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Abstract: Epilepsy is a neurological disorder of the brain that causes frequent occurrence of seizures. 
Electroencephalography (EEG) is a tool that assists neurologists in detecting epileptic seizures 
caused by an unexpected flow of electrical activities in the brain. Automated detection of an 
epileptic seizure is a crucial task in diagnosing epilepsy which overcomes the drawback of a visual 
diagnosis. The dataset analyzed in this article, collected from Children’s Hospital Boston (CHB) and 
the Massachusetts Institute of Technology (MIT), contains long-term EEG records from 24 pediatric 
patients. This review paper focuses on various patient-dependent and patient-independent 
personalized medicine approaches involved in the computer-aided diagnosis of epileptic seizures 
in pediatric subjects by analyzing EEG signals, thus summarizing the existing body of knowledge 
and opening up an enormous research area for biomedical engineers. This review paper focuses on 
the features of four domains, such as time, frequency, time-frequency, and nonlinear features, 
extracted from the EEG records, which were fed into several classifiers to classify between seizure 
and non-seizure EEG signals. Performance metrics such as classification accuracy, sensitivity, and 
specificity were examined, and challenges in automatic seizure detection using the CHB-MIT 
database were addressed. 

Keywords: epilepsy; electroencephalogram; EEG; seizure detection; CHB-MIT database; feature 
extraction; classification 
 

1. Introduction 
According to the World Health Organization (WHO), approximately 50 million 

people in the world are affected by epilepsy [1]. In the global population, about 180,000 
new cases of epilepsy are recorded each year [2], while nearly three quarters of epilepsy 
patients do not have access to medical treatment. Epilepsy is a neurological disease of the 
brain [3] in which seizures frequently occur due to an unpredicted stream of electrical 
motion, which causes the abnormal consequences of extreme and hypersynchronous 
action of neurons in the brain. Due to the frequent occurrence of seizures, an epileptic 
patient may experience unconsciousness and amnesia, mild depression, persistent 
headache. It causes body movement disorders and even death [4]. In the population 
affected by.epileptic seizures, about 70% are adults and 30% are children. Epileptic 
seizures are caused by low oxygen levels during birth and head injuries that ensued 
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during pregnancy, brain tumors, and abnormal levels of sodium or blood sugar. In about 
70% of the cases, the cause of epilepsy in adults and children is not discovered. Seizures 
are classified into partial (focal) and generalized [5], where some part of the cerebral 
hemisphere is affected in focal seizures, and the whole brain is affected in generalized 
epileptic seizures. Some types of generalized seizures are tonic-clonic or convulsive 
seizures, absence seizures, atonic seizures, clonic seizures, tonic seizures, and myoclonic 
seizures [6]. Based on the progress of the event, epilepsy is classified into four stages, 
namely interictal, preictal, ictal, and postictal. The occurrence of epileptic seizures is 
referred to as the ictal stage, the timelapse of around 1–15 min before the incidence of a 
seizure is referred to as the preictal stage, and the stage after the occurrence of the seizure 
is referred to as the postictal stage. The time interval between the two seizures is 
considered an interictal stage [7]. 

Electroencephalography (EEG) is a noninvasive tool that is useful for the extraction 
of information about the electrical activity of the brain that indicates a very large number 
of neuronal membrane potentials that will be measured by placing electrodes on the scalp, 
which plays a vital role in diagnoses of epilepsy. Visual diagnosis of epileptic seizures 
using an EEG record is a monotonous task and consumes tremendous time for the 
neurologist. On the other hand, the EEG signal contains a potent biomarker to recognize 
various abnormal brain conditions, including depression [8] and seizures [9]. Therefore, 
it is necessary to automate the detection of epilepsy by recognizing the abnormal EEG 
condition by employing machine learning approaches [10] to achieve the goals of 
personalized medicine. 

Personalized medicine, also known as precision medicine, is a medical concept in 
which people are divided into groups, and medical decisions, procedures, and/or drugs 
are personalized to the individual patient based on their expected response or risk of 
disease. EEG signals are a useful tool in precision medicine and personalized medicine. 
Automated diagnosis of epilepsy is a focus area for researchers that seek to reduce time 
consumption and computational cost. It consists primarily of two parts, such as feature 
extraction using various digital signal processing (DSP) methods and operators, to 
compute relevant features and classification stage to discriminate healthy (normal) and 
abnormal EEG signals or EEG signals corresponding to different mental states of the 
subject [11–13]. 

In previous work, the authors proposed a machine learning method for the 
classification of seizures using scalp EEG and a support vector machine (SVM) classifier, 
which achieved an accuracy of 90% [14]. A wavelet-based feature extraction technique 
was performed to extract the statistical feature of the mean absolute deviation (MAD). The 
extracted features were fed into the linear discriminant analysis classifier (LDA) to 
differentiate epileptic and non-epileptic events and attained an accuracy of 96.5% [15]. The 
continuous wavelet transform (CWT) was developed to extract characteristics, and the 
SVM classifier was adapted to perform epilepsy classification, which achieved a 
sensitivity of 52.2% in [16]. A data-driven approach was involved, and a fourth-order FIR 
filter was used to give 256 features that were nourished into the SVM classifier to 
discriminate between normal and abnormal EEG records in [17]. The patient-specific 
seizure detection approach was demonstrated by supervised low-power sensor nodes for 
efficient sensing, and the spectral features were extracted and fed to SVM, which acquired 
the sensitivity, latency, and false alarm of 94.70%, 5.83 s, and 0.199 per hour, respectively, 
in [18]. 

A discrete wavelet transform (DWT) was employed to decompose EEG signals in 
[19]. Energy and a normalized coefficient of variance were measured from each coefficient 
and fed into the LDA classifier to identify seizure epochs, which achieved a precision of 
91.8%, sensitivity of 83.6%, and specificity of 100%. An energy efficient filter architecture 
was developed using distributed quad-LUT, and a linear SVM classifier was used to 
classify epileptic and non-epileptic signals, which achieved an accuracy of 82.7% with a 
latency of 2 s [20]. 
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Conditional mutual information maximization (CMIM) as a feature selection method 
was introduced to select features from the extracted time, frequency, time-frequency, and 
nonlinear features. The extracted features were fed into the SVM classifier to discriminate 
the EEG signals and obtained 90.62% sensitivity and 99.05% specificity [21]. Binary 
classifiers for a patient-specific classification were implemented, resulting in a sensitivity 
of 89% and a specificity of 93% [22]. 

Wavelet-based nonlinear features were extracted, which was used for the 
classification process using an Extreme Learning Machine (ELM), which gave the 
sensitivity of 92.6% and a false detection rate of 0.078 [23]. Wavelet transform (WT) was 
applied to decompose the signals, and wavelet-based features were extracted, which were 
fed into the linear classifier, and achieved a sensitivity of 98.5% with a latency of 1.76 s 
[24]. 

A patient-specific seizure detector based on unsupervised feature learning, namely 
stacked autoencoders, was used to learn features from raw EEG signals in [25]. The 
extracted features were fed to the logistic classifier for the discrimination of EEG signals. 

Recurrence quantification analysis (RQA) was developed to detect epileptic seizures, 
and the signal-to-noise ratio (SNR) was calculated by applying a wavelet and notch filter, 
which obtained 97.4% sensitivity and 93.5% specificity [26]. A fuzzy entropy-based 
approach with SVM was used to classify EEG signals, which attained precision of 98.31%, 
specificity of 98.36%, and sensitivity of 98.27% [27]. An automatic mobile-based approach 
for seizure detection was proposed by analyzing EEG signals in the time domain, 
frequency domain, and time-frequency domain. From the analyzed signals, several 
characteristics were calculated, and the sequential forward feature selection method was 
used to select informative characteristics, which were fed into k-means clustering for 
classification [28]. The feature extraction approach of EEG signals mapped in the two-
dimensional space was proposed, and several classifiers were adopted, which achieved a 
sensitivity of 70.19% and a specificity of 97.74% [29]. 

The multitask learning method was applied to the long data record in which the 
challenges related to variation between patients and intrapatients were resolved by 
training an SVM classifier to distinguish epileptic and non-epileptic signals [30]. RQA was 
used to characterize the EEG signal, and the extracted features were fed into the error-
correcting output code (ECOC) classifier, which acquired a sensitivity of 97.4% and a 
specificity of 93.5%, respectively [31]. The supervised machine learning method for the 
classification of seizures was introduced using scalp EEG and the magnetic resonance 
imaging approach to obtain a sensitivity of 93% and a specificity of 94% using the K-
Nearest Neighbor classifier (K-NN) [32]. The Singular Lorenz Measures Method (SLMM) 
has been proposed for feature extraction where the decomposition of the EEG record is 
performed by applying DWT, and the extracted features based on SLMM were delivered 
to different classifiers to provide efficient classification that refined the detection accuracy 
of 90% [33]. 

The patient-specific method of the Poincare section, LDA, and Naïve Bayesian (NB) 
classifiers was used, which attained a sensitivity of 88.27% [34]. A single-channel 
automatic seizure detection algorithm was developed based on a statistical approach 
performed by filtering, peak-to-peak rectification, smoothing, semi-logarithmic 
compression, and time compression, which achieved 88.50% sensitivity with a false 
detection rate of 0.18 [35]. Classical characteristics and singular values such as average 
power, delta band average power, variance, and mean were extracted by applying the 
singular value decomposition (SVD) technique, and the SVM classifier was used for 
seizure classification, which achieved an average precision of 94.82% [36]. The frequency 
division multiplexing filter and dual detector architecture were implemented to detect 16 
channel seizure events, and the SVM classifier was used to provide a high sensitivity of 
95.7% [37]. 

Multidimensional parallel factor analysis (PARAFAC) was used to extract spatial 
spectral characteristics, and the adaptive zero training technique was proposed with the 
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intention of better classification when the LDA and SVM classifier was adopted [38]. The 
context learning model was intended to detect epileptic seizures by extracting the hidden 
inherent features with a sparse autoencoder. Hidden and temporal features were given to 
the binary classifier, which achieved an error rate of 22.93% [39]. A supervised machine 
learning method, namely principal component analysis (PCA) and LDA, was introduced 
with a k-NN classifier to classify EEG signals using the characteristics extracted from the 
decomposed wavelets, which achieved a sensitivity and specificity of 88% [40]. 

The stationary wavelet transform (SWT) was applied for seizure detection based on 
a nonspecific patient procedure with the LDA classifier for accurate classification, which 
achieved 99.9% specificity and 87.5% sensitivity [41]. Interpolated histogram features 
(IHF) were extracted from the EEG signal, and to select informative features, a Bayesian 
classifier and a Hunting search algorithm were used in offline seizure detection. A 
multilayer perceptron (MLP) classifier was trained with the optimal selected features for 
online seizure detection, which achieved an accuracy of 86.56% [42]. 

A patient-specific seizure detection algorithm was developed using SVM and linear 
SVM and achieved high sensitivity and specificity of 95.1% and 96.2%, respectively [43]. 
EEG classification based on a multichannel machine learning approach in a wearable 
environment was implemented by on-chip classification where the features were 
extracted and given to the linear SVM classifier. The nonlinear classifier was applied and 
found that the sensitivity and specificity of the nonlinear SVM were refined at a rate of 
12.4% and 3.56% compared to those of the Linear SVM [44]. A robust learning framework 
was proposed to alleviate the class imbalance in the CHB-MIT dataset for seizure 
detection. It adopts RUSBoost, which increases the performance of the classifier [45]. 

Multilevel wavelet decomposition was adapted to extract features based on 
magnitude and spectral energy variation, and fed into SVM and ELM classifiers, thereby 
achieving a sensitivity of 99.48% [46]. The MLP-based neural network was used to detect 
epileptic seizures by training a classifier based on the backpropagation algorithm [47]. The 
patient-independent and patient-dependent classification was developed by investigating 
wavelet characteristics with an SVM classifier, achieving an overall precision of 96.87% 
[48]. Temporal and spectral characteristics were extracted using WT, and these 
characteristics were given to ELM for automated epilepsy classification, which achieved 
94.85% classification accuracy [49]. The low-complexity seizure prediction technique was 
explored for the use of attractor state analysis where the linear spectral characteristic was 
evaluated, resulting in a sensitivity of 86.67% [50]. SVD was applied, and eigenvalues 
were calculated to detect seizures [51]. 

The phase locking value was analyzed for the prediction of seizures using empirical 
mode decomposition (EMD), and other types of EMD were proposed. The extracted 
features were fed into the SVM classifier to perform the classification [52]. An 
unsupervised method of predicting seizures was used to perform a classification with the 
mallet scattering transform to analyze an EEG signal, which attained a specificity of 98% 
and a sensitivity of 78% [53]. A multivariate method of empirical wavelet transform (EWT) 
was performed to extract the characteristics, and different classifiers were used for 
classification, which achieved a sensitivity of 97.91%, specificity of 99.41%, and precision 
of 99.41% [54]. 

Supervised detection of epileptic seizures was proposed using the local Gabor binary 
pattern (LGBP) method, and features were extracted using sparse rational decomposition. 
These characteristics were nourished in different classifiers and achieved a net sensitivity 
of 70.4% [55]. An energy-based seizure detection algorithm was performed, and the 
genetic algorithm for optimization was used to refine the accuracy of the detection [56]. 
The Fast Wavelet Decomposition (FWD) approach was applied to extract features that 
were given to the Relevance Vector Machine (RVM) for the discrimination of epileptic and 
non-epileptic signals achieving a sensitivity of 96% [57]. The logarithm of the variance of 
detail obtained by single wavelet-based features was proposed to perform the patient-
dependent epileptic seizure classification using 4-fold cross-validation to categorize 
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seizure and non-seizure activity, which achieved an accuracy, sensitivity, and specificity 
of 93.24%, 83.34%, and 93.53% [58]. Feature extraction was performed by segmenting the 
EEG signal based on coinciding change points to study the quasi-stationary nature of EEG 
for prediction of epileptic seizures [59]. The sparse feature selection procedure was used 
to extract eight different sub-bands of spectral power features that were selected, and a 
kernel sparse representation classifier was used to predict epileptic seizures, which 
achieves a sensitivity of 86.11% [60]. 

The Field Programmable Gate Array (FPGA) approach was implemented for 
automatic seizure detection to examine the amplitude and frequency components. The 
timing of seizure detection was 1.56 ns and 7.572 ns, respectively [61]. The slope-based 
detection (SBD) accelerator was experimented with to detect real-time seizures and 
achieved 100% sensitivity with 0.5 s latency [62]. A PCA introduced using a distance-
based change point detector provided a sensitivity rate of 87% [63]. A fuzzy rule-based 
and layered directed acyclic graph SVM (LDAG-SVM) was developed accordingly, 
reaching an accuracy of 98% and a sensitivity of 99% [64]. The convolutional neural 
network (CNN) approach was developed to interpret seizures and non-seizures, which 
achieved a sensitivity of 81.4% [65]. The WT methods were applied to analyze the EEG 
signals, and time-frequency-based features were extracted. 

The extracted features were fed into a fuzzy classifier for discrimination of epileptic 
and non-epileptic EEG signals, which attained an accuracy of 96.48% [66]. The high-
dimensional phase space through the Poincare section and two classifiers, such as the 
SVM classifier and the NB classifier, was analyzed to attain an accuracy of 96.77% [67]. 
EMD, DWT, and wavelet packet decomposition (WPD) methods were applied to 
characterize the EEG signals. Statistical characteristics were extracted for automatic 
detection of seizures, which achieved an overall accuracy of 100% [68]. Long short-term 
memory (LSTM) networks were adopted for the prediction of epileptic seizures by 
enlarging deep learning algorithms with a CNN [69]. The unsupervised method based on 
a four-segment selection-based method for the detection of seizures was used and 
achieved a sensitivity of 89% [70]. Prediction accuracy of 90.5% was achieved by 
employing a deep CNN [71]. Adopting a lightweight VGGNet approach for seizure 
detection reached better accuracy, sensitivity, and specificity of 98.13%, 98.85%, and 
97.47%, respectively [72]. 

The unsupervised seizure detection approach was implemented to examine the 
spectral information of each EEG channel individually in the alpha, theta, and delta bands, 
and acquired a sensitivity of 95.1% [73]. A smart headband was implemented to 
automatically detect seizures. The circuitry consisted of a flexible print circuit and fabric 
electrodes, which were integrated with a cloud computing platform. The 16 entropy 
features were extracted and given to the linear classifier, which effectively discriminated 
ictal and nonictal activity [74]. A multivariate method was applied to extract spectral 
graph-theoretic features to compute temporal synchronization patterns, which gave 98% 
sensitivity and a low latency of 6 s [75]. 

The enhanced transductive transfer learning Takagi–Sugeno–Kang fuzzy system was 
implemented and adopted WPD for feature extraction. Six features were extracted and 
given to the ANFIS classifier [76]. E-glass, a wearable device, was developed to give an 
early warning before seizure occurrence by using four scalp EEG electrodes. DWT was 
applied to extract nonlinear and power features that were provided to a random forest 
(RF) classifier to discriminate non-seizure and seizure EEG signals, which achieved a 
sensitivity of 93.80% and a specificity of 93.37% [77]. A shallow-dense neural network was 
intended to describe epilepsy by enabling global synchronization using the maximal 
information coefficient (MIC), which achieved accuracy, sensitivity, and specificity of 
97.292%, 98.696%, and 96.116%, respectively, by adopting the shallow-dense net classifier 
[78]. DWT was applied to extract features, and four classifiers, such as K-NN, SVM, LDA, 
and artificial neural network (ANN), were adopted and provided an accuracy of 94.6% 
[79]. 
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Welch’s method was used to calculate the power spectral density (PSD) from which 
12 features were extracted that were nourished into two classifiers, such as the SVM and 
the RF classifier, to refine the precision of 94% [80]. In [81], epileptic seizures were 
predicted by employing deep learning approaches combined with SVM classification. In 
[82], the recurrent CNN was applied to long-term scalp EEG signals to detect the 
epileptogenic region. In [83], the baseline correction based on the median feature method 
was used to train and test EEG data for automatic detection of seizures. 

The discussed approaches can be summarized using the automatic seizure detection 
flow diagram shown in Figure 1, which includes the typical stages of EEG data 
preprocessing, feature extraction, feature selection, and classification. These stages are 
discussed in more detail in the following sections of this paper. 

 
Figure 1. The flow chart for automatic epileptic seizure detection in artificial intelligence-based 
personalized medicine. 

2. Dataset Used 
The database used in this study was CHB-MIT, which is collected from the Children’s 

Hospital Boston. The database consists of EEG recordings with an intractable seizure of 
24 pediatric patients. This database consists of 916 h of EEG records and 23 cases of EEG 
recordings of 22 patients whose ages ranged from 1.5 to 22 years. Continuous EEG signals 
were recorded after the withdrawal of antiseizure medication. The CHB-MIT database 
records were separated into seizure and non-seizure records and contain a total of 664 
EEG files, where 198 seizures of all patients are included. These data records are one hour 
or four hours of data records, and 129 files contain one or more seizures, and all EEG 
signals were sampled at a rate of 256 samples per second with 16-bit resolution. Most EEG 
records contain 23 channels, and few records contain 24–26, as shown in Figure 2. The 
scalp EEG recording was done using the International 10–20 system. This database is 
available on the Physionet website. The EEG signals were segmented by the timing 
window since the data are long hour data. 
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Figure 2. CHB-MIT database: examples of (a) non-seizure record; (b) seizure record. 

3. Methods 
The EEG analysis was performed with many approaches suggested in the literature. 

These approaches were broadly classified into four types: (1) time domain, (2) frequency 
domain, (3) time-frequency domain, and (4) nonlinear methods, shown in Figure 3. 
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Figure 3. Methods to analyze EEG signals. 

3.1. Time Domain 
The key techniques for the analysis of the time domain were performed using 

component analysis and other methods to provide the discrimination between epileptic 
and normal patients. EEG waveforms in the time domain are associated with an epileptic 
and non-epileptic patient in the ictal and interictal states. 

Component analysis is an unsupervised approach to extract time domain features 
that include PCA, independent component analysis (ICA), and LDA. The authors 
extracted seven features of peak frequency, median frequency, variance, root mean square 
(RMS), sample entropy, skewness, and kurtosis from every 115 columns, so in total, 805 
features and 20 uncorrelated features were extracted by incorporating PCA and LDA [40]. 

PCA and common spatial patterns were defined to extract discriminative features, 
for example, statistical features related to a minimum, maximum, mean, variance, 
standard deviation, range, kurtosis, skewness, RMS, and morphological features such as 
curve length, zero cross, number of peaks, average nonlinear energy, and band power to 
provide the classification of the EEG signal [63]. Variance feature, RMS, skewness, 
kurtosis, peak frequency, median frequency, sample entropy, and about 20 uncorrelated 
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features were extracted by several analyses using PCA, LDA independent search, LDA 
forward search, LDA backward search, and Gram–Schmidt analysis [32]. 

The CMIM feature selection method was used to extract features [21]. The features of 
skewness, kurtosis, number of maxima and minima, mean, variance, standard deviation, 
COV, RMS, Shannon entropy, approximate entropy, energy, standard variation, and 
autocovariance were extracted [22]. The time domain features of mean, standard 
deviation, median, skewness, kurtosis, a positive and negative value, and the first 
derivative of mean and max, RMS, line length were extracted [28]. Histogram-based 
statistical features were extracted, and by analyzing MSE, the interpolated histogram 
feature was extracted with ten optimal features that were collected by the COV feature, 
Bowley’s measure of skewness, moment measure of skewness feature, kurtosis feature, 
Pearson’s measure of skewness, the approximation of negative entropy feature and 
coefficient of IHF [42]. 

The statistical moments, standard deviation, zero crossing, and peak-to-peak voltage 
from the EEG signals were extracted to classify preictal and interictal states. Amplitude, 
skewness, kurtosis, and entropy features were extracted, and from the four features, 
amplitude and kurtosis of time domain features were selected to provide discrimination 
[79], as listed in Table 1. 

Table 1. Summary of epileptic seizure detection approaches in the time domain. 

Feature 
Extraction 
Method 

Subjects Window 
Size  

Features Classifier Performance (%) 

1 s non-
overlapping 
window [21] 

4 patient, 
21 h 

recording 
1 s 

Time: skewness, kurtosis, No. of maxima and minima, 
mean, variation, standard deviation, and Shannon, 

entropy, ApEn, energy, standard variation, variance, and
energy of auto-covariance and COV, RMS. 

SVM 
Sen: 90.62 
Spe: 99.32 

1 s non-
overlapping 
frames [23] 

21 patients 
(excluding 
patients 6, 

12, 16) 

1 s 

Time: No. of maxima and minima, skewness, kurtosis, 
standard deviation, COV, RMS, Shannon entropy, ApEn, 
energy, standard variation, mean, variation variance, the 

energy of auto-covariance. 
Frequency: mean of the power spectrum, spectral 

entropy, median frequency. maximum, minimum, and  
Time-frequency: relative scale energy, COV, frequency 

regularity index, maximum, minimum, Shannon 
entropy, variance, mean, std-deviation, No. of extrema, 

and energy 
Nonlinear: Lyapunov exponent 

SVM, multi-
dimensional 

PSO 

Sen: 89 
Spe: 93 

Time domain 
approach [28] 

23 patient  

Mean, std-deviation, median, skewness, kurtosis, PA 
value, NA_value, mean of 1st and 2nd derivative and a 
maximum of 1st and 2nd derivative, RMS amplitude, 

line length, COV 

K-means 
clustering 

 

PCA [34] 
23 patients 

excluding 15 
1 s 

Range, quantile, IQR, Shannon entropy, RMS amplitude, 
COV, and energy 

LDA, 
NB  

Sen: 88.26 
Spe: 93.21 

SVD [36]  1 s 
Classical features such as mean, variance, kurtosis, 

skewness, power 
SVM Acc: 94.82 

PARAFAC 
decomposition 

[38] 
1 patient  Spatio-spectral features 

LDA, 
SVM, 

K-means 
 

PCA and LDA 
[40] 

171 seizures 
171 non-
seizures 

60 s 
Peak frequency, median frequency, variance, RMS, 

sample entropy, skewness, and kurtosis 
k-NN classifier 

Sen: 88 
Spe: 88 
Acc: 93 

2 s non-
overlapping 
window [43] 

24 patient 
198 seizures 

600 s Spectral energy features 
Linear SVM, 𝐷 A 

Sen: 95.1 
Spe: 96.2 
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SVD [51] 23 patient 4 s 
2D eigenvalues, cross bi-spectrum in the spatial and 

spectral direction 
  

PCA [62] 23 patient 1 s 
Quantile, Inter quantile, range, Shannon entropy, RMS, 

COV, and energy 
SVM 
NB 

Sen: 95.01 
Selectivity: 97.97 

Acc: 96.77 

3.2. Frequency Domain 
Spectral and energy features were extracted from a periodogram, which was 

estimated by applying the Welch algorithm with 50% overlap [14]. Let pth windowed 
input signal 𝑥 be represented as [12] 𝑥 (𝑛) ≅ 𝑤(𝑛)𝑥(𝑛 + 𝑝𝑅), 𝑛 = 0,1, … , 𝑀 − 1, 𝑝 = 0,1, … . , 𝑘 (1) 

where 𝑅 is the window hop size, and 𝑘 is the number of the available frame. The pth 
block periodogram is given as: 

𝑃 , 𝑀(𝑤 ) = 1𝑀 𝐹𝐹𝑇 , (𝑥 ) ≅ 1𝑀 𝑥 (𝑛)𝑒  (2) 

The Welch method of PSD is denoted by 

𝑃𝑆𝐷(𝑤 ) = 1𝑘 𝑃 , (𝑤 )  (3) 

The features, such as maximum PSD, frequency of maximum PSD, mean PSD in 
theta, alpha, beta, gamma, and delta frequency band, and variation of PSD, were extracted 
from PSD evaluated by Welch’s method with a 90% overlap [79]. Spectral features were 
calculated with the help of PSD evaluated using the Burg method of order 16; therefore, 
eight spectral features were obtained [41]. The Fourier coefficient of each frequency band, 
which is theta, alpha, low beta, mid-beta, high beta, and gamma, was extracted by 
calculating PSD from an attractor in EEG [50]. Seven FIR bandpass filters were designed 
to extract features on 18 channels, each consisting of seven features on three-time 
windows so that, finally, 378 dimensions of a feature vector were formed [17]. 

CMIM has extracted the features of maximum, minimum, and mean power 
spectrum, spectral entropy, and median frequency [21]. The frequencies domain features 
of the maximum, minimum and mean power spectrum, spectral entropy, and median 
frequency were extracted [22]. Adaptive segmentation was performed, and it used the 
nonlinear energy operator, which segments the EEG, which was fed to the iterated filter 
banks to extract spectral energy features and temporal features for refined classification 
[30]. 

Feature extraction (FE) was performed by applying a two-second non-overlapped 
window. The feature extraction engine comprises two sets of the bandpass filter (BPF). 
For each channel, the frequency bands were subdivided into delta, theta, alpha, and beta, 
whose ranges were 0–3, 4–7, 8–15, and 16–30 Hz, respectively [43]. The FE engine 
consisting of seven BPF and a spectral energy calculator was used to extract features [44]. 
Higher-order spectral analysis was performed to extract spectral and temporal patterns 
[51]. The FE method was implemented in FPGA. Amplitude and frequency were extracted 
for seizure detection [61] as tabulated in Table 2. 
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Table 2. Summary of epileptic seizure detection approaches in the frequency domain. 

Feature 
Extraction 
Method 

Subjects 
Window 

Size  Features Classifier Performance (%) 

Welch algorithm 
with 50% overlap 

[14] 

22 patients 
133 seizures 

5 s Spatial and spectral SVM Acc: 90 

Frequency band 
[21] 

4 patients, 
21 h 

recording 
1 s 

Maximum, minimum, and mean of the power spectrum, 
spectral entropy, median frequency.  

SVM 
Sen: 90.62 
Spe: 99.32 

Discrete Fourier 
Transform [28] 

23 patients  
Frequency: FFT_AP and RP of the delta, theta, alpha, 

gamma bands  
K-means 
clustering 

 

Filter bank [30] 23 patients 20 s Temporal variability information SVM Sen:100 

PSD [32] 24 patients 60 s 
Peak frequency, max frequency, median frequency, RMS, 

sample entropy, correlation dimension, skewness, 
kurtosis,  

K-NN 
Sen: 93 
Spe: 94 

IHF based [42] 
23 patients, 
163 seizures 

 
30 s 

Arithmetic mean, geometric mean, variance, COV, mode, 
median, Pearson and Bowley’s, and moment measure of 

skewness, kurtosis, and negative entropy  

MLP, 
Bayesian 
classifier 

Sen: 97.27 
Acc: 86.56 

Precision rate: 
86.53 

Attractor state 
analysis [47] 

13 patients  
143 seizures 

20 s Fourier coefficients of six EEG frequency bands  Sen: 86.67 

Sparse Bayesian 
multinomial 

logistic 
regression [60] 

17 patients 
78 seizures 

4 s 
Spectral power and spectral power ratios such as absolute 

spectral power, relative spectral power, the spectral 
power ratio 

Kernel sparse 
representation 

classifier 
Sen: 86.11 

STFT [70] 
24 patients 

198 seizures 
1 s 

Spectral analysis, variation in EEG energy distribution 
over the delta, theta, and alpha rhythms 

SSM Sen: 88 

STFT [73] 
24 patient 

185 seizures 
1 s The energy of delta, theta, and alpha frequency bands SSM Sen: 95.1 

Welch method 
with 90% overlap 

[80] 
24 patients 20 s 

Amplitude, skewness, kurtosis, entropy, maxPSD, maxF, 
mean Gamma, mean Beta, mean Theta, mean Delta, 

varPSD 
SVM, RF Acc: 94 

3.3. Time-Frequency Domain 
3.3.1. Wavelet Transform (WT) 

WT has originated as a dynamic approach in analyzing non-stationary signals. In 
WT, energy associated with the EEG was used to obtain wavelet coefficients [84], and it 
can be inferred as the filter bank [85]. It is broadly classified into CWT, DWT, and WPD. 
WT was utilized to extract statistical features, energy and COV features, IQR, and MAD 
[15]. The WT was intended to extract features from 23 channels of EEG. These features 
were partitioned into normal, pre-seizure, and seizure events [66]. The approximation 
coefficients and logarithm of variance detail coefficients were estimated to extract single 
wavelet-based features, which increased the precision of seizure classification [47]. The 
fuzzy rule-based feature extraction method was analyzed, and WT was applied to 
decomposition entropy of the EEG signal into sub-bands, which extract nonlinear features 
of the Lyapunov exponent, correlation dimension, and approximation features [64]. 

3.3.2. Continuous Wavelet Transform (CWT) 
Bivariate features were extracted by adopting CWT [16]. CWT for a signal 𝑢(𝑡) was 

given as follows: 

𝐶(𝑎, 𝑏) = 𝑢(𝑡)Ψ ,∗ (𝑡)𝑑𝑡 (4) 
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where 𝑎 stands for the scaling, and 𝑏 stands for the translation factor along the x-axis: 

Ψ , (𝑡) = 1√𝑎  Ψ 𝑡 − 𝑏𝑎  , 𝑎 > 0, 𝑏 ∈ 𝑅 (5) 

where Ψ (𝑡) signifies the wavelet. 
WT was carried out to extract temporal measures in which spectral and temporal 

measures where the temporal features like mean, normalized coefficient of variation 
(NCOV), STD, skewness, kurtosis, spectral characteristics, mean PSD, and peak PSD were 
extracted [49]. 

3.3.3. Discrete wavelet transform (DWT) 
DWT is used for the characterization of a signal as an infinite set of wavelets on an 

orthonormal basis [86]. DWT can decompose nonlinear structures of the signal into the 
approximate and the detail coefficient on the commonly used Daubechies 4 (Db4) wavelet 
[87]. In DWT, the translation and dilation parameters are discretized as follows: 𝑎 = 𝑎𝑏 = 𝑘𝑏 𝑎  𝑎 < 1, 𝑏  ≠ 0, 𝑗 ∈ 𝑍, 𝑘 ∈ 𝑍 (6) 

The wavelet with the parameters was assumed as 

𝛹 , (𝑡) = ⎝⎜
⎛ 1𝑎 ∗ 𝛹 𝑡 − 𝑘𝑎 𝑏𝑎 ⎠⎟

⎞
 (7) 

Therefore, DWT was given as 𝐷(𝑗, 𝑘) =  𝑢(𝑡) 𝛹 , (𝑡) 𝑑𝑡 (8) 

The signal 𝑢(𝑡) can be reproduced using the inverse DWT as follows: 

𝑢(𝑡) =  1𝑎 𝑤𝑡(𝑗, 𝑘) 𝛹 , (𝑡), 𝑎 ∈ 𝑅  (9) 

DWT was performed for five levels of wavelet decomposition to extract 
characteristics such as energy, NCOV, and relative coefficient of variation (RCOV) [19]. 
Energy, entropy, standard deviation, mean, maximum, and minimum of wavelet-based 
features with wavelet decomposition and statistical IQR and MAD features without 
wavelet decomposition were extracted to provide automatic classification of seizures [25]. 
DWT was applied to extract the mean, standard deviation, minimum, maximum value, 
median value, skewness, kurtosis, relative energy, total energy, Shannon entropy, spectral 
entropy, and first and second derivative of maximum and minimum values [28]. Engaging 
SWT to perform feature extraction where 176 frequency and 88 energy features were 
extracted that were mean frequency, peak frequency, relative bands energy, left anterior, 
right anterior, left posterior, and right posterior [41]. Multilevel wavelet decomposition 
was employed to extract magnitude, spectral energy variation, and relevance frequency 
and spectral features of maximum, minimum, and mean to provide an effective 
classification [46]. Wavelet-based features were extracted by engaging wavelet features 
from two to seven, in which the performance of each feature was obtained, and line length, 
nonlinear energy, variance, and maximum features were extracted for patient-dependent 
classification [48]. Approximation coefficients and a logarithm of variance detail 
coefficients were estimated to extract single wavelet-based features, enlarging the 
accuracy of seizure classification [58]. The entropy features were extracted from the 
decomposed coefficients [77]. Energy components were extracted over the delta, theta, 
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alpha, beta, gamma1, and gamma2 frequency bands via calculating PSD by incorporating 
Fast Fourier Transform (FFT), and additionally, DWT was applied to extract seven-level 
decomposition coefficients [69]. The scattering transform and DWT were adapted to 
perform feature extraction and extracted 45 features related to spectra, entropies, Hurst 
exponent, line length, power spectra, and fractal dimensions [53]. 

3.3.4. Wavelet Packet Decomposition (WPD) 
WPD is an extension of DWT [2]. DWT decomposes the approximate coefficient, 

whereas WPD yields both approximate and detail coefficients [88]. In WPD, the original 
signal was reconstructed by combining various levels of decomposition [89]. Spectral 
features, fractal features, temporal features, and spatial features were extracted by 
performing the FWD method, also called harmonic wavelet packet transform (HWPT) 
[57]. Six statistical features in each sub-band were extracted by EMD, discrete wavelet 
transform, and wavelet packet decomposition [68]. CMIM was applied to extract the time-
frequency domain features such as energy of four frequency bands, relative entropy, 
Shannon entropy, COV, mean, standard deviation, and frequency regularity index [21]. 
Short-Time Fourier Transform (STFT) was used to extract features such as relative scale 
energy, Shannon entropy, COV, frequency regularity index, maximum, minimum, 
variance, mean, standard deviation, and energy in frequency band [22]. Singular Lorenz 
measures approach was proposed to extract features by using SVD to estimate the 
singular values. Lorenz inconsistent features and Lorenz consistent were extracted, and 
optimal features such as Kuznets ratio, Gini coefficient, and Theil’s first ratio were also 
extracted. These features were obtained by IQR interpretation for the EEG signal [33]. 

The PARAFAC method was introduced to extract spatio-spectral features [38]. The 
features of correlation dimension, largest Lyapunov exponent, maximum linear cross-
correlation, and nonlinear interdependence were extracted by the three steps where 
decomposition of EEG data was done with EMD, Multivariate EMD (MEMD), and Noise-
assisted MEMD (NA-MEMD), which were given to the Hilbert transform, thereby 
acquiring a phase lock value for classification [52]. EWT was applied and extracted the 
three features where the gray-level co-occurrence matrix was used to extract multivariate 
textual features, and the joint features were extracted by computing the Hadamard 
product. The extracted features were plotted in the receiver operating characteristic (ROC) 
curves [54]. LGBP features were extracted by the suggested sparse rational decomposition 
and calculated the eight rational done with the help of rational discrete STFT. The LGBP 
width features and 1D LGBP features were extracted to provide discrimination of seizures 
and non-seizure events [55]. STFT was applied over the EEG signal, and CNN was 
employed to extract features for epilepsy detection [65]. STFT was applied to extract 
energy components in three frequency bands, namely delta, theta, and alpha, ranging 0–
4, 4–7, and 8–13 Hz, respectively [70]. The summary of the time-frequency techniques is 
listed in Table 3. 

Table 3. Summary of epileptic seizure detection approaches in the time-frequency domain. 

Feature Extraction 
Method Subjects Window 

Size  Features Classifier Performance (%) 

Wavelet 
decomposition [15] 

24 patients  
156 seizures 

1 s IQR, MAD LDA   

CWT [16] 7 patients 5 s Bivariate features SVM Sen: 52.2 
Daubechies 4 

wavelet transform 
[17] 

  Spectral energy SVM  

Wavelet 
decomposition [19] 

5 patients 1 s COV, RCOV, NCOV, LDA 
Sen: 83.6 Spe: 100 

Acc: 91.8 
Wavelet 

decomposition [20] 
23 patient 20 s Temporal variation Linear SVM Acc: 82.7 
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DWT [21] 
4 patients, 

21 h recording 
1 s 

Time-frequency: relative scale energy, 
Shannon entropy, COV, frequency regularity 
index, maximum, minimum, variance, mean, 

std-deviation, No. of extrema and energy 

SVM 
Sen: 90.62 
Spe: 99.32 

Wavelet 
decomposition [23] 

12 patients 
(patients 1–12) 

25 s Sample entropy, ROA features ELM, SVM Sen: 92.6 

WT [24] 24 patients 1 s 
Energy, entropy, std-deviation, maximum, 

minimum, mean, wavelet-based features, IQR, 
MAD 

Linear Classifier 
Sen: 98.5 
Acc: 84.2 

DWT [28] 23 patients  

Mean, std-deviation, min, max, median, 
skewness, kurtosis, energy, entropy, mean and 

maximum of 1st and 2nd derivative, zero 
crossing, COV 

K-means 
clustering 

 

2D mapping [29] 24 patients  

Uniformity, dissimilarity, contrast, correlation, 
autocorrelation, sum average, variance, sum 
variance, entropy, sum entropy, diff entropy, 

diff variance, homogeneity, cluster shade, 
cluster prominence, max probability 

SVM 
Sen: 70.19 
Spe: 97.74 

Frequency-time 
division 

multiplexing 
architecture [37] 

23 patients  Spectral energy Linear SVM 
Sen: 95.7 
Spe: 98 

SWT [41] 18 patients 2 s 
Spectral and energy features 

176 frequency features 
88 energy features 

LDA 
PRNN 

Sen: 87.5 
Spe: 99.5 

Multilevel wavelet 
decomposition [46] 

22 patients 
192 seizures 

10, 20, 30 min 
Magnitude, spectral energy variation, and 

relevance frequency 
SVM  
ELM 

SVM: - 
Sen: 97.98 
Spe: 89.90 

ELM: - 
Sen: 99.48 
Spe: 81.39 

DWT [48] 24 patients 2 s 
Mean, std-deviation, and all wavelet-based 

features 
SVM 

Sen: 72.99 
Spe: 98.13 
Acc: 96.87 

Wavelet transform 
[49] 

3 patients  2 s 
Mean, normalized COV, standard deviation, 

skewness, kurtosis, mean DSP, Peak_PSD  
ELM Acc: 94.85 

EMD, MEMD, and 
NA- MEMD [52] 

21 patients 
65 seizures 

1, 5, 10, 15 s Phase locking value SVM  

Mallat’s scattering 
transform [53] 

24 patients 1 s 

Modulation spectra, Shannon entropy, Renyi 
entropy, permutation entropy, spectral 

entropy, Hurst exponent, line length, power 
spectra, fractal dimension 

 Spe: 86 

EMD [54] 24 patients 1 s 
Mean of joint instantaneous amplitude, mean 
monotonic absolute AM change, a variance of 

monotonic AM change 

RF,FT, 
K-NN,  
C4.5,  

Bayes naïve,  
Bayes net  

Sen: 97.91 
Spe: 99.57 
Acc: 99.41 

FWT [57] 22 patients 2 s 
Fractal dimension, correlation, wavelet 

coefficients, energy, and HWPT features 
RVM 

Sen: 96 
Acc: 99.8 

DWT [58] 12 patients  2 s Wavelet-based spectral features  
Sen: 83.34 
Spe: 93.53 
Acc: 93.24 

EMD [68] 21 patients 8 s 
Mean of coefficients, the average power of 

coefficient in every sub-band, std-deviation of 
coefficients, skewness, kurtosis 

SVM, 
RF,MLP, 

K-NN 

Sen: 99.65 
Spe: 99.8 
Acc: 99.7 

DWT [69] 
24 patients 

185 seizures 
5 s 

Statistical moments, standard deviation, zero 
crossings, peak-to-peak voltage, total signal 

LSTM 
Segment based: 

Sen: 99.84 
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area, energy percentage at delta, theta, alpha, 
beta, gamma bands, cross-correlation and 
autocorrelation, local and global measures  

Spe: 99.86 
Event-based: 

Sen: 100 

WPD [76] 24 patients 10 s Wavelet coefficients, energy features ANFIS classifier 
Sen:9 1.91 
Spe: 93.16 
Acc: 94.04 

DWT [77] 
10 patients 
55 seizures 

4 s 
Sample, permutation, Renyi, Shannon and 

Tsallis entropies, and power features  
RF 

Sen: 93.60 
Spe: 93.37 

DWT [79] 10 patients 23.6 s 
Std-deviation, Band power, Shannon entropy, 

largest Lyapunov exponent 

K-NN 
SVM, LDA, 

ANN 
Acc: 94.6 

3.4. Nonlinear Domain 
3.4.1. Recurrence Quantification Analysis (RQA) 

RQA is well suited for nonlinear data analysis [90], which can capture transient states 
in various scenarios using EEG signals [91]. RQA was carried out to extract the RQA 
parameter, which is determinism, average diagonal line length, entropy, linearity, and 
trapping time, which was acquired from the recurrence plot [26,31]. The recurrence 
network was adapted to extract the RQA features, and the graph-theoretic features results 
were inferred from the recurrence plot [75]. The four categories of the feature extraction 
method of approximate entropy, sample entropy, RQA, and a wavelet-based energy-
based approach [23] were adopted. 

3.4.2. Entropy 
Entropy is a quantity of the degree of information that can be used to separate useful 

information from the noisy environment [92]. The uncertainty or the consistency of an 
EEG signal in various extents and instability variation in the signal were measured using 
Approximate Entropy (AE) [93–95]. The logarithmic probability that the signal with 𝑁 sample points repeats itself within the tolerance of 𝑟 for 𝑚 points and for next 𝑚 + 1 
points was expressed in approximate entropy. For a given time series 𝑦(𝑖) of length 𝑁, 𝑁 − 𝑚 + 1  vectors 𝑌(1), 𝑌(2), … , 𝑌(𝑁 − 𝑚 + 1)  were constructed. AE was given as 
follows [93]: 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =  𝜙 (𝑟) − 𝜙 (𝑟) (10) 

where 𝜙 (𝑟) =  1(𝑁 − 𝑚 + 1) ln (𝐶 (𝑟)) (11) 

where 𝐶  is a correlation integral indicating the probability of a vector 𝑌(𝑖),  which 
remains similar to 𝑌(𝑗) within tolerance limit 𝑟. 

The sample entropy was a modified version of AE. Poincare mapping was used to 
calculate the intersection point, which constructs a 1D sequence that extracts the seven 
features such as quantile, IQR, Shannon entropy, RMS, COV, energy to differentiate 
seizures from non-seizure records [67] listed in Table 4. 

3.4.3. Hjorth’s Parameters 
The Hjorth’s parameters define the EEG signal in terms of its time domain features 

such as amplitude (activity), slope (mobility), and slope spread (complexity), thus the 
name “normalized slope descriptors” (NSDs) [96]. The descriptors may describe any 
signal in the time and frequency domains and gather its important characteristic such as 
energy content, frequency, and waveform complexity [97]. They have been used, among 
other features, to discriminate the preictal and interictal EEG in [98]. 

The first Hjorth’s parameter, activity, is the variance 𝜎  of the EEG signal 𝑋. 
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The second Hjorth’s parameter, mobility, is expressed as: 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 𝜎𝜎  (12) 

The third Hjorth’s parameter, complexity, is defined as: 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝜎 𝜎⁄𝜎 𝜎⁄ . (13) 

where 𝑋  is the first derivative of 𝑋  obtained by differencing, while 𝑋  is the first 
derivative of 𝑋′ obtained by differencing. 

Table 4. Summary of epileptic seizure detection approaches in a nonlinear domain. 

Feature Extraction 
Method Subjects Window 

Size  Features Classifier Performance (%) 

Nonlinear based 
[21] 

4 patients, 
21 h recording 

1 s Lyapunov exponent SVM 
Sen: 90.62 
Spe: 99.32 

RQA [26] 10 seizure file  
Determinism, Avg-diagonal line length, entropy, 

laminarity, trapping time 
 

Sen: 97.4 
Spe: 93.5 

Entropy [28] 23 patients  Entropy-based: spectral, Shannon entropies 
K-means 
clustering 

 

RQA [31] 10 seizure files  
Determinism, Avg-diagonal line length, entropy, 

laminarity, trapping time 
ECOC 

Sen: 97.4 
Spe: 93.5 

RQA [75] 
23 patients 

182 seizures 
1 s 

Spatial and temporal synchronization patterns 
and theoretic feature 

 Sen: 98.48 

3.5. Other Feature Extraction Methods 
The nonlinear feature of the Lyapunov exponent feature was extracted [21,22]. A 

multivariate feature extraction approach was adopted to extract textual features, 
univariate, bivariate, and multivariate features extracted using channel selection; these 
features were mapped to the 2D image, and the GLCM matrix was applied to extract 
homogeneity features [29]. Mallet’s scattering transform was applied to extract Shannon 
entropy, Renyi entropy, permutation, and spectral entropies [53]. Eight absolute spectral 
power features and relative spectral power features, spectral power ratio features of 44 
features were extracted by employing the sparse feature selection method, in particular, 
sparse Bayesian multinomial logistic regression (SBMLR), which increases classification 
accuracy [60]. A frequency-time division multiplexing (FTDM) filter was implemented to 
extract spatial, temporal, and spectral features for patient-specific seizure detection [37]. 
Linear and nonlinear filtering operations were applied to extract spectral-energy features 
from compressively sensed EEG [18]. An eight-channel feature extraction engine was 
developed, and the spectral, spatial, and temporal features were extracted with the help 
of the machine learning algorithm [20]. 

The stacking auto-encoders were adapted to extract discriminating features from the 
raw EEG [25]. Singular values, total average power, delta band average power, variance, 
and mean were extracted where singular and classical features were utilized for the 
detection of epileptic seizures, and SVD was adopted to select the singular features. The 
author adopted a sparse encoder to extract hidden inherent features and analyze context 
information to extract temporal features [39]. The machine learning algorithm was applied 
to extract spatial, spectral, and temporal features for EEG classification [45]. The feature 
used for seizure detection was the coinciding change points, which are calculated from 
the adaptive segmentation method [59]. 

The slope-based detection algorithm was developed to extract features and was also 
implemented in FPGA to detect seizures [62]. Spatiotemporal features were extracted to 
predict seizures and non-seizures by adopting 1D and 2D convolutional layers [71]. 
Global synchronization features were extracted by calculating the maximum information 
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coefficient (MIC) based on a correlation matrix where seizure characteristics and non-
seizure characteristics were differentiated [72]. Transductive transfer learning fuzzy 
systems (TTL-FS) were utilized to perform feature extraction [76]. The feature extraction 
method comprises three steps, namely segmentation, synchronization, and a correlation 
matrix based on the maximal information coefficient (CMMIC) [78]. 

The reconstructed phase space technique was used to create the phase space of a 
dynamical system represented by the EEG signal [99]. Thus, the feature vector 
representing the state change over time in phase space captures the system’s dynamics. 
The geometry of the trajectories, which can be created using a short integer or fractional 
time delay embedding [100], can reveal information on the EEG signal’s periodic/chaotic 
nature, which can be exploited for epilepsy recognition. 

3.6. Statistical Analysis Tests 
The features were analyzed using a statistical test, which was involved in the 

classification. The analysis of variance (ANOVA) statistical test was performed in 
[46,52,58,60,66], and the Mann–Whitney statistical test was carried out in [51]. The ROC 
curve was used to rank the features in [40,48,54,58,65,72]. The probability value (p-value) 
determined by the statistical test was used for the selection of features [51]. The 𝑝- and 𝑞-
values were determined in [40], and Gram–Schmidt analysis [32] was performed. 

4. Classification 
Classification is an essential step in the diagnosis of epileptic seizures. The stages of 

epilepsy in the CHB-MIT database (see Figure 4) were classified by employing various 
machine learning classifiers. 

 
Figure 4. Classification stages in the diagnosis of epileptic seizures. 

4.1. Two Class Classification (Seizure and Non-Seizure) 
The authors have applied classifiers in their study to provide a better classification of 

epileptic seizures. Statistical features were extracted and nourished in the LDA classifier 
to discriminate between seizure and non-seizure classes [15]. Epileptic seizures were 
classified by extracting spectral energy features and employed an SVM classifier [17]. 
Compressed domain spectral features were extracted and given to the SVM classifier for 
seizure classification [18]. Energy relative values and extracted features based on NCOV 
were used to classify seizure and non-seizure events using the LDA classifier [19]. Spectral 
and spatial component features using linear SVM were involved in providing a seizure 
detection rate of 82.7% [20]. Time, frequency, time-frequency, and nonlinear domain 
features were extracted by employing seven different feature selection methods, which 
were classified by SVM [21]. The discrimination of seizure and non-seizure was provided 
by a collective network of binary classifiers using multidimensional particle swarm 
optimization (PSO), and the SVM classifier provides general classification where time, 
frequency, time-frequency, and nonlinear domain features were extracted [22]. Three 
nonlinear-based feature extractions were performed, and SVM and ELM were used for 
epileptic seizure classification [23]. Wavelet-based features and statistical features were 
extracted, and a linear classifier was adopted, which provided a classification accuracy of 
84.2% [24]. Feature extraction was performed using the stacking autoencoder and logistic 
classifiers for seizure detection [25]. 
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Entropy-based features were extracted, and these features were fed into SVM for the 
classification of seizures and non-seizures [27]. The time domain and frequency domain 
and entropy-based and discrete wavelet-based features were extracted and given into the 
unsupervised classification approach of k-means clustering for seizure detection [28]. The 
binary SVM classifier was introduced to discriminate seizure and non-seizure events [29]. 
The RQA features were extracted and nourished into the ECOC classifier to distinguish 
seizures from non-seizures [30]. Frequency domain features were extracted and given for 
classification of seizures and non-seizures by employing several classifiers such as LDC, 
Quadratic Discriminant Classifier (QDC), Uncorrelated normal density-based classifier 
(UDC), Polynomial classifier (POLYC), Logistic classifier (LOGLO), K-NN classifier, 
Decision Tree, Parzen classifier, and SVM [27]. A consistent and inconsistent measure of 
the extracted features was nourished into the K-NN classifier, and the final classification 
was provided by the MLP neural network [32]. Seven DWT nonlinear-based features were 
extracted and given to the two-layer classifier: the NB classifier followed by LDA. 
Comparative results were obtained using several classifiers, LDA, QDA, Mahalanobis 
discriminant analysis (MDA), NB, and SVM [34]. The SVM classifier was used for seizure 
detection, where classical and singular values were extracted [36]. Linear SVM was 
introduced to provide an epileptic seizure classification [37]. The classification between 
seizure and non-seizure was done by employing LDA and SVM. A comparative result 
was achieved by K-means clustering [38]. Hidden features and temporal features were 
extracted and given to SVM and a neural network (NN) for seizure classification [39]. The 
805 features were extracted for the discrimination of seizures and non-seizures by 
adopting the K-NN classifier [40]. 

Spectral features were extracted and the fed into the LDA and a pattern neural 
network (PRNN) for the detection of seizures [41]. Histogram-based statistical features 
were extracted, and optimal features were selected. The MLP and Bayesian classifiers 
were utilized to provide better classification [42]. Frequency domain features were 
extracted, and linear SVM was employed to provide seizure detection [43]. Comparative 
classification between linear SVM and nonlinear SVM was performed where sensitivity 
and specificity were improved by a nonlinear SVM classifier [44]. Spectral, spatial, 
temporal-based features were extracted and used for classification. The best performance 
was achieved by RUSBoost, which was compared with RBF kernel SVM, and the proposed 
classifier provided performance comparable to that of the SVM [45]. Using spectral 
features, SVM and ELM were employed to perform classification between seizure and 
non-seizure events [46]. 

A neural network-based classifier was involved in this study based on the 
backpropagation algorithm for classification between seizures and non-seizures [47]. 
Epileptic seizure detection was performed with wavelet-based feature and time domain 
features employing the SVM classifier [48]. Time-frequency domain feature extraction was 
done, and an ELM classifier was utilized to distinguish seizures from non-seizures [49]. 
Three features were extracted, and classification was provided by six well-known 
classifiers, namely RF classifier, Functional tree (FT) classifier, K-NN, C4.5 classifier, NB, 
and Bayes Net [50]. LGBP features were extracted and nourished into different classifiers 
such as Logistic regression, random forest, and linear kernel SVM for seizure detection 
[55]. A genetic algorithm was utilized to provide seizure detection [56]. Energy and 
temporal features were extracted, and RVM was used to discriminate between seizure and 
non-seizure events [57]. Epileptic seizure classification was done using a slope-based 
detector [62]. Discrimination of seizure and non-seizure events was done by the approach 
of adaptive distance-based change point detector [63]. 

The features of the time domain and the time-frequency domain were extracted, and 
a fuzzy classifier was adapted to detect seizures and pre-seizure events [66]. Seven 
features were extracted, and two layers of classifiers involving SVM and NB classifiers for 
seizure and non-seizure classification were used [67]. Seizure selection methods (SSM) I, 
II, III, IV were introduced to classify the ictal, preictal, and interictal states [70]. Spatio-
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temporal features were extracted and nourished into CNN to provide a classification of 
seizures [71]. The VGGnet classifier was intended to provide epileptic seizure 
classification [72]. Spectral features were extracted, and SSM was adapted to detect 
seizures [73]. Epileptic seizure detection was performed with the help of the LDA 
classifier [74]. Time-frequency domain features were extracted, and an ANFIS classifier 
was employed to differentiate seizure and non-seizure events [76]. RF was used to classify 
seizures and non-seizure in which nonlinear features were extracted [77]. A shallow-dense 
net was proposed for epileptic seizure classification [78]. Statistical features were 
extracted, and classification was done by adopting four different classifiers ANN, K-NN, 
SVM, and LDA. Among these, K-NN gives better accuracy [79]. Two-class classification 
between seizure and normal events was performed by SVM and RF classifiers [80]. 

4.2. Classification between Ictal, Preictal, Interictal, Postictal 
The SVM classifier was adopted for classification between ictal and postictal stages 

[14]. Bivariate features were extracted, and the SVM classifier was adapted to provide 
classification between the four classes, namely preictal, ictal, and interictal [16]. Statistical 
features were extracted, and these features were fed into the five different classifiers, 
namely linear SVM, logistic regression (Log-reg), K-NN, NB, and RF for preictal detection 
[29]. Spectral components were decomposed and fed into the SVM classifier to provide 
classification between interictal and preictal [52]. Spectral features were extracted and 
given to the kernel sparse representation classifier to classify seizures, preictal, and 
interictal stages [60]. Fuzzy-based features were extracted and provided in LDAG-SVM 
for better classification [61]. The frequency domain feature extraction was performed, and 
CNN was used to classify preictal and interictal EEG records [65]. The characteristics of 
the time-frequency domain were extracted, and discrimination of ictal and interictal and 
of interictal and preictal stages was provided by four different classifiers, such as SVM, 
RF, MLP, and K-NN [68]. Time-frequency domain features were extracted, and LSTM was 
used to achieve classification between the preictal and interictal states [69]. 

4.3. Classification Performance 
The performance of automated classification of the EEG signal is evaluated through 

different performance matrices which are sensitivity, specificity, accuracy, false positive 
value, and positive predictive value. These matrices are mathematically given as: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦   =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁  × 100 (14) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁  × 100 (15) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁𝑇𝑁 + 𝐹𝑃   × 100 (16) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 =  𝑇𝑃𝑇𝑃 + 𝐹𝑃  × 100 (17) 

Positive Predictive Value = × 100 (18) 

where 𝑃 represents the number of samples during a seizure event, and 𝑁 represents the 
number of samples during a non-seizure event. 𝐹𝑃 (False positive) was indicated as the 
number of samples for a non-seizure event but erroneous for a seizure. 𝐹𝑁  (False 
negative) was indicated as the number of samples for a seizure event but erroneous for a 
non-seizure, and 𝑇𝑃 and 𝑇𝑁 are classified correctly. 

Sensitivity measures the capability of the system to detect seizure events, and 
specificity measures the capability of the system to detect the non-seizure event. Latency 
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is also an important metric in automated epilepsy diagnoses. Latency corresponds to the 
detection delay, which is the time taken by the system to detect seizures. 

5. Conclusions 
Epilepsy is a neurological disorder caused by the frequent occurrence of seizures and 

can be examined by EEG signals that can be useful to explore the mental states of the 
brain. Visual inspection and diagnosis are tedious tasks in EEG signal analysis. In this 
paper, various techniques that are adapted for automatic epileptic detection in the CHB-
MIT dataset were presented and discussed. The feature extraction techniques in the time 
domain, frequency domain, time-frequency domain, and nonlinear domain were 
investigated. Different machine learning-based classifiers that were adapted for the 
classification of seizure, non-seizure, preictal, ictal, interictal, and postictal states were also 
discussed. The performance of each method was given in terms of sensitivity, specificity, 
precision, and latency, ensuring that the automatic diagnosis of epileptic seizures and 
their stages is highly efficient and can be implemented practically to improve the 
diagnosis of seizure disorders. 

The summary of previous works for automated detection of epilepsy offers a 
perspective on the current research directions in personalized medicine towards 
automated seizure detection. 
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