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Simple Summary: In this study, we evaluated the microbiota in resected thymoma samples and
identified Sphingomonas and Phenylobacterium as the dominant genera in thymomas. This is the
first study that evaluated the microbiota in thymoma and that identified bacterial genera specific to
thymoma. Furthermore, our study indicates a potential approach for preventing the development of
thymoma as a new “precision medicine”.

Abstract: The microbiota has been reported to be closely associated with carcinogenesis and cancer
progression. However, its involvement in the pathology of thymoma remains unknown. In this
study, we aimed to identify thymoma-specific microbiota using resected thymoma samples. Nineteen
thymoma tissue samples were analyzed through polymerase chain reaction amplification and 16S
rRNA gene sequencing. The subjects were grouped according to histology, driver mutation status in
the GTF2I gene, PD-L1 status, and smoking habits. To identify the taxa composition of each sample,
the operational taxonomic units (OTUs) were classified on the effective tags with 97% identity. The
Shannon Index of the 97% identity OTUs was calculated to evaluate the alpha diversity. The linear
discriminant analysis effect size (LEfSe) method was used to compare the relative abundances of all
the bacterial taxa. We identified 107 OTUs in the tumor tissues, which were classified into 26 genera.
Sphingomonas and Phenylobacterium were identified as abundant genera in almost all the samples.
No significant difference was determined in the alpha diversity within these groups; however,
type A thymoma tended to exhibit a higher bacterial diversity than type B thymoma. Through
the LEfSe analysis, we identified the following differentially abundant taxa: Bacilli, Firmicutes,
and Lactobacillales in type A thymoma; Proteobacteria in type B thymoma; Gammaproteobacteria
in tumors harboring the GTF2I mutation; and Alphaproteobacteria in tumors without the GTF2I
mutation. In conclusion, Sphingomonas and Phenylobacterium were identified as dominant genera in
thymic epithelial tumors. These genera appear to comprise the thymoma-specific microbiota.

Keywords: thymoma; microbiome; 16S RNA sequencing; genera; driver mutation

1. Introduction

Early microbiome research focused primarily on gastrointestinal diseases, such as
pseudomembranous enterocolitis, inflammatory bowel disease, and irritable colitis [1].
Recently, the human intestinal microbiota has been reported to be involved in carcinogen-
esis and cancer progression, and this phenomenon has been attracting attention [2,3]. In
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addition, the microbiota has been identified in tissues of the pancreatic, lung, and breast
cancers through advanced sequencing technology [4–8].

Thymoma is a relatively rare mediastinal tumor with malignant potential that is
difficult to treat [9,10]. According to the histological classification by the World Health
Organization, thymomas can be categorized into types A, AB, B1, B2, and B3, depending
on the tumor cell morphology and proportion of coexisting lymphocytes [11]. Type A
thymomas are the least aggressive with the best prognosis; the extent of the aggressiveness
increases and the prognosis worsens according to the following order: type A, AB, B1,
B2, and B3 [12,13]. Thymoma has been reported to commonly occur in people aged
40–60 years [14]. The development of thymoma is not associated with smoking habits or
sex; its causes are unknown [15]. However, thymoma coexists in approximately 20% of
patients with myasthenia gravis [16,17]. Owing to the absence of an effective treatment
other than surgical resection, there is an urgent need to elucidate the pathology and
establish preventive measures and new treatment strategies for thymoma [18–21].

Although recent reports have indicated an association between the microbiome and
colorectal, oral, pancreatic, lung, and other cancers [22–27], there is no report on the
microbiome in thymoma. Unlike oral, gastrointestinal, and respiratory cancers, which have
been previously reported, thymoma is anatomically located in the anterior mediastinum,
and it does not communicate with the outer environment. Since the tumor environment
of thymoma has been theoretically assumed to be sterile, microbiome research has not
been conducted in the past. Consequently, little progress has been made in research on the
involvement of the microbiota in the pathology of thymoma.

In this study, we performed a polymerase chain reaction (PCR) to amplify the 16S
ribosomal RNA (rRNA) region in the bacterial genome in resected thymoma samples.
Subsequently, we performed 16S rRNA sequencing and metagenomic analyses using next-
generation sequencing to investigate the composition and diversity of the microbiota and
to identify thymoma-specific microbiota. On the basis of the results from these analyses, we
presented a predictive model of pathogenesis and evaluated its potential for the prevention
and control of the development of thymoma.

2. Results
2.1. Patient Characteristics

Nineteen consecutive patients with thymomas who underwent surgery at our hospital
between January 2014 and August 2020 were enrolled without bias. In three patients
with type AB thymomas, the type A and B portions were microdissected and examined
separately. Thus, in total, 22 tissue samples were analyzed for microbiota. The clinico-
pathologic characteristics of the patients are summarized in Table 1. The 19 patients were
divided into groups by the following characteristics: 11 males, 8 females; 12 smokers,
7 nonsmokers; histological type A (five), AB (three), B1 (five), B2 (four), or B3 (two); and
Masaoka stage I (seven), II (nine), III (two), or IV (one). The diameter of the tumor was
between 20 and 95 mm, with a mean tumor diameter of 43.6 ± 22.8 mm. Patients’ ages at
the time of surgery were between 42 and 81 years (68.2 ± 12.9 years). One patient with
type B2 thymoma (Case 20; Figure 1) had a comorbidity of myasthenia gravis.
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Table 1. Patient characteristics.

Parameter Number of Patients Overall Percentage

Total number 19
Age, median (range) 68 (42–81)

Sex
Male 11 57.9%

Female 8 42.1%
Histology

Type A 5 26.3%
Type AB 3 15.8%
Type B1 5 26.3%
Type B2 4 21.1%
Type B3 2 10.5%

Tumor size (cm)
≤3 7 36.8%

3 < size ≤ 5 8 42.1%
>5 4 21.1%

Masaoka Stage
I 7 36.8%
II 9 47.4%
III 2 10.5%
IV 1 5.3%

Smoking Status (Pack year)
0 7 36.8%

0 < PY ≤ 30 8 42.1%
>30 4 21.1%

Myasthenia gravis
present 1 5.3%
absent 18 94.7%
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2.2. OTU Analyses

A total of 136 OTUs were identified in the 22 samples, while no OTU was found in
the negative control samples (without any tissue). The dominant (>1% average relative
abundance) classifiable OTUs belonged to four families: namely, Sphingomonadaceae
(abundance: 62.0 ± 12.2%), Caulobacteraceae (abundance: 23.9 ± 7.6%), Bradyrhizobiaceae
(abundance: 6.7% ± 5.3%), and Phyllobacteriaceae (abundance: 2.0% ± 1.4%) (Supplemen-
tary Materials Figure S1). We identified 107 genera (>1% average relative abundance); the
predominant genera are presented in Figure 1. The top two genera with a high abundance
and composition were Sphingomonas (abundance: 66.9± 10.8%) and Phenylobacterium (abun-
dance: 26.0 ± 8.7%). Sphingomonas was detected in all the samples, and Phenylobacterium
was detected in all the samples except in case 18. Both bacterial genera were significantly
more abundant than the others (Supplementary Materials Figure S2).

2.3. Differences in Microbiota between Thymomas and Pancreatic Cancers

To identify the thymoma-specific microbiota, we compared the microbiota between
thymoma and pancreatic cancer (Supplementary Materials Table S1). In the thymoma
samples, compared with the pancreatic cancer samples, Phenylobacterium, Phyllobacterium,
and Sphingomonas were significantly more abundant (Figure 2). Since Phenylobacterium,
Phyllobacterium, and Sphingomonas were detected only in four, three, and eight of the 30
pancreatic cancer samples, respectively, the composition of these genera in the 22 thymoma
samples (detected in 21, 18, and 22 samples, respectively) was significantly higher.
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Figure 2. Microbiome differences between thymoma and pancreatic cancer samples. * p < 0.05.

2.4. Analysis of Microbial Diversity within Groups

The Shannon Index was calculated to evaluate the bacterial diversity within the differ-
ent groups. No significant differences were observed in terms of the histology, presence or
absence of the GTF2I mutation, PD-L1 expression, and smoking habits (Figure 3). However,
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the type A samples exhibited a tendency toward increased microbiome diversity compared
with the type B samples (p = 0.059, Figure 3A).
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Figure 3. Taxonomic alpha diversity of thymoma microbiomes within samples in different groups.
(A) Comparison of the Shannon Index between type A and B histology groups. (B) Comparison
of the Shannon Index between tumors exhibiting the presence and those exhibiting an absence of
the GTF2I driver mutation. (C) Comparison of the Shannon Index between tumors exhibiting the
presence and those exhibiting an absence of PD-L1 expression on tumor cells. (D) Comparison of the
Shannon Index among nonsmokers, light smokers, and heavy smokers. No significant difference
was found among these groups.

2.5. Analysis of Differentially Abundant Taxa

To further identify the specific species in every group, we used the LEfSe method to
identify the differentially abundant taxa at each level. First, in the type A and B histological
groups, we identified four differential bacterial taxa, including two phyla, Firmicutes
and Proteobacteria; one class, Bacilli; and one order, Lactobacillales (Figure 4A). The dif-
ferential features were Firmicutes, Bacilli, and Lactobacillales in type A thymomas and
Proteobacteria in type B thymomas (Figure 4B). Alphaproteobacteria was dominant in
thymomas without the GTF2I mutation, while Gammaproteobacteria was dominant in
thymomas harboring the GTF2I mutation (Figure 4C,D). No differential bacterial compo-
sition and abundance were observed in association with the stage, PD-L1 expression, or
smoking habits.
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and B histology. Dominant taxa are indicated in red for the type A group and in green for the type B group. (B) Kruskal–
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and type B in the green column. * p < 0.05. (C) The results of the LEfSe analysis between tumors exhibiting the presence
and those exhibiting the absence of the GTF2I driver mutation. (D) Kruskal–Wallis test results for the relative abundance
between tumors exhibiting the presence and those exhibiting the absence of the GTF2I driver mutation. * p < 0.05.

3. Discussion

In this study, the sequencing of microbiota in resected thymoma samples identified
two genera, Sphingomonas and Phenylobacterium, in almost all the thymoma samples; the
bacterial composition and abundance of these genera were markedly high. We separately
analyzed type AB thymoma for type A and type B components and detected Sphingomonas
and Phenylobacterium in both components. Although the oral microbiome is likely to affect
and contaminate the lung microbiome, thymoma is anatomically unlikely to be affected
by the oral microbiome [28,29]. The composition and abundance of these two genera
were significantly higher in the microbiota of thymoma tissues than in the microbiota of
pancreatic cancer tissues. Our results suggest that these two genera are thymoma-specific
microbiota. In addition, we chose pancreatic cancer as control because the pancreatic
cancer and thymoma tissue samples were analyzed in the same process at the genome
analysis center of our hospital during the same period. There is also a factor common
to both the pancreatic cancer and thymoma: they do not communicate directly with
outer environment. This analysis suggested that the presence of the two genera was
not a result of contamination during the analysis process. In contrast, Sphingomonas and
Phenylobacterium have not been detected in lung cancer tissues according to recent reviews
on the microbiota in patients with lung cancer [4,30–32]. In this study, because these
two genera were detected in almost all the thymoma samples, it was suggested that
Sphingomonas and Phenylobacterium may represent differential microbiome functions in
thymoma development.

Sphingomonas is a bacterial genus that was subclassified from Pseudomonas approxi-
mately 30 years ago. Members of the former are Gram-negative bacteria; however, they
do not contain lipopolysaccharides specific to Gram-negative bacteria [33]. Instead, these
bacteria contain glycosphingolipids, which are found in eukaryotic cells [33]. They are com-
mon microorganisms inhabiting various environments, such as water environments (e.g.,
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freshwater and seawater), soil, and plant root systems. The wide ecological distribution
of these bacteria is attributed to their ability to use diverse organic compounds and their
strong vitality, allowing them to survive in nutrient-poor environments [34]. Although
several bacteria in the genus Sphingomonas were isolated in relatively clean environments,
certain bacterial species were isolated in contaminated environments containing toxic or-
ganic compounds, such as polychlorinated biphenyl, creosote, and pentachlorophenol [35].
Subsequent studies revealed that these bacteria take up certain organic contaminants and
use them as energy sources [36]. On the basis of these findings, progress has been made in
elucidating the mechanism through which Sphingomonas metabolizes organic contaminants.
Furthermore, several attempts have been made worldwide for applying this mechanism
in environmental cleanup (bioremediation). Meanwhile, with respect to the microbiome,
Sphingomonas has been reported to be enriched as blood microbiota in the serum of healthy
patients and patients with breast cancer who exhibit a favorable prognosis [37,38].

Species within the genus Phenylobacterium are capable of degrading xenobiotic com-
pounds with a phenyl moiety such as chloridazon, antipyrine, pyramidon, or their analogs [39].
Additionally, these bacteria can degrade polycyclic aromatic hydrocarbons [40]. Phenylobac-
terium has now been used in the bioremediation of a petroleum-contaminated soil to
degrade polycyclic aromatic hydrocarbons and their analogs [41]. Unlike Sphingomonas,
there has been no report of the detection of Phenylobacterium as blood microbiota. Fu-
ture studies are expected to elucidate how Sphingomonas and Phenylobacterium, which are
two genera of environmentally indigenous bacteria used for bioremediation, coexist in
thymoma and how they are involved in the carcinogenic mechanism of thymoma.

Several indigenous microorganisms exist in the epithelium of the whole human body
(e.g., the mouth, ear, nasal cavity, respiratory organs, digestive tract, skin, and reproductive
organs); form microbiota; play various roles in the body; and form a symbiotic relationship
with humans [1,2]. In recent years, it has been considered that disturbance in the microbiota
composition (dysbiosis) may alter the risk of disease development, and there is a growing
number of reports on the association between intestinal microbiota and several diseases,
such as allergy, cancer, multiple sclerosis, Parkinson’s disease, depression, inflammatory
bowel disease, and rheumatism [30]. Furthermore, sterilization and specific pathogen-free
breeding have been reported to alleviate or cure these diseases in pathological mouse
models [42]. Improvement of the microbiota may additionally prevent the development
of diseases in humans [43]. If one or several species of bacteria cause a disease, they can
be potential therapeutic targets. For example, the eradication of Helicobacter pylori is the
standard of care for the prevention of gastric cancer in infected patients at present [44].
This study indicates that the microbiota may be associated with thymoma. The clinical
application of this finding may pave the way for the prevention of thymoma through
controlling the growth of the bacterial genera Sphingomonas and Phenylobacterium. Patients
with myasthenia gravis are at a high risk of developing thymoma [16,17], and the preven-
tion of thymoma is important for their long-term survival. In this study, case 20 involved
a patient with thymoma complicated by myasthenia gravis (Figure 1); this patient was
positive for Sphingomonas and Phenylobacterium, which were abundant. The development
of probiotic models for antibiotics, vaccines, and other therapies targeting these genera
identified in this study may be important for the prevention of thymoma.

The bacterial diversity tends to be higher in type A thymoma (less aggressive type)
than in type B (more aggressive type). A study comparing the microbiota between tumor
and normal peritumoral tissues in lung cancer demonstrated that the bacterial diversity
was significantly higher in normal peritumoral tissues [6]. According to these data, cancer
aggressiveness and alpha diversity are negatively correlated. Since the cancer microen-
vironment is more perturbed, dysbiosis might be enhanced; consequently, the bacterial
diversity might decrease. In addition, because the lymphocyte counts in the tissues are
higher in type B thymoma than in type A thymoma, the immunity against these bacteria
may fundamentally differ between these types.
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Using a LEfSe analysis, we identified variations in specific species between type
A and B tumors and between tumors with and without the GTF2I mutation, indicating
the differential microbiome functions in the development of each type of tumor [45].
We determined that Firmicutes, Bacilli, and Lactobacillales were common Gram-positive
bacteria in type A thymoma, and Proteobacteria were common Gram-negative bacteria in
type B thymoma. When the p-value based on the Kruskal–Wallis test was increased from
0.05 to 0.1 (Supplementary Materials Figure S3), 15 out of 20 bacteria that were significantly
detected in the microbiota of type A thymoma were Gram-positive bacteria, and all four
bacteria significantly detected in the microbiota of type B thymoma were Gram-negative
bacteria. Although these findings indicated a correlation between the histological types
(types A and B) and Gram-staining results for the microbiota, the biological significance of
this correlation is unknown. Since Gram-negative bacteria are generally more pathogenic
than Gram-positive bacteria, the former may be involved in carcinogenesis in type B
thymoma, which is the more aggressive phenotype. Additionally, it is unclear from our
observational study whether the identified bacterial differences are causally related to
carcinogenesis or merely reflective of the disease process in thymoma. It is also difficult to
practically prove how the microbiota colonized the thymoma tissue, which has no direct
communication with the outside. In the future, detailed studies with a larger sample size
may be needed.

We previously reported that the GTF2I mutation is a driver mutation in thymoma [46].
In the present study, specific species were identified between tumors with and without a
GTF2I mutation. While Alphaproteobacteria were detected in a significantly high number
of cases without the driver mutation in the GTF2I gene, a clear pathway involved in the
oncological development of thymoma without a driver mutation remains to be demon-
strated. Additionally, the mechanisms through which the microbiota in general contributes
to carcinogenesis need to be examined in detail using a large sample size in the future.

This study is associated with some limitations. First, the patient cohort was relatively
small owing to the rarity of the tumor. Second, patient survival could not be analyzed, as no
patients have shown recurrence in the cohort. Third, no blood samples were analyzed for
the microbiota containing the two genera, Sphingomonas and Phenylobacterium. An analysis
of blood samples might have elucidated the reasons for the presence of the microbiota in
the sterile anterior mediastinal environment [47]. In addition, the higher abundance of
Sphingomonas and Phenylobacterium may be related to the impaired immunity of the tumor
microenvironment, which may cause proliferation of these bacteria in the blood. Thus, they
may be clinically applicable as serum biomarkers for thymoma. Fourth, a control thymus
tissue should have been obtained to show that Sphingomonas and Phenylobacterium are
microbiota associated with cancer progression. However, normal thymic tissue is known
to rapidly atrophy and to be replaced with adipose tissue after puberty in the teens, and
thymoma is presumed to be derived from atrophied residual thymic tissue. Therefore,
even if a surgical specimen of adipose tissue in the anterior mediastinal of an age-matched
population was obtained, thymic tissue is usually not left behind and cannot be analyzed.
In addition, surgical specimens of the anterior mediastinal tissue of young individuals
are extremely difficult to obtain, and it is ethically problematic to collect the functional
thymic tissue of young individuals. Thus, it was not possible to compare microbiota
between thymoma and normal thymic tissue in this study. In this context, a larger series of
studies needs to be performed for evaluating the microbiome landscape of thymomas more
comprehensively and elucidate the associations with clinical parameters through a more
exhaustive multivariate analysis. Nevertheless, since the major aim of this preliminary
analysis was identification of the thymoma-specific microbiota that should be prioritized
for clinical development, the modestly sized samples provided useful insight.
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4. Methods
4.1. Patients and Sample Preparation

In this study, we enrolled 19 patients in an unbiased manner who underwent surgical
resection for thymoma at our hospital between January 2014 and August 2020. Since antibi-
otics would affect the microbiome, patients who had used oral or systematic antibiotics in
the past 3 months were not included in this study. We obtained written informed consent for
genetic research from all the patients in accordance with the protocols approved by the In-
stitutional Review Board at Yamanashi Central Hospital. The specimens were categorized
histologically according to the classification guidelines by the World Health Organiza-
tion [48,49] and staged according to the Masaoka Staging System [19,50,51]. Sections of
formalin-fixed and paraffin-embedded (FFPE) tissues were stained with hematoxylin–eosin
and microdissected using the ArcturusXT laser-capture microdissection system (Thermo
Fisher Scientific, Waltham, MA, USA), as previously reported [52–57]. For type AB thymo-
mas, the type A and B portions were microdissected and examined separately. A thymoma
is an encapsulated tumor, and the tumor tissue and surrounding fat are clearly separated
by a fibrous capsule. In this study, DNA was extracted from the tumor tissue of the FFPE
specimen of thymoma with laser-capture microdissection, so contamination of the adipose
tissue around the tumor was unlikely.

We analyzed 22 samples obtained from all 19 patients, including three patients with
type AB thymomas. The GeneRead DNA FFPE Kit (Qiagen, Hilden, Germany) was used
according to the manufacturer’s instructions, and the DNA quality was evaluated using
primers against ribonuclease P, as previously reported [58]. In the same manner, tumor
DNA was extracted from FFPE samples obtained from patients with pancreatic cancer
in our hospital (n = 30) and used as a control. As the preliminary experiment, PCR
amplification of the 16S rDNA V4 region was attempted using distilled water, and a DNA
elution buffer was used in the experiment for the samples, but DNA amplification was not
obtained (below the detection sensitivity).

4.2. 16S rRNA Amplification and Targeted Sequencing

Although there is no hypervariable region of the 16S gene that allows an accurate
classification of all bacterial strains at the domain to the species level, there is a known
region that allows the near-perfect prediction at a specific taxonomic level [59]. In many
studies on microbiome analyses, a commonly selected region is the V4 hypervariable
region that allows a strain analysis at the phylum level with accuracy similar to that of the
analysis of the complete 16S rRNA gene. The 16S rDNA V4 region was amplified using
PCR and sequenced as described previously with minor modifications [7]. FFPE DNA was
amplified using Platinum PCR SuperMix High Fidelity (Thermo Fisher Scientific) with the
forward primer 5′-GTGYCAGCMGCCGCGGTAA-3′ (16S_rRNA_V4_515F) and reverse
primer 5′-GGACTACNVGGGTWTCTAAT-3′ (16S_rRNA_V4_806R). The PCR products
were confirmed using agarose gel electrophoresis and purified using Agencourt AMPure
XP reagents (Beckman Coulter, Brea, CA, USA). End repair and barcode adaptors were
ligated with the Ion Plus Fragment Library Kit (Thermo Fisher Scientific), in accordance
with the manufacturer’s instructions, to construct the libraries. The library concentration
was determined using an Ion Library Quantitation Kit (Thermo Fisher Scientific), and
the same number of libraries was pooled for one sequence. Emulsion PCR and chip
loading was performed on Ion Chef with the Ion PGM Hi-Q View Chef Kit; sequencing
was performed on an Ion PGM Sequencer (Thermo Fisher Scientific). Sequence data were
transferred to the IonReporter local server using the IonReporterUploader plugin. The
coverage of the sequencing was 329.2 (Supplementary Table S2). Data was analyzed
using the Metagenomics Research application using a custom primer set. The analytical
parameters were set as the default. The control paraffin block without any tissue was
processed similarly.
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4.3. Data Analysis

The original raw tags were obtained through splicing the reads using FLASH (v
1.2.7) and subsequently filtered to acquire clean tags using QIIME (Version 1.9.1). To
identify the taxa composition of each sample, the operational taxonomic units (OTUs) were
classified on the effective tags with 97% identity using Usearch (Uparse v 7.0.1001) software.
The presentative sequence of each OTU was annotated using the RDP classifier against
the SILVA (SSU123)16S rRNA database using a confidence threshold of 80%, obtaining
taxonomic classification at the phylum, class, order, family, genus, and species levels.
Multiple sequence alignment was performed using MUSCLE3.6 (Version 3.8.31) to further
explore the phylogenetic relationships among the different OTUs. The Shannon Index was
performed using QIIME to determine the alpha diversity. Linear discriminant analysis
(LDA) effect size (LEfSe) analyses were performed using the online LEfSe tool (http:
//huttenhower.sph.harvard.edu/lefse/ (accessed on 12 October 2020)). The LDA (linear
discriminant analysis) threshold score was set at 2.

4.4. Targeted Deep Sequencing of GTF2I Mutation

In this study, the presence of a point mutation in the GTF2I gene was investigated in
thymomas using targeted sequencing coupled with molecular barcoding, as we previously
reported [47].

4.5. Immunohistochemistry for PD-L1

Specimens from the 19 patients were fixed using 10% buffered formalin. The formalin-
fixed paraffin-embedded tissues were cut into 5-µm sections, deparaffinized, rehydrated,
and stained in an automated system (Ventana Benchmark ULTRA system; Roche, Tuc-
son, AZ, USA) using commercially available detection kits and antibodies against PD-L1
(28–8, ab205921; Abcam, Cambridge, MA, USA). PD-L1 was primarily localized to the
cell membranes of the tumor cells, and its expression was determined quantitatively by
two pathologists on the basis of the proportion of PD-L1-positive tumor cells. Cells were
considered PD-L1-positive based on ≥1% PD-L1 expression.

4.6. Statistics

Continuous variables were presented as the mean ± standard deviation (SD) and
compared using unpaired Student’s t-tests. One-way analysis of variance and the Tukey–
Kramer multiple comparison test were used to detect significant differences between
groups. p-values less than 0.05 in the two-tailed analyses were considered to denote
statistical significance.

5. Conclusions

This is the first study that examined the microbiota in thymomas and revealed two
genera specific to thymomas: Sphingomonas and Phenylobacterium.
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