After screening titles and abstracts, the articles
were archived in a reference management system to eliminate duplicates. Subsequently,
the remaining full text articles were retrieved and examined by four authors (GR, MF, SR
and AMP) to independently extract data.

For each eligible article, the following data were sought and recorded: the study
characteristics (first author, publication year, objective and endpoint, study design); the
patients’ characteristics (cancer type, number of patients, median age, stage according to the
International Federation of Gynaecology and Obstetrics, treatment setting (at first diagnosis
or after recurrence)); methods applied (imaging technique, presence of a validation group,
type of segmentation, model construction based on radiomics or other AI techniques,
inclusion of clinical features in the AI-based model).

Finally, extracted data were crosschecked by the four investigators (GR, MF, SR
and AMP).
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2.4. Assessment of Methodological Quality

The same authors (GR, MF, SR and AMP) independently assessed the methodological
quality of the selected studies. In cases of disagreement, they attempted to reach a con-
sensus, and if they failed a senior author made the final decision. The overall quality of
the included studies was critically evaluated based on the revised “Quality Assessment of
Diagnostic Accuracy Studies” tool (QUADAS-2) [15]. This tool comprises four domains
(patient selection, index test, reference standard and flow and timing); each domain was
assessed in terms of risk of bias and a graph was constructed accordingly.

3. Results
3.1. Literature Search

The initial search yielded 754 articles. Ten studies were duplicates across PubMed
and Scopus and thus eliminated, resulting in 744 studies to be screened. According
to the previously described inclusion and exclusion criteria, 722 papers were excluded,
and 6 full-text articles were included in this systematic review [16–21]. Details about the
literature search results are reported in Figure 1.
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Given the small number of the included papers and the heterogeneity of the available
data, a meta-analysis to calculate the pooled results was not performed.

As shown in Table 1, the selected articles were published between 2018 and 2020. All
studies were retrospective, and the number of included patients ranged between 58 and 80.
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The mean/median age of patients ranged between 42.1 and 58.7 years, while none of the
authors reported the FIGO stage. All articles included only patients at first diagnosis.

Table 1. Studies included in the systematic review.

Authors Year Objective Endpoint
Study

Design
Cancer
Type

N
Patients

Mean/Median
Age

FIGO *
Stage

First
Diagnosis or
Recurrence

Malek [16] 2020
Lesion

characteri-
zation

Differentiation
between

leiomyoma and
sarcoma

Retro-
spective

Sarcoma
and

leiomyoma
65 42.1 ND

First
diagnosis

Xie [17] 2019
Lesion

characteri-
zation

Differentiation
between

leiomyoma and
sarcoma

Retro-
spective

Sarcoma
and

leiomyoma
58 58.7 ND

First
diagnosis

Xie [18] 2019
Lesion

characteri-
zation

Differentiation
between

leiomyoma and
sarcoma

Retro-
spective

Sarcoma
and

leiomyoma
78 ND ND

First
diagnosis

Nakagawa
[19]

2019
Lesion

characteri-
zation

Differentiation
between

leiomyoma and
sarcoma

Retro-
spective

Sarcoma
and

leiomyoma
80 50.2 ND

First
diagnosis

Malek [20] 2018
Lesion

characteri-
zation

Differentiation
between

leiomyoma and
sarcoma

Retro-
spective

Sarcoma
and

leiomyoma
60 44.7 ND

First
diagnosis

Nakagawa
[21]

2018
Lesion

characteri-
zation

Differentiation
between

leiomyoma and
sarcoma

Retro-
spective

Sarcoma
and

leiomyoma
67 54.4 ND

First
diagnosis

FIGO *: International Federation of Gynaecology and Obstetrics; ND: Not declared.

3.2. Technical Aspects of the Included Studies

As shown in Table 2, all studies were based on MRI (one included both PET and MRI).
A validation cohort was not included in any study. The segmentation was performed
manually in all papers. The presented predictive models were based on radiomics in 2/10
and on machine learning (ML) in 4/10.

Table 2. Methodological and technical aspects of the included studies.

Authors Imaging
Technique Validation Group Segmentation Model

Construction
Inclusion of Clinical

Features in the Model

Malek [16] MRI No Manual ML No
Xie [17] MRI No Manual Radiomics Yes
Xie [18] MRI No Manual Radiomics No

Nakagawa [19] MRI No Manual ML No
Malek [20] MRI No Manual ML No

Nakagawa [21] MRI; PET No Manual ML No

ML: machine learning; MRI: magnetic resonance imaging; ND: not determinate; PET: positron emission tomography.

3.3. Quality Assessment

The overall quality assessment of the included studies is reported in Figure 2. For all
domains, the risk of bias was ≤70%. The domain with the most frequent risk of bias was
“reference standard”.
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3.4. Main Findings

The main findings are reported in Table 3.

Table 3. Main findings of the selected papers.

Authors Significant Results for Lesion Characterization: Differentiation between
Leiomyomas and Sarcomas

Malek [16]

A simple algorithm showed 96.2% accuracy, 100% sensitivity and 95%
specificity. The complex algorithm yielded accuracy, sensitivity and specificity

of 100%. However, the complex one is more time-consuming and needs
difficult imaging calculations.

Xie [17]
Ill-defined tumour margin and interrupted uterine endometrial cavity of older

women were predictors of uterine sarcoma. The optimal radiomic model
showed comparable efficacy with experienced radiologists.

Xie [18]
Radiomic model based on features extracted from VOI that covered the whole
uterus (compared to VOI including the sole tumour or the tumour and a small

piece of surrounding tissue) showed the best diagnostic performance.

Nakagawa [19]
Age was the most important factor for differentiation (p < 0.001). The AUC for
the machine learning method used outperformed experienced radiologists in

the differentiation of uterine sarcomas from leiomyomas.

Malek [20]
No perfusion parameter was able to differentiate leiomyomas from sarcomas.

When the information provided by the extracted features was aggregated
using a ML method, a promising discriminative power was obtained.

Nakagawa [21] The diagnostic performance of the ML method using mp-MRI was superior to
PET and comparable to that of experienced radiologists

AUC: Area under the ROC curve; ML: machine learning; MRI: magnetic resonance imaging; PET: positron
emission tomography; VOI: volume of interest.

3.5. Lesion Characterization: Differentiation between Leiomyomas and Sarcomas

Clinical factors correlated with a diagnosis of USs included older age [17,19], inter-
rupted endometrial cavity and ill-defined tumour margins [17].

Although a complex algorithm showed 100% sensitivity, specificity and accuracy
in the differentiation of myomas from leiomyosarcomas, this classifier was deemed too
complicated for routine clinical practice [16,20]. The models based on radiomics features
extracted from the whole uterus outperformed the ones based on features extracted only
from the macroscopic tumour or from the tumour and a small region of the surrounding
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tissue [18]. Furthermore, AI-based performance of multiparametric MRI was superior to
PET in diagnosis, whereas MRI perfusion parameters were not helpful in differentiating
benign from malignant lesions.

Finally, MRI-extracted AI-based methods were comparable to [17] or more accurate
than the interpretation of experienced radiologists [19,21].

4. Discussion

This systematic review assessed the state of the art of imaging-based techniques
(including radiomics and other AI-related imaging modalities) applied to USs. A few
studies have shown that sometimes complex models, including AI-related algorithms,
showed excellent accuracy in this setting [20]. However, these models are still considered
too complicated for prompt inclusion in clinical practice. Moreover, being that most
findings derive from retrospective series and with missing external validations, it is difficult
to evaluate the generalizability of the reported results.

Our literature analysis showed a progressively growing interest in AI models in USs in
recent years, including all studies published in the last two years. However, these studies
are retrospective, and the lack of standardized protocols makes them very heterogeneous
in terms of type of samples, of analysis and of segmentation. Moreover, the number
of patients analysed is too small and the follow-up duration is too short to carry out
reliable assessments.

For all these reasons, it is a shared opinion of the authors that, currently, AI models
cannot be used in clinical practice to solve the problems of differential diagnosis and risk
stratification in USs.

More recently, another systematic review on radiomics applied to uterine tumours
was published [22]. However, that analysis focused only on ECs and not, as in our case,
on USs. Nevertheless, even the authors of this latest review concluded that the available
evidence is not of a sufficient level to allow the clinical application of radiomics to ECs.
The main issue about USs faced by the studies included in our analysis was the dilemma
of pre-operative differential diagnosis between benign and malignant lesions. Regarding
the imaging techniques, MRI was the most widely used. Moreover, MRI proved to be
superior to PET. However, experienced radiologists were at least equivalent to AI models
in all cases and sometimes they were more accurate in the diagnostic phase. It should be
noted that the selection of investigated cases was sometimes unclear. Most importantly,
in some studies, different histologic types, including carcinosarcomas, were erroneously
analysed together [19,21]. Furthermore, different US types, such as leiomyosarcomas and
sarcomas of the endometrial stroma, were analysed together, even if they are considered
to be two distinct tumours. In fact, though these cancers are classified as “sarcoma”, they
have different behaviours with a diverse clinical presentation, prognosis and treatment.
This bias, together with the small sample size, could have influenced the final findings of
the studies.

As in radiomic studies on other organs, different strategies have also been adopted for
the uterus in terms of inclusion in the analysis of the whole organ or of the macroscopic
tumour only [23]. Indeed, the studies included in our review reported better results in cases
of whole uterus segmentation compared to that of the tumour alone [18]. Anyway, the
segmentation of the whole uterus guarantees the complete inclusion of the entire tumour
sites, especially in PET examinations where the tumour edges can be poorly defined.

One of the main limitations of our systematic review is the “time factor”. In fact,
given the interest in this topic, it is possible that additional studies have been published
after our literature search and therefore have not been included in our analysis. The main
limitations of our analysis were: (i) the small size and the heterogeneity of the included
studies which obviously affects the levels of evidence of the review results; (ii) the low
number of included studies; (iii) the wide range of inclusion criteria used to select patients
in the analysed series that hindered the achievement of clear results. Moreover, none of
the included articles provided an independent validation of the developed AI models,
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with obvious limits to their generalizability and thus to their external applicability. Finally,
although multicentric and prospective studies are required to accurately assess the impact
of AI on clinical outcomes, no analyses have been yet published.

One of the strengths of our systematic review is the involvement of a multidisciplinary
team of authors, including gynaecologists, radiologists, radiation oncologists, medical
oncologists and experts in basic cancer research. Indeed, team members assessed the
studies in detail, each based on their expertise and knowledge. Furthermore, this systematic
review provides a comprehensive overview of radiomics and AI analyses currently used,
alone or in combination with other dataflow, in order to build predictive models for US
diagnosis and risk stratification. Finally, this analysis could improve the shared knowledge
among different specialists involved in gynaecological oncology and could pave the way
for future studies on USs.

These future studies could have the purpose of: (i) defining the imaging methods
in the USs, or their combinations, most appropriate for the development of AI models;
(ii) evaluate the usefulness of integrated predictive models, including imaging, clinical, and
molecular data; (iii) identify the most effective AI systems to produce reliable predictive
models for diagnosis and risk stratification.

In conclusion, the improvement of research quality should be the future focus in
this field. a multidisciplinary approach could probably avoid several biases in patients’
selection and monitoring. Despite the lack of enough evidence on obvious advantages of
radiomics and more generally of AI in USs at the moment, some preliminary data suggest
a potential advantage from integrating these methods with human intelligence. Further
studies are needed to refine AI techniques to enable their future use in the complex clinical
management of USs.
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