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Abstract: Breast cancer is the most common female cancer worldwide, and breast cancer accounts for
30% of female cancers. Of all the treatment modalities, breast cancer survivors who have undergone
chemotherapy might complain about cognitive impairment during and after cancer treatment. This
phenomenon, chemo-brain, is used to describe the alterations in cognitive functions after receiving
systemic chemotherapy. Few reports detect the chemotherapy-induced cognitive impairment (CICI)
by performing functional MRI (fMRI) and a deep learning analysis. In this study, we recruited
55 postchemotherapy breast cancer survivors (C+ group) and 65 healthy controls (HC group) and
extracted mean fractional amplitudes of low-frequency fluctuations (mfALFF) from resting-state
fMRI as our input feature. Two state-of-the-art deep learning architectures, ResNet-50 and DenseNet-
121, were transformed to 3D, embedded with squeeze and excitation (SE) blocks and then trained
to differentiate cerebral alterations based on the effect of chemotherapy. An integrated gradient
was applied to visualize the pattern that was recognized by our model. The average performance
of SE-ResNet-50 models was an accuracy of 80%, precision of 78% and recall of 70%; on the other
hand, the SE-DenseNet-121 model reached identical results with an average of 80% accuracy, 86%
precision and 80% recall. The regions with the greatest contributions highlighted by the integrated
gradients algorithm for differentiating chemo-brain were the frontal, temporal, parietal and occipital
lobe. These regions were consistent with other studies and strongly associated with the default mode
and dorsal attention networks. We constructed two volumetric state-of-the-art models and visualized
the patterns that are critical for identifying chemo-brains from normal brains. We hope that these
results will be helpful in clinically tracking chemo-brain in the future.

Keywords: deep learning; chemotherapy-induced cognitive impairment (CICI); residual neural
network; densely connected convolutional networks

1. Introduction

As reported by the American Cancer Society, the three most common cancers in
women are breast, lung and colorectal cancers, accounting for 50% of all new diagnoses;
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among all three cancers, breast cancer is the most common, accounting for 30% of female
cancers [1]. Breast cancer has long been in the top five of female cancer-related deaths, and
the latest survey revealed that it was the third-leading cause of cancer-related death in 2019,
according to the Ministry of Healthcare, Taiwan [2]. Treatment modalities for breast cancer
include surgical removal, radiotherapy, hormone therapy and chemotherapy. Benefiting
from these techniques, the average 5-year relative survival rate for women with breast
cancer is 90% among all races [1]; as a result of prolonged survival, the prognosis after
treatments should be carefully considered.

Among all treatment modalities, previous studies reveal that breast cancer survivors
who underwent chemotherapy might complain about cognitive impairment during and af-
ter cancer treatment. The word “chemo-brain”, or cognitive-induced cognitive impairment
(CICI), is used to describe the alterations in cognitive function after receiving systemic
chemotherapy. The impacted cognitive functions include memory, executive function,
processing speed and reaction time. CICI is currently recognized as a common adverse
effect in patients who were administered chemotherapeutic agents [3,4].

Magnetic resonance imaging (MRI) techniques are a safe and noninvasive method
to investigate functional and structural alterations in the human brain. A specific tech-
nique called blood oxygenation level-dependent functional magnetic resonance imaging
(BOLD-fMRI) has been widely applied to investigate cerebral function. Numerous studies
discovered changes in cerebral function in breast cancer survivors after chemotherapy
compared to healthy women using fMRI techniques. fMRI is categorized into two types:
task-based fMRI and resting-state fMRI (rs-fMRI). Compared to task-based fMRI, rs-fMRI
simplified the experimental design by requesting patients to relax and clear their mind dur-
ing the MRI scan without following any instructions, which makes the whole experiment
easier, more reproducible and friendlier to implement in clinical situations.

Contemporarily, the construction of a deep learning model for visual tasks on medical
images has become prosperous. The convolutional neural network (CNN), a class of deep
learning that was originally proposed by Yann LeCun in 1989 [5], imitates the connectivity
pattern of the animal visual cortex and captured the attention of international researchers
after it achieved great success on ImageNet classification [6,7]. The idea of CNN is similar
to a distiller for information-distillation operations [8]. For each convolutional layer in the
CNN, certain information is extracted from input images and passed to the next layer. As
the procedure is repeated several times, the useful information is refined and amplified
for a target. To date, CNNs achieved tremendous success in computer vision and pattern
recognition and are capable of capturing subtle patterns from high-dimensional data that
might be ignored by traditional analytical methods.

From a clinical perspective, the construction of an accurate deep learning model is
insufficient, and a diagnosis should be supported with evidence suggesting that a visual
explanation of a deep learning model is essential when applying a model to predict certain
diseases. Many researchers developed numerous algorithms to decipher the black box of
deep learning using different approaches [9]. These algorithms provide us with meaningful
insights into how a deep learning system made the decision.

In this study, our goal was to establish objective 3D deep learning models that differ-
entiate cerebral alterations based on the effect of chemotherapy and to visualize the pattern
that was recognized by our model. We modified two state-of-the-art CNN models into
3D and applied a visual explanatory algorithm using the TensorFlow and Keras [10,11]
higher application programming interface (API) to achieve these goals. To the best of
our knowledge, this article is the first to explain the internal logic of a CNN model when
distinguishing chemo-brain.

2. Materials and Methods
2.1. Participants

One hundred and twenty female participants were recruited from Chiayi Chang Gung
Memorial Hospital. The participants who were diagnosed with breast cancer and received
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systemic chemotherapy were assigned to the C+ group (N = 55), and the remaining sex-
matched individuals without a breast cancer history were assigned to the HC group. Based
on the inclusion criteria, patients with breast cancer included females aged 20 to 55 years
with pathologically proven primary breast cancer. The exclusion criteria for patients with
breast cancer included end-stage breast cancer, comorbidities with other cancers, treatment
with radiation therapy before the investigation, signs of brain metastasis or other brain
insults, a previous diagnosis of neuropsychiatric disorders or substance use and an inability
to undergo a MRI scan. The same exclusion criteria were used for the HC group in addition
to having no evidence of breast cancer. This study was approved by the Institutional
Review Board of Chang Gung Memorial Hospital, Chiayi, Taiwan. (Nos. 104-5082B,
201700256B0 and 201702027B0). All methods were carried out in accordance with relevant
guidelines and regulations. Written informed consent was obtained from all participants

2.2. MRI Acquisition

Before the examination, all 120 subjects were instructed to relax but remain alert during
the fMRI scan. fMRI acquisition was performed using a 3 T MRI scanner (Verio, Siemens,
Germany) at Chiayi Chang Gung Memorial Hospital with a gradient echo planar imaging
(EPI) sequence. The scanning parameters were set to a TR/TE = 2000/30 ms, flip angle = 90◦,
NEX = 1, FOV = 220 × 220 mm2, matrix size = 64 × 64 and voxel size = 3.4 × 3.4 × 4 mm3,
and 31 axial images were acquired to cover the whole brain volume. Each rs-fMRI run
contained 300 image volumes, and the total scan time was approximately 10 min.

2.3. Feature Engineering

In this study, we used the mean fractional amplitude of low-frequency fluctuations
(mfALFF), which was extracted from functional MRI data, as our input feature. The am-
plitude of low-frequency fluctuations (ALFF) is physiological information that represents
cerebral activity in certain areas. The mean fractional ALFF (mfALFF) is the normalized
mean ALFF, and therefore, mfALFF provides a more specific measure of low-frequency
oscillatory phenomena than ALFF.

All functional MRI data were preprocessed using the following procedures to acquire
mfALFF: slice-timing correction, motion correction, normalization and spatial smooth-
ing with statistical parametric mapping 12 software (SPM12; Wellcome Department of
Cognitive Neurology, London, UK). For each subject, if the results of six head motion
parameters surpassed 1 mm of translation or 1◦ of rotation, they were excluded from this
study. All participants mentioned previously met the criteria and did not present signifi-
cant movements. After motion correction, data were normalized to the standard Montreal
Neurological Institute (MNI) space and resampled to isotropic 3 mm voxels. Finally, the
data were smoothed with a 6 mm full-width half-maximum Gaussian kernel to amplify the
signal-to-noise ratio. The Resting-State Data Analysis Toolkit [12] (version 1.8) was used to
extract mfALFF from preprocessed fMRI data with a band pass filter of 0.01–0.12 Hz.

2.4. SE-Residual Neural Network and SE-DenseNet

Convolutional neural networks (CNNs) are a class of deep learning methods that are
commonly implemented to visualize and analyze medical images. A recent study revealed
that the performance of CNNs in visual tasks is improved by a very deep architecture [13];
however, a deeper architecture often encounters the vanishing-gradient problem when
using the gradient-based method and backpropagation [14,15], which obstructs the conver-
gence of the network. Two major state-of-the-art architectures use different mechanisms
to resolve the vanishing gradient problem and thus help us construct a deeper network.
A deep residual neural network (ResNet) was first proposed in 2015 and uses the idea
of skip connection and identity mapping, which provide residual connections directly
to earlier layers to build a deeper network. In 2016, the builders of ResNet made some
minor modifications to ResNet called the full preactivation form, which results in better
performance of ResNet [13,16]; DenseNet debuted in 2016 and uses the idea of dense
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connections and feature reuse, which concatenate the outputs from the previous layer to
current convolutional outputs. Unlike ResNet that uses summation to receive information
from the previous layer, the usage of concatenation forms a dense circuit of the pathway
that generates better gradient flow and fewer training parameters than ResNet [17].

Squeeze and excitation block (SE-block) was integrated with our volumetric models
to form SE-ResNet-50 and SE-DenseNet-121 models and to improve the performance of the
ResNet and DenseNet models further [18]. SE-block is a building block for convolutional
neural networks that can be embedded in existing state-of-the-art networks, according to
the original paper. Following the instructions of the original paper, SE-ResNet is another
modification of ResNet that integrates a SE-block with a skip connection. For DenseNet,
we embedded the SE-block in the dense block, and the SE-ResNet embedded the SE-block
in the skip connection.

In the present study, SE-ResNet-50 and SE-DenseNet-121 with a growth rate of 16
were constructed using the Tensoflow and Keras higher API. Our data were split into 5 C+
subjects and 5 HC subjects as our test set; the remaining data were trained and validated
using 10-fold cross validation. The input size for both models was set to 64 × 64 × 64 × 1;
the hyperparameter for the fitting model was predefined through the grid-search method;
optimization was performed using the SGD optimizer with a learning rate of 1e-2; the
batch size was set to 5. The l2 regularization factor was predefined as 1e-4, and a random
rotation data method for data augmentation was implemented on the axial view before
the epoch was initiated to prevent overfitting. The overall training epochs were set to
200 epochs. After training was complete, we used a well-trained model to evaluate the test
set. The accuracy, precision, recall, area under the curve (AUC) and F1-score were recorded
to evaluate performance.

2.5. Visualization through an Integrated Gradients Algorithm

We implemented an algorithm called integrated gradients for visual explanations and
to understand which regions of the brain have the greatest contributions to differentiat-
ing survivors after chemotherapy and healthy control subjects. The integrated gradients
method assesses which pixel (voxel in our case) in the input feature is attributed to the
model prediction [19]. This algorithm can be implemented easily under TensorFlow
without any modifications to the model. The original formula of integrated gradients is pro-
vided in the following equation: IntegratedGradsi(x) ::= (xi − x′i)

∫ 1
α=0

∂F(x′+α×(x−x′))
∂xi

dα,

which is interpreted as the integrated gradients along the ith dimension; x and x′ represent
the original input image and the baseline image, respectively, where F is the deep network
being investigated. A crucial hyperparameter that shall be determined is the baseline
image. Based on the recommendation from the original paper [19], a good baseline image
should have a near-zero score for the desired class. In this study, we used all-zero 3D
images with shapes of 64 × 64 × 64 × 1 as the baseline image.

However, the integrated gradients method provides the importance of individual
voxels for a particular example rather than the importance of all voxels in the class. We
computed and normalized the individual gradient images of the C+ test set across different
models to map the voxels with the greatest contributions to the C+ class. The gradient
images were averaged and plotted with a threshold of 0.45.

3. Results
3.1. Demographic Characteristics

In our study, we recruited 55 postchemotherapy survivors as our C+ group and
65 sex-matched healthy subjects as our HC group. The student’s t-test was performed
to investigate the differences between each group. Table 1 summarizes the demographic
characteristics of all participants. Both age and years of education showed statistically
significant differences at p < 0.05
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Table 1. Demographic characteristics.

C+ (N = 55) HC (N = 65) p-Value

Age (years, mean ± SD) 50.00 ± 8.09 44.71 ± 7.76 <0.001

Age range (years) 32–65 31–67

Years of education
11.58 ± 3.8 13.56 ± 3.06 0.002(mean ± SD)

3.2. Model Performance

The average test results of different models are listed in Table 2. In the SE-ResNet-50
model, the average accuracy was 80% with 78% precision and 70% recall; on the other hand,
the SE-DenseNet-121 model produced similar results with an average of 80% accuracy, 86%
precision and 80% recall. Both of these models produced similar results at the end of the
epochs, with SE-ResNet-50 achieving a slightly better performance than SE-DenseNet-121.
We implemented a receiver operating characteristic curve (ROC curve) and confusion
matrix for each model to understand how an individual model performed (Figures 1 and 2).
The mean AUCs for SE-ResNet-50 and SE-DenseNet-121 were 0.72 and 0.87 with standard
deviations of 0.09 and 0.06, respectively.

Table 2. Model performance.

Model/Performance Accuracy Precision Recall AUC F1-Score

SE-ResNet-50 0.8 (0.07) 0.78 (0.13) 0.7 (0.18) 0.72 (0.09) 0.73 (0.1)

SE-DenseNet-121 0.8 (0.04) 0.86 (0.12) 0.8 (0.13) 0.87 (0.06) 0.81 (0.05)

3.3. Integrated Gradients Results

The overall mean integrated gradients indicated that the predictions of postchemother-
apy survivors were based on the value for the gray matter (Figure 3). The greatest contribu-
tions were observed in the frontal, temporal, parietal and occipital lobes, which represented
the most crucial voxels for distinguishing postchemotherapy survivors (Figure 4).
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of 0.72, 0.8, 1.00, 0.8, 0.84, 0.8, 0.76, 0.84, 0.68 and 0.72. (b) The performance of the SE-DenseNet-121 model had AUCs of
0.96, 0.88, 0.84, 0.8, 0.84, 0.92, 0.88, 0.76, 0.88 and 0.92.
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4. Discussion

In this study, our deep learning model achieved a rather reliable result for our test
set. We implemented the integrated gradients algorithm in 3D SE-ResNet-50 and SE-
DenseNet-121 for critical feature visualization. The integrated gradients results revealed
that the whole brain may contribute to the classification instead of specific cerebral regions.
Although some previous studies suggested that chemotherapeutic agents might affect
the whole brain, given our integrated gradients result, the evidence suggesting that the
whole brain is injured by chemotherapy is insufficient in this study. By further adjusting
the window level and window width, the most critical locations were identified in the
frontal, temporal, parietal and occipital lobes. These findings are consistent with our
previous work, and a detailed explanation of specific cerebral subregions is provided in
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our previous publication [20]. Each cerebral region specializes in certain functions. Based
on accumulating evidence, human cognition is associated with multiple integrated regions,
and our brain does not restrict its functions to a singular region but rather functions as a
complex system. Currently, our brain is proposed to be wired in an economical manner,
enabling the optimal efficiency of information transfer and cost [21–23], and the CICI may
represent a brain network disruption after patients receive chemotherapy.

4.1. Default Mode Network & Dorsal Attention Network

In this study, an intriguing result was that the identified cerebral regions were very
similar to the components of the default mode network (DMN) [24]. First introduced in
2001, the DMN is a large-scale intrinsic brain network that is spontaneously activated when
an individual is awake and at rest. The subregions that were activated within the DMN
included the prefrontal cortex, posterior cingulate cortex, inferior parietal lobule and lateral
temporal cortex. The DMN is enriched with high-degree hub regions, indicating that the
DMN regions may act as relay stations for distributing information across the brain [25,26].

The function of the DMN is generally accepted to be linked to self-relevant, internally
directed information processing [27]. Accumulating evidence suggests that alterations
in the DMN may be associated with impaired cognitive function [28–30]. Although the
DMN has not been examined directly, many neuroimaging studies identified changes in
DMN-related regions in breast cancer survivors undergoing chemotherapy [31]. Functional
connectivity and graph theory analysis were also implemented to explore the relationship
between the DMN and cognitive deficits after chemotherapy. By analyzing functional
connectivity in resting-state fMRI, studies identified altered connectivity in some DMN
regions and suggested that these regions were correlated with attention and memory
impairments after chemotherapy [32–34]. Using a graph theory approach, studies showed
that some DMN regions, particularly frontotemporal regions, are changed compared to
healthy controls, which may explain the memory deficit occurring after chemotherapy [35].
Another approach implemented by Kesler et al. also provides even more evidence that
DMN abnormalities in breast cancer survivors are associated with memory difficulties.
The discovered disruptions may help explain the cognitive impairment experienced by
patients after receiving chemotherapeutic drug administration [36]. Given the evidence,
the DMN likely plays a critical role in CICI and can be regarded as a potential biomarker
for distinguishing patients who may suffer from CICI [32].

Another discovery that is consistent with our previous finding is the alteration in the
dorsal attention network (DAN) [37]. The concept of the attention network in the human
brain was first introduced in 2006, and this network is categorized into dorsal and ventral
systems [38]. These two networks are anatomically distinct cortical regions that control
attention. The components of the DAN include the intraparietal sulcus (IPS) and frontal eye
fields (FEF) of each hemisphere, and the function of the DAN is associated with focusing
attention on external stimuli. Due to the characteristics of IPS and FEF, they are considered
candidate regions involved in regulating spatial attention, saccade planning and visual
working memory [39]. Apart from the DMN, the DAN is a task-positive network and
has an antagonistic relationship with the DMN. The activation of the DAN suppresses
the activation of the DMN, and the DMN and DAN appear to compete for resources
within brain networks associated with cognitive control [40]. Unlike the DMN, fewer
studies mentioned DAN alterations after chemotherapy. One study examined patients with
breast cancer after treatment with neoadjuvant chemotherapy using arterial spin labeling
techniques, and the results showed significantly increased cerebral blood flow in regions
associated with the attention network [41]. Another longitudinal study examined breast
cancer survivors one month and one year after the completion of chemotherapy. DAN
alterations were observed one month after chemotherapy but partially recovered at one
year postchemotherapy, suggesting that the change in the DAN may potentially be related
to cognitive impairment after receiving chemotherapy [42].
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Overall, the critical regions highlighted by the integrated gradients algorithm are
consistent with our previous findings and are supported by other studies. We propose that
our model is reliable and that these critical regions are trustworthy references for doctors
in real clinical situations.

4.2. Limitations

A few underlying limitations of this study are that this model was trained on a small
dataset, and a larger dataset is required to achieve better model performance; moreover,
this model was used for binary classification problems. Another potential limitation of our
study is that we did not consider the chemotherapeutic agent type and dosage. Although
some studies indicated that the cause of CICI can predate the beginning of chemother-
apy [43,44], the current weights of the model cannot be used to identify prechemotherapy
patients.

5. Conclusions

In this study, we constructed two state-of-the-art volumetric models that were able to
identify chemo-brains from normal brains. We also used an integrated gradients algorithm
to visualize the pattern that was recognized by our model. The visual patterns that were
shown in this study are consistent with our previous results and with other studies. We
hope that these results will be helpful in clinically tracking chemo-brain in the future.
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