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Abstract: miRNAs play an important role in neurodegenerative diseases. Many miRNA-target
gene interactions (MTI) have been experimentally confirmed and associated with Alzheimer’s
disease (AD). miRNAs may also be contained within extracellular vesicles (EVs), mediators of
cellular communication and a potential source of circulating biomarkers in body fluids. Therefore,
EV-associated miRNAs (EV-miRNAs) in peripheral blood could support earlier and less invasive
AD diagnostics. We aimed to prioritize EV-related miRNA with AD-related genes and to identify
the most promising candidates for novel AD biomarkers. A list of unique EV-miRNAs from the
literature was combined with a known set of AD risk genes and enriched for MTI. Additionally,
miRNAs associated with the AD phenotype were combined with all known target genes in MTI
enrichment. Expression in different sample types was analyzed to identify AD-associated miRNAs
with the greatest potential as AD circulating biomarkers. Four common MTI were observed between
EV-miRNAs and AD-associated miRNAs: hsa-miR-375–APH1B, hsa-miR-107–CDC42SE2, hsa-miR-
375–CELF2, and hsa-miR-107–IL6. An additional 61 out of 169 unique miRNAs (36.1%) and seven
out of 84 unique MTI (8.3%), observed in the body fluids of AD patients, were proposed as very
strong AD-circulating biomarker candidates. Our analysis summarized several potential novel AD
biomarkers, but further studies are needed to evaluate their potential in clinical practice.
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1. Introduction

Progressive neurodegeneration is a feature of various age-related brain disorders,
including Alzheimer’s disease (AD). AD is the leading cause of dementia, and the increase
in lifespan is making it one of the most important global health issues. Mild cognitive
impairment (MCI) is the main feature of the pre-dementia stage of the disease, while severe
memory and learning dysfunction can be observed during disease progression [1]. Typical
AD cases are also known as late-onset AD. Onset of symptoms before 65 years of age is
uncommon and is regarded as early-onset AD [2]. Multiple risk factors contribute to the
development of AD and the mechanisms of disease pathogenesis are still not completely
understood [3].

Various genetic risk loci contribute to the development of the disease. For the most
frequent form of the disease, sporadic AD, there are no common causative genes. Different
studies report that rather than single genes, polygenic risk scores can be used to predict
AD risk [4–6]. Numerous GWAS have identified AD risk loci [7–9]. Apart from genetic
background, epigenetic mechanisms may play an important role in AD pathogenesis as
well [10]. Small, non-coding RNA have been extensively studied in neurodegenerative
diseases. miRNAs are involved in post-transcriptional regulation of gene expression. Upon
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binding primarily to the 3′ untranslated region of the messenger RNAs (mRNAs), miR-
NAs block the translation or lead to degradation of target mRNAs [11]. One miRNA can
target multiple mRNAs, and many interactions have been associated with disease mecha-
nisms [12]. More than 380,000 experimentally validated miRNA-target gene interactions
(MTI) have been reported in H. sapiens alone [13]. Data on MTI are important as they may
improve our understanding of metabolic processes and biological pathways associated
with neurodegenerative changes in the brain.

Although AD diagnostic criteria are well established, lack of specificity and sensitivity
in AD diagnoses can be observed [14]. Since there is no currently available treatment for the
advanced state of the disease, early diagnostics of preclinical AD is extremely important.
Detectable cerebrospinal fluid (CSF) proteins reflect cerebral accumulation of insoluble
plaques and aggregation of neurofibrillary tangles (NFT), two major hallmarks of AD [15].
Decreased amyloid-β (Aβ1–42), increased total Tau (tTau), and phospho Tau (pTau) from
CSF are used in clinical practice as suitable biomarkers to support AD diagnostics [16].
Measurement of CSF Aβ40, Aβ42, pTau, and tTau showed good diagnostic accuracy in
discriminating AD patients from non-AD patients, with the Aβ42/40 ratio performing
best [17–20]. However, accumulation of protein aggregates is common between different
neurological disorders, especially in early stages of the disease [21–23]. Discrepancies
in CSF biomarker measurement approaches between different clinical centers add to the
variability in AD diagnostics. Hence, studies are trying to identify novel reliable AD-
specific biomarkers capable of sensing initial neurodegenerative changes in the brain.
Circulating miRNAs and target genes bear great potential as AD-related biomarkers and
could provide valuable insight into the cellular mechanisms of AD pathology [24].

Extracellular vesicles (EVs) are being extensively studied as source of novel AD-
related biomarkers. EVs play a key role in intercellular communication as they harbor
proteins, RNAs, and lipids with important functions in the central nervous system [25].
Whether EVs contribute to pathophysiological changes observed in AD is still subjected to
discussion. Both amyloid and tau pathologies have been associated with neuronal-derived
EVs. Release of Aβ from cells in vitro and Aβ-induced synaptic disruption in vivo was
associated with EVs [26–28]. AD-associated tau phosphoforms have been found in EVs
isolated from AD patients [29]. Furthermore, brain-derived EVs are able to cross the
blood–brain barrier, suggesting they could have potential as circulating biomarkers in
body fluids [30]. EV cargo has been extensively studied in neurodegenerative disorders.
Differentially expressed EVs enriched mRNAs and miRNAs in blood serum and CSF were
reported (reviewed in [31]). Several case-control studies identified miRNAs enriched in
EVs (EV-miRNAs) isolated from body fluids in AD patients [24,32–35]. These findings
suggest EV-miRNAs may have an important role in complex regulatory networks of AD.
Better understanding of miRNA function in AD pathogenesis could eventually contribute
to the development of novel earlier and less invasive diagnostic approaches.

Therefore, the aim of our study was to prioritize EV-related miRNA biomarkers of AD
based on interactions with known AD-related genes. Additionally, we wanted to identify
the most promising circulating miRNAs and their MTI that could serve as biomarkers in
AD.

2. Methods

Two different approaches, based on literature screening or database mining, were
used in search for miRNA-target interactions in Alzheimer’s disease.

In the first approach, we tried to identify MTI with known AD-related genes for miR-
NAs enriched in EVs in AD. A PubMed search for original articles published from Novem-
ber 2014 until the end of February 2021 was performed using keywords “Alzheimer‘s
disease, extracellular vesicle, miRNA”. A list of unique EV-miRNAs was combined
with a known set of genes previously associated with AD risk and biomarker levels
in GWAS studies [36]. Enrichment for MTI was performed by using miRTarBase (http:
//mirtarbase.cuhk.edu.cn/php/index.php, accessed on 25 March 2021) (Figure 1a). In
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miRTarBase, experimentally validated MTI are reported according to different confirmation
methods [13].

Figure 1. Integration of literature screening and database mining for AD-related miRNAs and target
gene evaluation and prioritization of MTI: (a) Previously published work on AD risk genes was
combined with a list of miRNAs associated with extracellular vesicles obtained from literature
search. miRNA-target interactions on various phenotypes and diseases were extracted from miR-
TarBase. (b) Apart from that, HMDD mining resulted in list of AD-associated miRNAs that were
combined with the complete list of genes in miRTarBase for evaluation of miRNA-target interac-
tions. AD = Alzheimer‘s disease; EVs = extracellular vesicles; HMDD = Human microRNA Disease
Database; MTI = miRNA-target interaction.

In the second approach, we tried to identify MTI for all miRNAs associated with AD
reported in the Human microRNA Disease Database—HMDD (https://www.cuilab.cn/
hmdd, accessed on 25 March 2021). The HMDD annotates miRNAs associated with a
specific disease phenotype [12]. After duplicate removal, a list of all unique AD-associated
miRNAs was combined with all known target genes in miRTarBase for MTI enrichment
(Figure 1b).

Furthermore, a list of all AD-associated miRNAs from HMDD was prioritized accord-
ing to the level of evidence. In a search for miRNAs with the greatest potential as AD
circulating biomarkers, their expression in different sample types was reviewed (Figure 2).
As reported in the original literature, candidate miRNAs were observed in biological sam-
ples of AD patients (very strong candidates), AD animal or cell culture models (strong
candidates), non-AD animal or cell culture models (possible candidates), and in silico pre-
dictions (potential candidates). Original papers were screened for reported MTI. Overlap
between different categories was visualized with a Venn diagram using the Venny tool [37].

https://www.cuilab.cn/hmdd
https://www.cuilab.cn/hmdd


J. Pers. Med. 2021, 11, 946 4 of 14

Figure 2. Data extraction of AD-associated miRNAs from HMDD and manual literature curation of
experimentally validated MTI. Database mining resulted in a list of publications, investigating the
role of derived miRNAs that were manually screened for their abundance in different sample types.
miRNAs were curated as very strong candidates (association observed in a sample of AD patients),
strong candidates (association observed in AD cell or animal models), and possible candidates
(association observed in non-AD cell or animal models). In silico predictions were also highlighted
as potential AD-associated candidates, suggesting further research. AD = Alzheimer‘s disease;
HMDD = Human microRNA Disease Database; MTI* = miRNA-target interaction, extraction from
previously published literature.

3. Results

Based on the literature search, 144 unique EV-miRNAs were found (Figure 1a). In the
HMDD, 115 unique AD-associated miRNAs were reported (Figure 1b). Only six miRNAs
were common between both datasets: hsa-miR-29c, hsa-miR-136-3p, hsa-miR-16-2, hsa-miR-
132-5, hsa-miR-331-5p, and hsa-miR-485-5p. Combining EV-miRNAs from 68 publications
with a list of 105 AD-related genes resulted in 215 specific MTI. HMDD screening resulted
in 942 MTI. An overlap between the two approaches showed four common MTI, hsa-miR-
375–APH1B, hsa-miR-107–CDC42SE2, hsa-miR-375–CELF2, and hsa-miR-107–IL6, with the
greatest potential as EV-miRNA circulating biomarkers (Table 1).

Table 1. Common experimentally confirmed MTI identified by both literature screening and database
mining approaches.

miRNA Target Gene Method PubMed ID (Reference)

hsa-miR-375 APH1B Microarray 20215506 [38]

hsa-miR-375 CELF2 Microarray 20215506 [38]

hsa-miR-107 CDC42SE2 PAR-CLIP 1 21572407 [39]

hsa-miR-107 IL6 Luciferase reporter assay,
RT-qPCR 2, Western blot 24429361 [40]

1 PAR-CLIP: photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation; 2 RT-qPCR:
reverse transcription quantitative polymerase chain reaction.

After duplicate removal, prioritization of 169 unique HMDD miRNAs associated
with AD in different sample types resulted in 88 very strong AD biomarker candidates
(Figure 2, Table S1). While 61 (36.1%) of them served as body fluids biomarker, 27 (16%)
were differentially expressed in brain tissue. Only 14 miRNAs were observed both in
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body fluids and brain samples. A total of 28 miRNAs regarded as strong candidates were
observed in animal (22) or cell culture (6) models of AD. Only four miRNAs were common
between both models. Expression of another 40 possible candidates was observed in other,
non-AD cell culture (30) or animal models (10), with an overlap of four miRNAs. On the
other hand, 13 miRNAs were linked to AD by in silico predictions. The overlap between
different prioritization categories can be seen in a Venn diagram in Figure 3. Only one
miRNA, hsa-mir-34a, was observed in all four categories.

Figure 3. Overlap of common identified miRNAs between different candidate categories, according
to the level of evidence.

For all HMDD-identified miRNAs, we proposed key AD-related MTI by screening
original papers (Figure 2, Table S1). We identified seven (8.3%) experimentally validated
MTI from 84 unique MTI in the body fluids of AD patients, while 34 (40.5%) MTI were
confirmed in AD brain tissue samples. Another 19 MTI were found in AD animal models
and seven were associated with AD cell cultures. In non-AD samples, 17 MTI were found in
cell cultures and 12 in animal models. Seven MTI prioritized to have the greatest potential
as novel AD biomarkers are highlighted in Table 2.

Table 2. Experimentally confirmed MTI prioritized as very strong AD-related candidates.

miRNA Target Gene Method PubMed ID (Reference)

hsa-miR-193b APP Luciferase reporter assay, RT-qPCR 1, Western blot 25119742 [41]

hsa-miR-29c BACE1 Luciferase reporter assay, RT-qPCR 1, Western blot 25955795 [42]

hsa-miR-613 BDNF EGFP reporter assay, RT-qPCR 1, Western blot 27545218 [43]

hsa-miR-29c DNMT3 Luciferase reporter assay, RT-qPCR 1, Western blot 25815896 [44]

hsa-miR-206 IGF1 Luciferase reporter assay, RT-qPCR 1, Western blot 27277332 [45]

hsa-miR-128 PPARG Luciferase reporter assay, RT-qPCR 1, Western blot 30328325 [46]

hsa-miR-146a TLR2 Luciferase reporter assay, RT-qPCR 1, Western blot 26095531 [47]
1 RT-qPCR: reverse transcription quantitative polymerase chain reaction.
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4. Discussion

miRNAs and their target genes are extensively studied as potential AD circulating
biomarkers. We prioritized EV-related miRNA biomarkers interacting with known AD-
related genes and identified the most promising circulating miRNAs and their MTI that
could serve as biomarkers for AD.

Four EV-associated MTI (hsa-miR-375–APH1B, hsa-miR-107–CDC42SE2, hsa-miR-375–
CELF2, and hsa-miR-107–IL6) were identified by our combined literature screening and
database mining approaches. Using the HMDD, seven MTI (hsa-miR-193b–APP, hsa-miR-
29c–BACE1, hsa-miR-613–BDNF, hsa-miR-29c–DNMT3, hsa-miR-206–IGF1, hsa-miR-128–
PPARG, and hsa-miR-146a–TLR2) were observed in the body fluids of AD patients.

Two miRNAs were prioritized as the most promising EV-related biomarkers based
on interactions with known AD-related genes: hsa-miR-375 and hsa-miR-107. Microarray
analysis identified two EV-related hsa-miR-375 target genes, APH1B and CELF2. APH1B
encodes for anterior pharynx defective-1 protein, a crucial part of the γ-secretase complex.
Together with PS1/PS2 and PEN2, it is involved in cleavage of amyloid-precursor proteins
(APP) in the amyloid cascade [48]. Depletion of Aph1b in mice leads to a progressive
neurodegenerative phenotype and indicates APH1B as a potential AD treatment target [49].
APP, PS1, and PS2, encoded by APP, PSEN1, and PSEN2, are common causative genes for
a familial, early-onset type of AD [2]. Therefore, APH1B was also proposed as an AD-risk
locus. APH1B missense variant rs117618017 was recently identified as a high-confidence
AD risk variant [8,50]. CELF2 is an RNA-binding protein implicated in alternative splicing
of TREM2 [51]. The effect of TREM2 in neuronal inflammation, present also in AD, has
been extensively studied. TREM2 is a key player in the microglial response to increased
amyloid burden [52]. Multiple genetics studies revealed TREM2 as an important AD
risk locus [9,53,54]. Furthermore, CELF2 rs201119 was associated with increased AD
risk [55]. Interaction of hsa-miR-375 with both APH1B and CELF2 was experimentally
confirmed in a gastric carcinoma sample [38]. The importance of hsa-miR-375 has also been
studied in neurological disorders. The effect of hsa-miR-375 in promoting oxidative stress
accompanying AD has been proposed [56]. Furthermore, hsa-miR-375 was differentially
expressed in CSF and was highlighted as an AD biomarker [24].

Two EV-related hsa-miR-107 target genes, CDC42SE2 and IL6, were confirmed using
different experimental approaches. CDC42SE2 is a potential actin cytoskeleton modulator
acting downstream of CDC42 [57]. The importance of actin in AD pathology and involve-
ment in synaptotoxicity has previously been established [58,59]. CDC42SE2 rs382216 was
associated with decreased AD risk in a GWAS study [60]. Cytokines are generally recog-
nized as important mediators of inflammation. Multiple lines of evidence link IL6 with
neurodegeneration. Elevated IL6 levels have been observed in AD brain tissue [61,62].
IL6 is also important in neuronal cell growth and differentiation [63]. Recently, rs1800796
in IL6 has been associated with increased AD risk in a meta-analysis [64]. Furthermore,
multiple polymorphisms in gene coding for IL6 receptors (IL6R) were found in AD GWAS
studies [65,66]. Thus, the importance of both IL6 and IL6R in the genetic predisposition of
disease imply the importance of cytokines in the development of AD. Experimental valida-
tion of hsa-miR-107 interactions with CDC42SE2 and IL6 were already reported [39,40]. In
an AD cell model, a decrease in hsa-miR-107 level was observed, suggesting its function in
disease progression [67]. The potential of hsa-miR-107 as an AD circulating biomarker was
proposed, since lower expression in blood plasma was observed in AD patients [68].

Six miRNAs were prioritized as the most promising circulating biomarkers based on
HMDD data. Seven MTI prioritized in the database mining approach were confirmed with
reliable methods—reporter assay, RT-qPCR, and Western blot. One MTI, hsa-miR-193–APP,
was also observed in EVs [41].
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Multiple miRNA target genes were associated with metabolic processes and reg-
ulation of gene expression. The interaction of exosomal hsa-miR-193b with APP was
experimentally confirmed in an AD mouse model and a sample of AD patients [41]. Later
on, the potential of hsa-miR-193b as an early diagnostic circulating biomarker was con-
firmed [69,70]. APP encodes for amyloid precursor proteins and is the initial part of the
amyloidogenic pathway [15]. APP is involved in synapse formation and stability and thus
highly enriched in brain tissue [71]. Another gene linked to synaptic function is BACE1.
BACE1 is a secretase, mediating a two-step generation of Aβ through APP cleavage [72].
Since it has been discovered in CSF, the potential of BACE1 as an AD biomarker was
extensively studied [73–77]. BACE1 polymorphisms were also associated with AD [78,79].
Interaction of hsa-miR-29c with both BACE1 and DNMT3 was experimentally confirmed in
CSF or blood samples [42,44]. De novo methyltransferase DNMT3 established methylation
patterns on DNA and had an important role in genome imprinting [80]. Potential use
of hsa-miR-29c as an AD circulating biomarker was further confirmed using RNA deep
sequencing [81]. Brain-derived neurotrophic factor (BDNF) is another important protein
involved in AD pathology. BDNF mediates survival and differentiation of neurons [82]. In
AD brains, decreased BDNF levels have been reported [83]. In addition, BDNF decreases in
serum during the initial stages of AD, suggesting BDNF has an important function in early
synaptic dysfunctions [84]. Furthermore, BDNF polymorphisms have been associated with
AD [85,86]. hsa-miR-613 as an interacting partner of BDNF was detected in the serum and
CSF of AD patients and AD mouse models [43].

One miRNA target gene was involved in immune response, an important compan-
ion of AD. The function of hsa-miR-146a in AD has been extensively studied. Recently,
hsa-miR-146a upregulation was observed in postmortem AD brain tissue [87]. The effect
of hsa-miR-146a as a switch for reduced proinflammatory microglial phenotypes was
proposed [88]. Increased AD risk effect of rs2910164 minor allele in the miR-146a coding
region was reported [47,89]. Multiple studies proposed hsa-miR-146a as an AD circulat-
ing biomarker [81,90,91]. An experimental interaction of hsa-miR-146a with TLR2 was
reported [47]. Toll-like receptor 2, encoded by TLR2, is a key component in the innate
immune system. TLR2 are one of the most studied pattern recognition receptors that recog-
nize pathogens and initiate the cascade of host defense mechanisms [92]. The activation
of TLR2 induces neurodegeneration and cognitive deficit in AD murine models [93,94].
Further evidence elucidated the role of immune system in AD development, including
TLR2 polymorphisms associated with AD in Asian populations [95,96].

Another two target genes were associated with glucose metabolism. PPARG is a recep-
tor involved in lipid and glucose metabolism [97]. Interaction of a neuroprotective agent
with PPARG has been discussed, suggesting the importance of PPARG in Aβ formation
during inflammation [98]. In addition, the effect of PPARG polymorphisms on AD risk and
age of onset was evaluated [99,100]. Upregulation of hsa-miR-128 lead to downregulation
of PPARG in clinical AD samples and AD cell models [46]. Furthermore, the importance of
hsa-miR-128 in AD pathology suggests impaired amyloid clearance associated with hsa-
miR-128 upregulation and reduced Aβ production in miR-128 knock-out mice [101,102].
Recently, hsa-miR-128 was proposed as potential AD circulating biomarker [103]. Insulin
growth factor-1 (IGF1) is a hormonal regulator of insulin resistance in diabetes. The effects
of IGF1 on cell survival, apoptosis, and stimulation of neurogenesis in the hippocampus
can predict neurodegeneration, encompassing AD [104]. Decreases in serum levels of
IGF1 have been linked to AD [105]. The effect of diabetes as an AD risk factor has also
been extensively studied. IGF1 levels were associated with cognitive decline in diabetic
patients [106]. In terms of genetics, only one IGF1 polymorphism was associated with
AD risk in the Chinese Han population [107]. Upregulation of hsa-miR-206 in AD blood
samples was linked to IGF1 and AD-related inflammation [45]. Further studies confirmed
the potential of hsa-miR-206 as a circulating AD biomarker [69,108,109]. Furthermore,
hsa-miR-206 was proposed as a novel AD pharmacological target [110].
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In a search for novel, reliable AD circulating biomarkers from publicly available
databases, we determined the most promising AD-related miRNA candidates and their
MTI using two different approaches. The overlap between two comprehensive miRNA
datasets resulted in only a few common MTI. However, not all specific MTI were confirmed
in an AD sample. Contrary to our expectation, the EV-associated miRNA list did not
overlap with the extensive list of miRNAs linked to AD phenotype. To better understand
the function of enriched MTI in AD, a manual curation according to previously published
evidence was performed. We observed no overlap between MTI obtained from EV-miRNA
enrichment and very strong candidate MTI from manual prioritization. However, not all
studies confirmed that miRNAs identified in our study can serve as suitable biomarkers
for AD. For example, even though they were often associated with AD, no significant
differences in expression levels of miR-146a, miR-107, miR-375, and miR-29c in CSF or
blood samples were observed in some studies [111–117]. In addition, statistical analysis of
candidate biomarkers could help in prioritization of miRNAs as AD biomarkers. Further
studies are therefore needed to confirm the role of these miRNAs and their MTI in AD.

Although hsa-mir-34a, hsa-miR-136-3p, hsa-miR-16-2, hsa-miR-132-5, hsa-miR-331-5p,
and hsa-miR-485-5p were proposed as AD biomarkers using both approaches, no significant
MTI were identified. The majority of included studies reported miRNA expression as up-
or downregulated, normalized to other common miRNAs. Determination of cut-off values
for miRNA expression is challenging and rarely reported [70,118]. In the design of future
studies, this should also be taken into account. Additionally, in body fluids, miRNAs are
abundant as cell free or enriched in EVs. As the potential of neuronal-derived EVs in
peripheral blood has been extensively studied, we focused on EVs as a promising source
of miRNAs. EV-enriched miRNAs set can differ from total miRNAs in a sample, which
was also highlighted by our analysis. Selection of appropriate isolation methods based on
different biomarker types is therefore needed for reliable biomarker detection. Our results
therefore suggest that a combination of different publicly available miRNA databases
should be evaluated in a search for the most promising biomarker candidates associated
with AD. However, miRNAs and target genes, highlighted under two different approaches,
can be regarded as top novel circulating biomarker candidates in AD. Additionally, the
potential of very strong candidates identified in the HMDD as AD circulating biomarkers
should be further researched, also in the EVs of body fluids.

5. Conclusions

In conclusion, in the present study we prioritized several important experimentally
confirmed interactions between miRNAs and target genes implicated in AD. miRNAs
hsa-miR-193b, hsa-miR-29c, hsa-miR-613, hsa-miR-206, hsa-miR-128, and hsa-miR-146a
represent the most promising circulating AD biomarkers, while miRNAs hsa-miR-375 and
hsa-miR-107 could be promising EV-related AD biomarkers. Further studies are needed
to evaluate the potential of key identified miRNAs in clinical practice. Elucidating the
complex network of AD-related miRNAs and target genes could eventually also enable
identification of novel therapeutic targets for AD.
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