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Abstract: Automated machine learning (AutoML) has been recognized as a powerful tool to build
a system that automates the design and optimizes the model selection machine learning (ML)
pipelines. In this study, we present a tree-based pipeline optimization tool (TPOT) as a method for
determining ML models with significant performance and less complex breast cancer diagnostic
pipelines. Some features of pre-processors and ML models are defined as expression trees and
optimal gene programming (GP) pipelines, a stochastic search system. Features of radiomics have
been presented as a guide for the ML pipeline selection from the breast cancer data set based on TPOT.
Breast cancer data were used in a comparative analysis of the TPOT-generated ML pipelines with
the selected ML classifiers, optimized by a grid search approach. The principal component analysis
(PCA) random forest (RF) classification was proven to be the most reliable pipeline with the lowest
complexity. The TPOT model selection technique exceeded the performance of grid search (GS)
optimization. The RF classifier showed an outstanding outcome amongst the models in combination
with only two pre-processors, with a precision of 0.83. The grid search optimized for support vector
machine (SVM) classifiers generated a difference of 12% in comparison, while the other two classifiers,
naïve Bayes (NB) and artificial neural network—multilayer perceptron (ANN-MLP), generated a
difference of almost 39%. The method’s performance was based on sensitivity, specificity, accuracy,
precision, and receiver operating curve (ROC) analysis.

Keywords: machine learning; breast cancer; genetic programming; tree-based pipeline optimization tool

1. Introduction

Breast cancer has been recorded as the most frequently diagnosed type of cancer
among women. Imaging techniques and assisted cancer diagnosis approaches have been
extensively developed to detect and treat breast cancer early to reduce mortality rates [1].
Data mining and computer-aided techniques have been developed for detecting and classi-
fying breast cancer, including several stages: pre-processing, the extraction of functions,
and classification [2–4]. Pre-processing of mammography, such as improving contrast,
is critical in enhancing peripheral region visibility and intensity distribution to enable
interpretation and analysis [5]. Feature extraction in the detection of breast cancer is highly
important as it helps to differentiate benign from malignant tumors. Upon extraction, the
segmentation extracts the image properties such as smoothness, thickness, depth, and regu-
larity [5,6]. While machine learning (ML) has demonstrated several benefits, designing the
successful application of a ML framework requires considerable effort from human experts
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as there is no algorithm that can achieve good performance on all possible problems, as de-
scribed by the No Free Lunch theorem [7]. Although health researchers are well-acquainted
with clinical data, they still often lack in the ML expertise needed to apply these techniques
to big data sources. Moreover, the interactive process between data scientist and healthcare
researchers requires a large amount of time and effort from both sides.

As data science becomes increasingly popular, it is necessary for data to be more
accessible, flexible, and scalable in order to choose the appropriate and optimized ML model
for a given data set. A common approach to obtain an optimized ML is by performing an
exhaustive search of the selected algorithm parameter such as the grid search method [8].
Classifiers for ML algorithms typically contain several parameters that need to be selected
and optimized [9–11]. These parameters are known as hyperparameters and cannot be
obtained directly from the data. Similarly, ML model selection comes with different pre-
processing algorithms that can be crucial in developing an effective model, such as feature
selectors that help to reduce the list of features according to selected statistical score metrics,
transforming features that help transform a data set with pre-processing features (such as
standardization and standardization), and dimensionality reduction for the set of features
or creating new features from existing ones that might be required to enrich signal data.
Hence, automated ML or AutoML, a new research area motivated by this mission across
industries, has emerged with the goal of automatically optimizing parts of the ML pipeline.

AutoML assists in eliminating the conjectures from this process by constructing
and evaluating considered ML algorithms and pre-processing methods using a search
algorithm [12]. In AutoML, there are a range of optimization techniques, among them
hyper-parameter ML tuning implemented in mlr R kit; complete pipeline optimization
Bayesian hyperparameter used in Auto-WEKA and auto-sklearn; and AutoPrognosis,
which offers Bayesian optimization of pipeline operators, including imputer selection (the
group of algorithms to substitute missing data for replacement values), selected functional
transformers, ML model, and calibrator [13–16]. ML expertise chooses a suitable method
to solve the current problem, but it could be a very challenging task for a non-expert to
develop an optimized model that can achieve the desired performance [17].

AutoML is the process of automating the end-to-end selection process of ML to
real- world problems. The main concern regarding AutoML is a combination where any
proposed algorithm is needed to find a suitable combination of operations for each part
of the ML pipeline in order to reduce bias. Mathematically, AutoML can be described
as follows:

OP C
Os
+ 2N.G( f1, f2)PNM + ∑

m′∈M
∑
r∈R

P
(〈

m′.r
∣∣m〉

P
(
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here,

OP is the default pre-defined operation set;
OS indicates the operations selected by the algorithms;
G (f 1, f 2) represents the generator function for developing new features;
N is the number of features selected; and
NM = maximum number of features to be chosen.

Data pre-processing automation is viewed as a sequence of actions that are selected
(OS) from the default (OP) operating set and executed in a data set. The features are
extracted by choosing the appropriate features (2N) from the data set by figuring and
generating new (G (f 1, f 2)) dependent pairs. The selection of the model and the optimization
of the hyperparameters work to find the optimum configuration of the parameter from an
infinite search area or learn from previous models designed for specific purposes. The last
term of the equation reflects the stochastic learning algorithm that has been used to limit
the configuration space for several years [18].

Here, the tree-based pipeline optimization tool (TPOT) was implemented; it applies an
advance approach in the optimization process by adopting genetic programming (GP) to
find the optimum ML pipelines. Broadly, TPOT constructs trees of mathematical functions
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that are optimized with respect to a fitness metric, such as classification accuracy [19].
Each generation of trees is constructed via random mutations to the tree’s structure, or the
operations performed at each node in the tree [20]. Repeating this process for a number
of training generations produces an optimal tree. It will subsequently develop optimized
ML pipelines that can improve as well as surpass the efficiency of other conventional
supervised ML algorithms. The pipeline was assessed according to the accuracy of the
classifiers at each iteration. Mutation, selection, and crossover operators were used to
improve the GP algorithm to find the best pipeline as shown in Figure 1. Hence, the aim of
this study was to evaluate the efficacy of TPOT with selected hyperparameter in predictive
and its reliability in combined data types and wide feature spaces.
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Figure 1. Evolutionary tree-based pipeline optimization tool (TPOT) algorithm, in which each best
agent generation generates the next generation.

2. Materials and Methods

Figure 2 shows an outline of the method proposed in this study. First, the location of
the breast tumor was specified on the mammography images, and the lesion was extracted.
Next, 29 radiomics features related to information on the shape, texture, and intensity of the
lesions were calculated from the extracted images. The accuracy, ROC score, precision, and
recall were compared by inputting the obtained radiomics features to various classifiers
restricted by TPOT.

TPOT or tree-based pipeline optimization tools is a computational tool that performs
intelligent search over machine learning pipelines that consist of supervised classification
models, preprocessors, feature selection techniques, and any other estimator or trans-
former that follows the scikit-learn API (http://epistasislab.github.io/tpot/, accessed
on 5 April 2020). There are several packages that were used to develop TPOT including:
NumPy, DEAP, SciPy, scikit-learn, update_checker, tqdm, stopit, pandas, joblib, and xg-
boost. The package was first installed in Python by using the command: pip install tpot,
before being imported as an AutoML model.

The pipeline extracted from TPOT may be composed of various combinations of data
transformers provided in the Python library of Scikit-learn, e.g., pre-processors (Min-Max
Scaler, Standard Scaler (SS), Max Abs Scaler, Normalizer, Binarizer, and polynomial features
expansion) and selectors (Recursive Feature Elimination (RFE), Select Percentile (SP) and
Variance Threshold). TPOT also provides several custom features (zero counts, stacking
estimator (SE)), a hot encoder, and a range of transformer applications of sklearns. The
entire TPOT configuration consisted of 11 classifiers, 14 feature transformers, and 5 feature
selectors, all of which combined with TPOT and formed the best pipeline from all of these
configurations. TPOT pipeline typically starts with one or more copies of the entire data
set at the start of the tree structure and continues with function transformation or feature

http://epistasislab.github.io/tpot/
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selectors as illustrated, or with the ML algorithm. Then, the operators adjust the original
data set and pass it to the next operator along the tree. In certain cases, a hybrid operator
combines the different copies of the data set into a single set.
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2.1. Image Data Set

The mammogram data set used in this study contained real images from the Curated
Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM)
data set. The CBIS-DDSM data set, available through The Cancer Imaging Archive (TCIA),
is an updated and standardized version of the public Digital Database for Screening
Mammography (DDSM) data set that was made available in 1997 [21]. It was curated
with the help of a trained mammographer who removed images in which the lesion was
not clearly seen, or which contained personal information. In this study, 378 images with
confirmed diagnoses were presented in a .csv file. A total of 147 cases of benign lesions
and 231 cases of malignant lesions were analyzed. The image details are shown in Table 1.
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Table 1. Image details from The Cancer Imaging Archive (TCIA) data set.

TCIA—Digital Database for Screening Mammography (DDSM)

Breast Density

(1): 50
(2): 172
(3): 112
(4): 44

Image View CC: 177
MLO: 201

Mass Shape

Architectural distortion: 23
Asymmetric breast tissue: 5
Focal asymmetric density: 6
Irregular: 113
Irregular architectural distortion: 7
Irregular asymmetric breast tissue: 1
Lobulated: 79
Lobulated Irregular: 1
Lobulated Lymph Node: 1
Lymph Node: 9
Oval: 91
Oval-lobulated: 1
Round: 41

Mass Margins

Circumscribed: 87
Circumscribed ill-defined: 2
Circumscribed microlobulated: 1
Circumscribed microlobulated ill-defined: 3
Circumscribed-obscured: 3
Circumscribed-obscured ill-defined: 4
Circumscribed-spiculated: 1
Ill-defined: 92
Ill-defined-spiculated: 5
Microlobulated: 21
Microlobulated ill-defined: 2
Obscured: 50
Obscured-Circumscribed: 2
Obscured Ill-defined: 5
Obscured Ill-defined-spiculated: 1
Spiculated: 82

2.2. Semiautomatic Segmentation for Region-of-Interest (ROI)

The mammogram images were enhanced by Contrast Limited Adaptive Histogram
Equalization (CLAHE) to improve the quality of the image for better visual and com-
putational analysis before the segmentation process [22,23]. The Active Contour Model
(ACM) technique is a semiautomatic iterative region-growing image segmentation algo-
rithm, and the iteration has been set to 200 for every mammogram image. The region of
interest in each mammogram image used in this study were confirmed and reviewed by
an experienced mammographer.

2.3. Extraction of the Radiomic Features

Three types of image features, namely, shape, intensity, and texture, were taken from
the segmented tumor ROIs. All image data in MATLAB R2020a is loaded and analyzed.
Three categories of characteristics were extracted: (i) the histogram of intensity, (ii) the
texture, and (iii) the shape. Before the spatial relationship was considered, six first-order
statistical features set the distribution values of the individual area. A total of 22 textural
properties defined a grey-level co-occurrence matrix (GLCM) spatial zone pattern. The
geometrical area of the tumor was created by nine elements. Moreover, the extracted
imagery compromised 6 traits representing tumor intensity, 9 shape characteristics, and
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29 textural features, as shown in Table 2. All the features extracted were in numerical form.
These features were kept and arranged in .csv format, before being imported into Python
for analysis purposes.

Table 2. Features extracted using grey-level co-occurrence matrix (GLCM), first order statistics, and
shape features.

GLCM Features First Order Statistics Shape Features

GLCM_Autocorrelation Mean Area
GLCM_Contrast Variance Major Axis Length

GLCM_Correlation Skewness Minor Axis Length
GLCM_Correlation Kurtosis Eccentricity

GLCM_Cluster Prominence Energy Orientation
GLCM_Cluster Shade Entropy Convex Area
GLCM_Dissimilarity Equivdiameter

GLCM_Energy Solidity
GLCM_Entropy Perimeter

GLCM_Homogeneity
GLCM_Homogeneity

GLCM_Maximum probability
GLCM_Sum of squares

GLCM_Sum average
GLCM_Sum variance
GLCM_Sum entropy

GLCM_Difference variance
GLCM_Difference entropy

GLCM_ Information measure
of correlation1

GLCM_ Information measure
of correlation2

GLCM_Inverse difference
normalized

GLCM_ Inverse difference
moment normalized

2.4. Grid Search Optimization Algorithm

Machine learning classifiers considered in this study include the following: naïve
Bayes (NB) and support vector machine (SVM), which were trained to identify the best
hyperparameters and configurations by applying best estimator methods. Python Scikit-
Learn offers an effective method to carry out the grid search method in optimizing the
hyperparameters on each classifier considered. This is indeed a useful tool for inexperi-
enced data scientists to obtain recommendations for configuration parameters for selected
algorithms. For example, Figure 3 shows the codes for identifying the best parameters for
decision tree algorithm by using grid search estimator.
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2.5. TPOT Model Selection

TPOT was used in the classification mode in this research, with 50 generations and
20 population size sets to run. Figure 4 shows the script of algorithm for default TPOT
classifier without any restriction in choosing classifiers. Both mutation and crossover were
set to default. TPOT configuration can be changed according to any desired ML classifier.
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TPOT-based model selection for radiomics features was developed by using several
configurations with the same classifiers considered in grid search optimization algorithm
(Model 1–4): default configuration with all data operators and ML classification models
(Model 1), wherein the algorithm for TPOT was implemented without any readjustment,
controlled configuration with only the NB classifier including all data transformers and
selectors (Model 2), controlled configuration with only SVM classifier including all data
transformers and selectors (Model 3), and controlled configuration with only ANN-MLP
classifier including all data transformers and selectors (Model 4). There was no restriction
for TPOT iteration to choose the best pipeline and model. The integration of classifiers for
MLP, SVM, and NB in this research can be found in the documentation (http://epistasislab.
github.io/tpot/using/#built-in-tpot-configurations, accessed on 5 April 2020).

2.6. Experimental Setup

In this study, 120 TPOT experiments were performed, corresponding to 30 repetitions
for the data set on each of the 4 configurations mentioned previously. Train and test
split were set to 80% to 20% for training and testing data sets, respectively, with fivefold
cross-validation. Across all experiments, TPOT were allowed to train to completion by
terminating training after 35 generations with no improvement to the Pareto front scores,
and each generation contained 50 individual pipeline trees.

A comparison was made between TPOT-based model selection and exhaustive grid
search parameter tuning of NB classifier (Model 5), SVM classifier (Model 6), and ANN-
MLP classifier (Model 7). SVMs were first explained by Vladimir Vapnik, and the good
performances of SVMs have been noticed in many pattern recognition problems. SVMs
can indicate better classification performance when they are compared with many other
classification techniques that are used for the prognosis and diagnosis of cancer.

On the other hand, NB is a supervised ML model that uses naïve Bayes algorithm
for the purpose of classification. The algorithm computes the joint distribution p(a,b) of
the extracted features a and the class labels b given by p(a|b) p(b), and then learns the
parameters of model [24] by maximizing its likelihood function. ANN can be expressed in
terms of a biological neuron system, especially since it is similar to a human brain process
system. It consists of a lot of nodes that connect each node [11]. ANN has the ability to
model typical and powerful non-linear functions. It consists of a network of a large number
of artificial neurons. Each of these combinations comprise input/output characteristics that
perform a local mathematical function. The function could be a computation of weighted
sums of inputs that generates an output if it goes beyond a given threshold value. The
output could be an input to other neurons in the network. This transaction iterates until
the latest output is produced.

The grid search optimization method was implied to all the ML classifiers with the
best performance that were previously generated by TPOT pipelines. Various performance
evaluations including accuracy, the area under the curve (AUC), precision, and recall,
along with model complexity (number of transformational steps), were recorded for all
ML pipelines.

http://epistasislab.github.io/tpot/using/#built-in-tpot-configurations
http://epistasislab.github.io/tpot/using/#built-in-tpot-configurations
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3. Results
3.1. Classification Accuracy of Model from TPOT and GS Optimization

TPOT configuration obtained a greater classification accuracy score compared to
configuration from grid search hyperparameter tuning method. Markedly, default TPOT, or
TPOT that was figured by GP-based AutoML system without any restriction, outperformed
the other configuration with the highest accuracy score, as shown in Table 3.

Table 3. Accuracy score for various TPOT and grid search method configuration.

Accuracy for TPOT Configuration Two-Tailed
p-Value

Default
TPOT

SVM-
TPOT

NB-
TPOT

MLP-ANN-
TPOT

SVM-
GS

NB-
GS

ANN-
MLP-GS Wilcoxon Levene

0.923 0.846 0.615 0.692 0.692 0.615 0.692 <0.05 <0.05

These observations are consistent with the principle of GP-based AutoML system
where the evolution without any restriction acquired the best pipelines using the available
set of operators and eliminated those that showed worse performances (TPOT NN). The re-
sults in Figure 5 show that the range of accuracy score varied in each configuration. Notably,
the range of accuracy score for default TPOT was the highest, followed by SVM-TPOT and
ANN-MLP-TPOT; however, NB-TPOT achieved the lowest range, even when compared
with GS configuration. This can be explained by referring to the lack of hyperparameters
in NB classifier. Therefore, the iteration of GP-AutoML system in finding the best pipeline
was more constricted and challenging. The grid search method deployed in SVM-GS,
NB-GS, and ANN-MLP-GS acquired a lower accuracy score than TPOT configurations.
Since the accuracy scores obtained by grid search method were consistent, there were no
ranges recorded for these configurations. On the basis of the results, we found that NB-GS
performance was the lowest compared to SVM-GS and ANN-MLP-GS. As mentioned
earlier, NB classifier comprised no hyperparameter that could be tuned to improve the
result. Although it performs well with small amounts of training data, and scales well to
large data sets, NB often relies on an often-faulty assumption of equally important and
independent features that can somehow affect the performance of the classifier itself.

However, SVM-GS and ANN-MLP-GS showed better performances than NB-GS, even
though these two classifiers were still not good enough to outperform classifiers based on
TPOT configuration.

On the basis of the observations, we found that there was a significant difference
(p < 0.05) between the classifiers, suggesting that the accuracy between the configured
classifiers can be improved by choosing the best configuration. In this study, default TPOT
showed the highest results in all metrics: accuracy, precision, recall, and ROC score. This
was due to the pre-processor and pipelines that were chosen by using GP process. A
complete pipeline equipped with suitable pre-processor and feature selector were chosen
accordingly on the basis of the input data; hence, the result can be improved with an
effective pipeline.

3.2. Selected Model from TPOT-Based Optimization

Table 4 provides the model selection comparative analysis of the TPOT optimization
process and the grid search parameter tuning of all models. The result of TPOT optimization
for Model A1 showed a training accuracy of 0.923. The pipeline for Model A consisted
of only an operator (principal component analysis (PCA)) and random forest (RF) as
ML classifier.
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Table 4. Comparative analysis of the TPOT optimization of the selected model with various metrics.

Model Accuracy Precision Recall ROC AUC Pipeline
Complexity

Two-Tailed p-Value
(Compare with

Accuracy of Default TPOT
Configuration)

Using Wilcoxon Rank Test

A1. Default TPOT (RF) 0.923 0.83 1.00 0.937 2 -
A2. SVM-TPOT 0.846 0.71 1.00 0.889 4 >0.05
A3. NB-TPOT 0.615 0.44 1.00 0.722 1 <0.05
A4. NN-MLP-TPOT 0.692 0.44 1.00 0.722 1 <0.05
A5. SVM-GS 0.692 0.44 1.00 0.500 1 <0.05
A6. NB-GS 0.615 0.44 1.00 0.722 1 <0.05
A7. ANN-MLP-GS 0.692 0.44 1.00 0.500 1 <0.05

TPOT optimization for Model A2 assembled a pipeline with two pre-processors
(concatenates of two function transformers with feature union and concatenates of two
stacking estimator (SEs) with the product of pre-processor before) and accuracy of 0.846.
TPOT optimization for Model A3 had only classifiers without any pre-processor or tuned
hyperparameter. Model A3 achieved an accuracy of 0.615. Model A4 was selected during
ANN-MLP-TPOT classifier optimization and had no relevant pre-processor; however, the
hyperparameter included was tuned to fit the model. Model A4 acquired an accuracy of
0.692. Grid search parameter tuning (hyperparameters tuned are shown in Table 5) for
SVM, NB, and ANN-MLP reported notably lower accuracy performance compared to the
accuracy achieved in the TPOT optimization model (accuracy of 0.692–0.615). The best
performance for the model was proven to be Model A1, selected by the TPOT optimization
with the default configuration.
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Table 5. Parameters and pre-processor operators of each configuration.

Model Parameters and Pre-Processor Operators Chosen

A1. Default TPOT (RF)

1. PCA (iterated_power = 10, svd_solver = “randomized”) and
2. RandomForestClassifier (bootstrap = False, criterion =

“entropy”, max_features = 0.1, min_samples_leaf = 2,
min_samples_split = 6, n_estimators = 100)

A2. SVM-TPOT

1. MakeUnion (FunctionTransformer(copy) +
FunctionTransformer(copy))

2. StackingEstimator (estimator = LinearSVC (C = 0.1, dual =
False, loss = “squared_hinge”, penalty = “l1”, tol = 0.0001))

3. StackingEstimator(estimator = LinearSVC(C = 0.5, dual =
False, loss = “squared_hinge”, penalty = “l2”, tol = 0.01))

4. LinearSVC(C = 5.0, dual = False, loss = “squared_hinge”,
penalty = “l1”, tol = 0.001)

A3. NB-TPOT 1. GaussianNB()

A4. ANN-MLP-TPOT 1. MLPClassifier(alpha = 0.0001, learning_rate_init = 0.5)

A5. SVM-GS

Range of hyperparameter included:

1. ‘C’: [0.1,1, 10, 100]
2. ‘kernel’: [‘rbf’, ‘poly’, ‘sigmoid’]}
3. ‘gamma’: [1,0.1,0.01,0.001]

Selected hyperparameter: ‘C’: 0.1, ‘gamma’: 1, ‘kernel’: ‘rbf’

A6. NB-GS -

A7. ANN-MLP -GS

Range of hyperparameter included:

1. activation = [‘logistic’, ‘tanh’, ‘relu’]
2. alpha = [0.0001, 0.05]
3. hidden_layer_sizes = [(10,10,10), (20,20,20), (50,50,50)]
4. max_iter = [100, 200]

Selected hyperparameter: activation = ‘tanh’, alpha = 0.05,
hidden_layer_sizes = (50, 50, 50), max_iter = 100

We examined the predictive ability of several other models to improve the validity of
the results obtained from these models, including precision, recall, and threshold-based
measurements. Precision is one of the primary metrics that describe the ability of the
model to assess samples that are not positive. Recall (sensitivity) is often accompanied by
accuracy—this helps to determine all positive samples. These metrics are categorized as
a single threshold, which means that they cannot specify a set of judgement parameters
because they are specified for a single decision threshold. Nevertheless, this problem could
be remedied with the plotting of different ROC curves. It is commonly used because the
classifier threshold varies. The true positive rate (number of correctly classified samples)
is shown to differ with the wrong positive rate (number of poorly classified samples), as
shown in Figure 6. The RF model optimized by TPOT posted the highest results, including
accuracy, precision, recall, and ROC score compared to other models, since RF is well
established in the radiomics community for performing well. NB-TPOT (green-coloured
line), MLP-TPOT (red-coloured line) and NB-GS (brown-coloured line) acquired the same
value for ROC-AUC, therefore, all the curve overlapped each other resulting in only one line
visible. The same applied to SVM-GS (purple-coloured line) and MLP-GS (pink-coloured
line), where same ROC-AUC resulting in overlapped curve.
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3.3. Pipeline Complexity on the Performance of Model Selection

Further investigation on the effect of pipeline complexity on the performance of
the model selection was conducted. We hypothesized that a more complex model is
more likely to generate better performance compared to a less complex model (Table 6).
Pipeline complexity is referred to as the number of pre-processors and operators included
in building a pipeline. The greater the number of pre-processors and operators used in a
pipeline, the higher the pipeline complexity. We evaluated the stability of the models with
sensitivity analysis, wherein we excluded each pre-processing operator continuously with
pipeline reduction (Pr) to analyze the performance of all the selected models. The accuracy
and ROC AUC performance declined for each classifier after the pre-processors were
eliminated consecutively—this was clearly shown in the table. As the pipeline reduced
from Pr-1 to Pr-3, the result declined from the original pipeline given by TPOT iteration.
This proves that the data set may generate intricate non-linear relationships among features,
and therefore complexity combination of data transformers is necessary to explore these
relationships. Hence, we observed a clear decrease in the complexity of all output metrics,
reflecting the general trend for increased complexity.

Table 6. The complexity–performance relationship for models selected by the TPOT optimization for
each selected model.

Model Accuracy Precision Recall ROC AUC Pipeline
Complexity

A1. Default TPOT 0.923 0.83 1.00 0.937 2
Pr-1 (RF) 0.846 0.50 0.50 0.704 1
A2. SVM-TPOT 0.846 0.71 1.00 0.889 4
Pr-1 0.846 0.67 1.00 0.875 3
Pr-2 0.846 0.67 1.00 0.875 2
Pr-3 0.846 0.67 1.00 0.875 1
Pr-4 0.846 0.67 1.00 0.875 1
A3. NB-TPOT 0.615 0.44 1.00 0.722 1
A4. ANN-MLP-TPOT 0.615 0.44 1.00 0.722 1

By referring to the outcome of the selected models, we deduced that an appropriate
choice and optimization of each pipeline are extremely important in achieving maximum
performance score of the models. To make an unbiased comparison between TPOT op-
timization and grid search-based model selection approach, we decided to assess the
performance of all models in various combinations of SS and RFE pre-processors, as shown
in Table 7. With the addition of SS operator and RFE selector consecutively in all mod-
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els, there was a slight increment of accuracy in the performance for all selected models.
However, there was no significant change when SS operator was added into the pipeline.

Table 7. Comparative analysis of the grid search optimization of selected ML algorithms with SS and
RFE pre-processing operators for each model.

Models Accuracy Precision Recall ROC AUC Pipeline
Complexity

SVM 0.692 0.33 1.00 0.500 1
SVM + SS 0.846 0.44 1.00 0.916 2
SVM + SS + RFE 0.846 0.44 1.00 0.927 3
NB 0.615 0.44 1.00 0.722 1
NB + SS 0.615 0.44 1.00 0.722 2
NB + SS + RFE -
ANN-MLP 0.692 0.44 1.00 0.500 1
ANN-MLP + SS 0.692 0.44 1.00 0.500 2
ANN-MLP + SS + RP 0.692 0.44 1.00 0.500 3

There are several models that were excluded from RFE, including ANN-MLP and NB
classifier, since they do not provide any logic that could enable us to implement RFE on
it. NB works by determining the conditional and unconditional probabilities associated
with the features and predicts the class with the highest probability. Thus, there are no
coefficients computed or associated with the features used to train the model. MLP, on the
other hand, is a form of neural network architecture and involves detail adjustment on
the architecture itself. Hence, random permutation was adapted as another pre-processor
to observe whether the results improved with the shuffling of the features randomly.
However, the results showed no improvement, which suggests that extra measures in
adjusting the architecture are needed. On the other hand, the result for SVM increased
drastically when SS and RFE were added.

This shows that the increase of pipeline complexity can help in improving the perfor-
mance of a model. Figure 7 shows the ROC curve for all three classifiers with increasing
pipeline complexity. Figure 7b,c shows that the curves in each figure acquired the same
ROC-AUC, consequently the curves overlapped each other. Therefore, only one line are
visible in both figure. This comparative analysis deduced that appropriate selection and
optimization of the data pre-processing operators were important in improving the accu-
racy of performance. Although the inclusion of certain different pre-processors enhanced
GS optimization compared to the ML algorithm tuning itself, the best total ML solution
was still offered by TPOT agnostic optimization.

3.4. Time Efficiency of TPOT

In addition to exploring the effect of application of TPOT as a hyperparameter and
pipeline optimizer, we explored the time consumed by all the TPOT configurations. As
expected, default TPOT consumed more time in order to be trained compared to TPOT
restricted to only one classifier. The results in Figure 8 and Table 8 show that time taken
for training in SVM-TPOT, NB-TPOT, and ANN-MLP-TPOT was statistically different
when compared to the time taken by default TPOT. This suggests that there is a huge
difference in training time between all TPOT configurations and default TPOT, as default
TPOT consumes a large amount of time. Configuration from the GS method was not
taken into account because the time taken is too short and irrelevant to be considered in
this research.
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ROC curve for NB with GS and standard scaler. (c) ROC curve for SVM with GS, standard scaler,
and random permutation.
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Table 8. Training time for all TPOT configurations.

Model
Training
Time 1

(m)

Training
Time 2
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Training
Time 3

(m)

Training
Time 4

(m)

Training
Time 5

(m)

Two-Tailed p-Value
(Compare with Training
Time of Default TPOT
Configuration) Using
Wilcoxon Rank Test

A1. Default TPOT 44.30 43.80 35.30 42.50 50.00 -
A2. SVM-TPOT 10.13 10.36 10.57 10.40 13.49 <0.05
A3. NB-TPOT 0.74 0.72 0.87 0.71 0.75 <0.05
A4. ANN-MLP-TPOT 4.00 4.11 4.35 4.31 3.28 <0.05

4. Discussion
4.1. Excellent Compatibility between TPOT Configuration and Radiomics Features

Recently, TPOT has been extensively tested on many specialized classification tasks,
especially in medical diagnosis, which comprises an important topic that we have priori-
tized for future exploration. On the basis of minimum assumptions concerning the model
selection used by TPOT, we found that the agnostic approach presented better clinical
predictive potential, especially if the mechanistic relationship among various characteris-
tics was unknown. In this research, we used two TPOT optimization solutions together,
with a complete list of pre-processors and classifiers. Our configurations were reduced,
with a complete pre-processor list and a preferred classifier (SVM, NB, and NN-MLP). We
discovered that default TPOT developed model pipelines that can overcome any optimiza-
tion strategy, including the reduced TPOT configuration and grid search with or without
pre-processors. This shows that the choice of the ML algorithm and their parameters (for
example, Table 3 shows that the elimination of the RF classification by the pre-processor
slightly decreased the accuracy of 8.4 percent (p > 0.05)). This was also shown by optimiza-
tion of the grid search (Table 4). Alternatively, extensive computer resources are needed
for the selection of the agnostic model via the grid search approach. Some pre-processors
will massively increase the runtime. Therefore, an agnostic approach toward grid search
models cannot be feasible with modern computational resources and stochastic methods of
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search, such as genetic programming, potentially the most suitable approach, especially
when dealing with radiomics features.

4.2. Evaluating the Trade-Off between Model Performance and Training Efficiency

The amount of time needed to train a pipeline is an important pragmatic consideration
in the real-world applications of ML. This certainly extends to the case of AutoML. The
parameters we used for TPOT include somewhere between 35 and 50 training generations,
with a population size of 50 in each generation; therefore, we evaluated several thousand
candidate pipelines—each of which consisted of a variable number of independently
optimizable operators—for every experiment (of which there were 120 in the present
study). As shown in Table 5, we generally expected a default TPOT configuration to
train for almost an hour, or even slightly over an hour, depending on the generation and
population size. Computational time will increase as the generation or the population size
increases. In most cases, the performance of a model improved with an increase in the
population size and generation. Users will have to determine, on an individual basis and
dependent on the use case, whether the potential accuracy increase of, at most, several
percentage points is worth the additional time and computational investment inherent to
the GP-AutoML process.

Nevertheless, the results acquired from this research show that it is unlikely for the
TPOT pipeline to perform worse than the non-TPOT pipeline or conventional hyperparam-
eter tuning. In ‘mission critical’ settings where training time is not a major concern, TPOT
can be expected to perform and help researchers to yield better performance in finding an
effective ML pipeline.

4.3. Limitations and Improvement for Future Works

The main limitations of using TPOT in this research were the computational limit and
cost incurred by this method. GP radiomics optimization methods are typically criticized
for optimizing a large population of solutions, which can sometimes be slow and wasteful
for certain optimization problems [24]. However, it is possible to turn GP’s purported
weakness into a strength by creating an ensemble out of the GP populations. Since the result
of the controlled TPOT configuration-based model achieved showed no improvement when
compared to GS based model, it is recommended that researchers should experiment with
a wide range of hyperparameters for each GS-based model. In this research, the efficiency
of agnostic model selection using AutoML TPOT for cancer prediction was demonstrated
by using data set radiomics.

5. Conclusions

In this study, we showed that the default TPOT model for the selected data set
produced classification pipelines that exceeded the performance of the controlled TPOT
configuration-based model and grid search optimization-based model. The RF classifier
showed an outstanding outcome amongst the models in combination with just two pre-
processors, with a precision of 0.83. The grid search optimized for SVM classifiers generated
a difference of 12% in comparison, while the other two classifiers, NB and NN-MLP,
generated a difference of almost 39%. This study demonstrated the efficiency of agnostic
model selection using AutoML TPOT for cancer prediction by using data set radiomics.
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