
Journal of

Personalized 

Medicine

Article

Plasma Anion Gap and Risk of In-Hospital Mortality in
Patients with Acute Ischemic Stroke: Analysis from the
MIMIC-IV Database

Hong-Jie Jhou 1,2,† , Po-Huang Chen 3,† , Li-Yu Yang 1,2,†, Shu-Hao Chang 4 and Cho-Hao Lee 5,*

����������
�������

Citation: Jhou, H.-J.; Chen, P.-H.;

Yang, L.-Y.; Chang, S.-H.; Lee, C.-H.

Plasma Anion Gap and Risk of

In-Hospital Mortality in Patients with

Acute Ischemic Stroke: Analysis from

the MIMIC-IV Database. J. Pers. Med.

2021, 11, 1004. https://doi.org/

10.3390/jpm11101004

Received: 10 September 2021

Accepted: 2 October 2021

Published: 4 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Neurology, Changhua Christian Hospital, Changhua City 500, Taiwan;
xsai4295@gmail.com (H.-J.J.); vicky102433@gmail.com (L.-Y.Y.)

2 School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
3 Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center,

Taipei 114, Taiwan; chenpohuang@hotmail.com
4 Department of Computer Science and Information Science, National Formosa University, Yunlin 632, Taiwan;

skyheero@gmail.com
5 Division of Hematology and Oncology Medicine, Department of Internal Medicine,

Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
* Correspondence: drleechohao@gmail.com; Tel.: +886-2-8792-3311 (ext. 12862)
† These authors contributed equally to this work.

Abstract: We aimed to investigate the association between the plasma anion gap (AG) and in-hospital
mortality among patients with acute ischemic stroke (AIS). In total, 1236 AIS patients were enrolled
using the Medical Information Mart for Intensive Care Database IV. Primary outcome was in-hospital
mortality. The patients were divided into four groups according to AG category. The mean age
and Charlson comorbidity index increased as the AG category increased. The fourth AG category
was most related to the in-hospital mortality (hazards ratio (HR), 95% confidence interval (CI):
2.77, 1.60–4.71), even after adjusting for possible confounding variables (Model 1: HR, 95% CI: 3.37,
1.81–6.09; Model 2: HR, 95% CI: 3.57, 1.91–6.69). Moreover, intensive care unit mortality (p = 0.008)
was higher in the highest AG category, but the intracranial hemorrhage (p = 0.071) did not associate
with the plasma AG. The plasma AG had a satisfactory predictive ability for in-hospital mortality
among AIS patients (areas under the receiver operating characteristic curve: 0.631). The plasma AG is
an independent risk factor that can satisfactorily predict the in-hospital mortality among AIS patients.

Keywords: ischemic stroke; anion gap; intensive care unit; MIMIC-IV

1. Introduction

According to the report of the Global Burden of Disease Study 2017, stroke is the
second leading cause of death and disability worldwide. The increased burden of stroke
puts tremendous pressure on patients, their families, and society [1]. Previous studies have
mainly focused on the survival and functional outcome of stroke patients in the general
population [2]. However, because of an aging society and the promising reperfusion
therapy, multiple interventions and the intensive care might be necessary for these patients.
Thus, early identification of patients with the highest risk of adverse outcomes is of
considerable importance regarding both the prognostication and targeting of appropriate
therapies. To be considered useful, risk markers should be readily available, provide
incremental information, and possess a clear pathophysiological basis.

The plasma anion gap (AG) is commonly used to classify acid–base disorders and to
diagnose various conditions. It is easily calculated by subtracting the plasma concentration
of anions (chloride and bicarbonate) from that of cations (sodium). Previous studies have
demonstrated that the plasma AG might be associated with mortality in patients with acute
kidney injury, acute myocardial infarction, congestive heart failure, acute pancreatitis, and
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aortic aneurysm [3–7]. The changes in blood gases and electrolytes are some of the first
biochemical responses to ischemic stroke [8]. Thus, they have the potential to be used as
predictors of stroke outcomes [8]. In previous studies by Liu et al., results show that a high
AG was associated with an increased risk of all-cause mortality in critically ill patients with
cerebral infarction [9]. However, the anion gap is not often reliable to identify increased
concentrations of gap anions. Particularly, hypoalbuminemia, a common disturbance in
critically ill patients, might result in underestimation of the value of the anion gap.

Thus, this study aims to investigate whether the initial plasma AG is an appropriate
predictor for in-hospital mortality, intensive care unit mortality, and incidence of intracere-
bral hemorrhage to stratify the severity of illness in patients with ischemic stroke for the
purpose of quality assurance or not.

2. Materials and Methods
2.1. Study Population and Data Source

This is a retrospective study using the Medical Information Mart for Intensive Care
(MIMIC)-IV database (version: 1.0) [10]. This database, an update to MIMIC-III, is deiden-
tified according to the Health Insurance Portability and Accountability Act Safe Harbor
provision and has an approval from Massachusetts Institute of Technology and Institu-
tional Review Board of Beth Israel Deaconess Medical Center (BIDMC) [11]. The MIMIC-IV
contains clinical information of patients in the intensive care unit (ICU) at BIDMC between
2008 and 2019. One author, Hong-Jie Jhou, has finished the Collaborative Institutional
Training Initiative examination (certification number: 39050603) and achieved access to the
database for data extraction.

2.2. Study Population and Variable Extraction

Patients from 2008 to 2019 were identified in the MIMIC-IV database. The inclusion
criteria were as follows: adult patients (age, 18–89 years) with ischemic stroke, defined as
ICD-9 codes of 433, 434, 436, 437.0, and 437.1 or ICD-10 codes of I63, I65, and I66 (Figure 1).
We excluded patients who received acute reperfusion therapy, such as intravenous tissue
plasminogen activator or endovascular mechanical thrombectomy. Patients who had a
history of transient ischemic attack without deterioration into ischemic cerebral infarction
and those who lacked data of interest, such as the AG value during the hospitalization,
were also excluded. We adopted the date of the first ICU admission only for patients who
were admitted to the ICU more than once.

The patient characteristics were collected as follows: (1) comorbidities: hypertension,
hyperlipidemia, diabetes mellitus, coronary artery disease, congestive heart failure, pe-
ripheral vascular disease, chronic obstructive pulmonary disease, liver disease, peptic
ulcer disease, chronic kidney disease, rheumatoid arthritis, dementia, malignancy, atrial
fibrillation; (2) severity scoring system: systemic inflammatory response syndrome (SIRS)
score, sequential organ failure assessment (SOFA) score, Simplified Acute Physiology Score
(APS) III [12], and HAS-BLED score [13] (Table S1); (3) the first value of vital signs and lab-
oratory data, within 24 h of ICU admission. Eighteen categories of medical conditions were
identifiable in the medical records for the overall Charlson comorbidity index [14,15] (CCI)
(Table S2). Secondary prevention medication for ischemic stroke were identified, including
antiplatelet agents (e.g., aspirin, clopidogrel, ticlopidine, cilostazol, ticagrelor, prasug-
rel, and dipyridamole) and anticoagulation agents (e.g., warfarin, dabigatran, apixaban,
rivaroxaban, and edoxaban) [16].

2.3. Definition of AG and Outcome Measurement

AG was defined using the following equation: AG (initial, [mmol/L]) = plasma
sodium [mmol/L] − (plasma chloride [mmol/L] + plasma total bicarbonate [mmol/L]).
Corrected AG was calculated using the equation of Figge–Jabor–Kazda–Fencl: corrected
AG = observed AG + 0.25 × (normal albumin−observed albumin) [17]. The primary
outcome was set as the in-hospital mortality. The secondary outcome was ICU mortality as
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well as incidence of intracerebral hemorrhage. Survival information was extracted from the
table named “patients” of the MIMIC-IV database. Data regarding the length of hospital
stay were extracted from the table named “admissions” of the MIMIC-IV database [11].
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Figure 1. Flowchart of study patients.

2.4. Statistical Analysis

Categorical variables were represented as numbers (percentages) and were compared
using the Chi-square and Fisher exact tests. Continuous variables were described as means
(standard deviation) and were compared using the Kruskal–Wallis test or one-way analysis
of variance.

We measured the linearity assessment of the AG value with the ICU and in-hospital
mortality of patients with ischemic stroke with a restricted cubic splines model. The
restricted cubic spline curve and univariate Cox-proportional hazards regression of the ICU
and in-hospital mortality showed approximate linear regression (Figure 2). The patients
were classified into four groups on the basis of four AG categories (AG < 13 mmol/L,
13 mmol/L ≤ AG < 15 mmol/L, 15 mmol/L ≤ AG < 17 mmol/L, and AG ≥ 17 mmol/L).
The separated groups were compared using the log-rank test, and the Kaplan–Meier
method was used to estimate the absolute risk of each event for each group.

Univariate and multivariate Cox hazards model analyses were performed to iden-
tify the association between the AG and ICU and in-hospital mortality. In model 1, the
covariates were adjusted only for those that were unequal in the baseline characteristics.
Model 2 included the adjusted variables, including model 1, and the clinically relevant
factors such as vital signs and laboratory data. The results were expressed as the hazards
ratio (HR) with a 95% confidence interval (CI). The risk factors for multivariate adjustment
were selected as potential covariates for a poor outcome after ischemic stroke on the basis
of prior knowledge. The logistic regression of the incidence of intracerebral hemorrhage
was applied with the adjustments of models 1 and 2. The receiver operating characteristic
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(ROC) analysis was further drawn to evaluate the ability of the SIRS score, SOFA score,
and AG to predict in-hospital mortality.
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All comparisons were planned, the tests were two-sided, and p-values of less than
0.05 were used to denote statistical significance between two or more groups. Statistical
analyses were performed using the MedCalc Statistical Software version 20.011 (MedCalc
Software, Ostend, Belgium), Statistical Package for the Social Sciences (SPSS, version 25.0;
IBM Corp., Armonk, NY, USA), and R Version 4.0.1 (R Core Team (2020), R Foundation for
Statistical Computing, Vienna, Austria).

3. Results
3.1. Patient Characteristics

A total of 257,366 medical records were reviewed, and 50,048 patients were admitted to
the ICU. We excluded 378 patients receiving tissue plasminogen activator or endovascular
mechanical thrombectomy and 48 patients without the value of anion gap. In total, 1236 pa-
tients with ischemic stroke were included in the study (Figure 1). Table 1 summarizes the
basic demographic characteristics of the patients stratified by their AG. The patients were
aged 68.7 ± 14.2 years and comprised 577 (46.7%) females. According to the AG, 273, 361,
311, and 291 patients belonged to the first (<13 mmol/L), second (≥13 and <15 mmol/L),
third (≥15 and <17 mmol/L), and fourth (≥17 mmol/L) category, respectively. The
patients with AG ≥ 17 mmol/L were older, had a higher CCI and APS III, and had more
comorbidities such as hyperlipidemia, congestive heart failure, diabetes mellitus, chronic
kidney disease, and atrial fibrillation (Table 1).

3.2. Association between AG and Outcomes

The first category AG was used as a baseline reference for comparison with other
category groups in the association analyses (Table 2). In the original cohort using univariate
Cox regression analysis, the highest AG (fourth category vs. first category) was related
to higher risk of in-hospital mortality (crude HR, 2.77; 95% CI, 1.60–4.79; p < 0.001). In
model 1, the highest AG was associated with an increased risk of in-hospital mortality after
adjusting for age, sex, vital signs, and comorbidities (adjusted HR, 3.37; 95% CI, 2.16–6.09;
p < 0.001). In model 2, after adjustments for model 1 and the additional clinically relevant
factors, a highest AG remained significantly associated with an increase in in-hospital
mortality rates (adjusted HR, 3.57; 95% CI, 1.91–6.69; p < 0.001). We had corrected the
influence of hypoalbuminemia among critically ill patients for the AG, and a positive
trend was also noted ICU mortality (p = 0.0046; Figure S1A) and in-hospital mortality
(p = 0.0006; Figure S1B). The similar results were showed in ICU mortality; however, the
AG was not associated with incidence of intracerebral hemorrhage (Table 2). The Kaplan–
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Meier curves demonstrated the association between the AG category and the in-hospital
mortality (Log-rank test p-value: 0.00031; Figure 3). The comparison of Kaplan–Meier
estimate between each two groups was summarized in Table S3. Survival was followed
until hospital discharge, and the longest length of hospital stay was 83 days.

Table 1. Characteristics of the study patients.

Anion Gap (mmol/L)

Characteristics Category 1
(n = 273)

Category 2
(n = 361)

Category 3
(n = 311)

Category 4
(n = 291) p-Value

Age (years) 68.30 ± 13.26 68.70 ± 14.20 68.14 ± 14.94 69.61 ± 14.39 0.595
Gender, n 0.134

Male 158 (57.9%) 200 (55.4%) 155 (49.8%) 146 (50.2%)
Female 115 (42.1%) 161 (44.6%) 156 (50.2%) 145 (49.8%)

Race, n 0.027
White 187 (68.5%) 242 (67.0%) 203 (65.3%) 188 (64.6%)

Black 24 (8.8%) 36 (10.0%) 21 (6.8%) 36 (12.4%)
Asian 6 (2.2%) 17 (4.7%) 4 (1.3%) 5 (1.7%)
Other 56 (20.5%) 66 (18.3%) 83 (26.6%) 62 (21.3%)
MAP (mmHg) 92.34 ± 19.41 94.84 ± 17.21 96.62 ± 16.84 96.68 ± 18.83 0.013
Temperature (◦C) 36.71 ± 0.52 36.80 ± 0.61 36.80 ± 0.50 36.85 ± 0.58 0.043
Heart rate (beats/minute) 76.95 ± 17.10 80.05 ± 17.09 81.36 ± 17.61 86.66 ± 17.95 <0.001
Respiratory rate (breath/minute) 18.37 ± 4.83 18.29 ± 4.79 18.63 ± 4.97 19.70 ± 5.62 0.002
SpO2 (%) 96.98 ± 3.78 96.92 ± 2.75 97.30 ± 2.62 96.84 ± 3.13 0.271
Comorbidities, n
CCI 6.64 ± 2.54 6.64 ± 2.57 6.67 ± 2.54 7.35 ± 2.89 0.001

Hypertension 192 (70.3%) 264 (73.1%) 230 (74.0%) 217 (74.6%) 0.683
Hyperlipidemia 78 (28.6%) 175 (20.8%) 170 (22.5%) 57 (19.6%) 0.052
Diabetes mellitus 83 (30.4%) 111 (30.7%) 100 (32.2%) 118 (40.5%) 0.027
Coronary artery disease 34 (12.5%) 43 (11.9%) 36 (11.6%) 43 (14.8%) 0.636
Congestive heart failure 50 (18.3%) 51 (14.1%) 49 (15.8%) 75 (25.8%) <0.001
PVD 39 (14.3%) 40 (11.1%) 42 (13.5%) 26 (8.9%) 0.178
COPD 51 (18.7%) 66 (18.3%) 52 (16.7%) 49 (16.8%) 0.893
Liver disease
Mild 8 (2.9%) 7 (1.9%) 13 (4.2%) 8 (2.7%) 0.391
Moderate to severe # 0 (0.0%) 1 (0.3%) 4 (1.3%) 2 (0.7%) 0.178 #

Peptic ulcer disease # 4 (1.5%) 5 (1.4%) 4 (1.3%) 1 (0.3%) 0.509 #

Chronic kidney disease 30 (11.0%) 43 (11.9%) 48 (15.4%) 60 (20.6%) 0.004
Rheumatoid arthritis 5 (1.8%) 14 (3.9%) 5 (1.6%) 6 (2.1%) 0.198
Dementia 13 (4.8%) 16 (4.4%) 14 (4.5%) 13 (4.5%) 0.997
Malignancy 22 (8.1%) 22 (6.1%) 21 (6.8%) 19 (6.5%) 0.801
Atrial fibrillation 82 (30.0%) 116 (32.1%) 118 (37.9%) 124 (42.6%) 0.006
Laboratory parameters

WBC (109/L) 9.12 ± 4.73 9.75 ± 4.15 10.67 ± 4.36 11.29 ± 4.84 <0.001
Hgb (g/dL) 11.92 ± 2.07 12.41 ± 2.15 12.62 ± 2.12 12.65 ± 2.11 <0.001

Platelet (109/L) 211.10 ± 79.14 229.31 ± 82.09 237.78 ± 105.29 243.77 ± 97.58 <0.001
Creatinine (mEq/L) 0.90 ± 0.34 0.98 ± 0.48 1.03 ± 0.60 1.39 ± 1.65 <0.001
BUN (mg/dL) 17.06 ± 8.39 17.37 ± 9.80 19.13 ± 9.59 23.29 ± 17.83 <0.001
Sodium (mmol/L) 139.37 ± 4.01 139.35 ± 3.60 139.71 ± 4.13 139.17 ± 4.15 0.404
Potassium (mmol/L) 4.01 ± 0.52 4.05 ± 0.55 4.02 ± 0.60 4.16 ± 0.65 0.011
Bilirubin (mg/dL) 0.58 ± 0.46 0.62 ± 0.46 0.62 ± 0.49 0.69 ± 0.59 0.272
pH level 7.41 ± 0.08 7.39 ± 0.07 7.39 ± 0.09 7.39 ± 0.08 0.286

Drugs, n
Antiplatelet agents 238 (87.2%) 296 (82.0%) 244 (78.5%) 226 (77.7%) 0.015

Anticoagulation agents
Warfarin 58 (21.2%) 82 (22.7%) 74 (23.8%) 70 (24.1%) 0.853
NOAC 15 (5.5%) 16 (4.4%) 11 (3.5%) 26 (8.9%) 0.021

HAS-BLED score 3.60 ± 0.97 3.68 ± 0.89 3.72 ± 0.93 3.83 ± 0.94 0.025
APS III 36.59 ± 17.33 36.23 ± 18.07 40.12 ± 19.67 43.40 ± 21.81 <0.001
SIRS score 1.88 ± 0.99 1.93 ± 0.98 2.19 ± 0.99 2.17 ± 0.98 <0.001
SOFA score 0.81 ± 1.21 0.79 ± 1.16 0.76 ± 1.28 1.09 ± 1.44 0.005
ICU mortality, n 11 (4.0%) 23 (6.4%) 32 (10.3%) 33 (11.3%) 0.003
ICU length of stay, day 4.26 ± 5.46 4.03 ± 4.81 4.48 ± 5.44 3.94 ± 4.13 0.533
In-hospital mortality, n 17 (6.2%) 40 (11.1%) 55 (17.7%) 52 (17.9%) <0.001
Hospital length of stay, day 8.02 ± 9.26 7.81 ± 9.58 8.00 ± 8.62 8.11 ± 9.25 0.979
Intracranial hemorrhage, n 22 (8.1%) 27 (7.5%) 40 (12.9%) 33 (11.3%) 0.067
PEG/PEJ tube placement, n 33 (12.1%) 38 (10.5%) 34 (10.9%) 34 (11.7%) 0.926

APS III: acute physiology score III; BUN: blood urea nitrogen; CCI: Charlson comorbidity Index; COPD: chronic obstructive pulmonary
disease; Hgb: hemoglobin; MAP: mean arterial pressure; NOAC: novel oral anticoagulant; PVD peripheral vascular disease; SIRS:
systemic inflammatory response syndrome; SpO2: saturation of peripheral oxygen; SOFA: sequential organ failure assessment score; PEG:
percutaneous endoscopic gastrostomy; PEJ: percutaneous endoscopic jejunostomy; WBC: white blood cell. #: Testing by Fisher exact test, or
Kruskal–Wallis test, respectively.
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Table 2. Association between different anion gap levels and outcomes among stroke patients.

Cohort—Univariate Model 1—Multivariate Model 2—Multivariate

Outcomes Crude HR
(95% CI) p Value Adjusted HR

(95% CI) p Value Adjusted HR
(95% CI) p Value

ICU Mortality n = 1236 0.008 n = 1229 <0.001 n = 11,217 <0.001
Category 1 Reference Reference Reference
Category 2 1.58 (0.76–3.26) 0.220 2.20 (1.01–4.79) 0.048 2.36 (1.06–5.23) 0.035
Category 3 2.40 (1.21–4.76) 0.012 3.47 (1.67–7.18) 0.001 3.72 (1.76–7.88) 0.001

Category 4 2.91 (1.47–5.77) 0.002 4.52 (2.16–9.48) <0.001 5.51
(2.47–12.30) <0.001

In-hospital
Mortality n = 1236 0.001 n = 1229 <0.001 n = 1217 <0.001

Category 1 Reference Reference Reference
Category 2 1.80 (1.02–3.18) 0.042 2.26 (1.25–4.07) 0.007 2.41 (1.31–4.43) 0.005
Category 3 2.75 (1.59–4.73) <0.001 3.21 (1.81–5.72) <0.001 3.19 (1.77–5.76) <0.001
Category 4 2.77 (1.60–4.79) <0.001 3.37 (1.86–6.09) <0.001 3.57 (1.91–6.69) <0.001

Intracerebral
Hemorrhage n = 1236 0.071 n = 1229 0.290 n = 1217 0.630

Category 1 Reference Reference Reference
Category 2 0.92 (0.51–1.66) 0.787 1.08 (0.55–2.12) 0.828 1.03 (0.52–2.06) 0.922
Category 3 1.68 (0.97–2.91) 0.062 1.70 (0.89–3.24) 0.107 1.45 (0.75–2.82) 0.272
Category 4 1.46 (0.83–2.57) 0.191 1.46 (0.74–2.88) 0.269 1.19 (0.58–2.42) 0.634

HR: hazard ratio; OR: odds ratio. Model 1: All results of Adj-HR were adjusted by age, gender, race, heart rate, mean blood pressure,
respiratory rate, temperature, Charlson comorbidity Index, hyperlipidemia, congestive heart failure, diabetes mellitus, chronic kidney
disease, atrial fibrillation, HAS-BLED score, acute physiology score III, systemic inflammatory response syndrome, sequential organ failure
assessment score, antiplatelet agents, anticoagulation agents (novel oral anticoagulant). Model 2: All result of Adj-HR were adjusted by age,
gender, race, heart rate, mean blood pressure, respiratory rate, temperature, Charlson comorbidity Index, hyperlipidemia, congestive heart
failure, diabetes mellitus, chronic kidney disease, atrial fibrillation, HAS-BLED score, acute physiology score III, systemic inflammatory
response syndrome, quick sequential organ failure assessment score, antiplatelet agents, anticoagulation agents (novel oral anticoagulant),
white blood cell, hemoglobin, platelet, potassium, blood urea nitrogen, creatinine.

3.3. ROC Curve Analysis

The SIRS and SOFA scores were a scoring tool that provided a potential prediction of
in-hospital mortality. The sensitivity and specificity of the AG and SIRS and SOFA scores
were tested using ROC curves. Meanwhile, to evaluate the predictive performance of the
AG for the in-hospital mortality, the area under the ROC curve (AUC) was calculated.
The AUC was 0.631 (95% CI: 0.603–0.658) for the AG, 0.644 (95% CI: 0.616–0.670) for the
SIRS score, and 0.628 (95% CI: 0.600–0.655) for the SOFA score (Figure 4A). The predictive
abilities based on the AG category were evaluated using ROC curves (AUC, 0.536; 95%
CI, 0.475–0.597; AUC, 0.532; 95% CI, 0.478–0.584; AUC, 0.609; 95% CI, 0.552–0.663; and
AUC, 0.644; 95% CI, 0.585–0.698, from the first to fourth category, respectively; Figure 4B).
Furthermore, after adjustment according to the equation of Figge, the AUC of the corrected
AG was 0.683 (95% CI, 0.641–0.723; Figure S2).
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4. Discussion

This study is to clearly reveal the potential linear trend between the plasma AG and
in-hospital mortalities. This large retrospective cohort study of critically ill patients with
acute ischemic stroke has demonstrated that patients with an elevated plasma AG are more
likely to have poor clinical outcomes and a higher risk of in-hospital mortality, even after
adjustments for traditional cerebrovascular risk factors. Although the plasma AG may
improve the discrimination and reclassification of patients at risk, the predictive ability of
AG regarding the risk of in-hospital mortality is only satisfactory, even in the model that
corrected the influence of hypoalbuminemia. However, an inexpensive clinical indicator
can be readily used by physicians to evaluate the prognosis among stroke patients.

Stroke remains one of the leading causes of death and disability worldwide, and there
are presently no appropriate prognostic biomarkers for physicians early in the course of
the disease. Recently, several studies have focused on the clinical value of the plasma AG,
which is obtained from the concentration of plasma sodium, chloride, and bicarbonate,
to predict the risk in critically ill patients. In a retrospective study that analyzed 6868
hospitalized patients, Lolekha et al. [18] showed that nearly 40.5% of patients have an
abnormal plasma AG, which included 37.6% with a high plasma AG and 2.9% with a low
plasma AG. Compared with traditional biomarkers such as blood gas analysis or lactate,
the plasma AG is inexpensive and readily available in low-resource settings [19].

Data regarding the association between the plasma AG and ischemic stroke are scarce;
however, some evidence shows that it is, at least, partially causal [9]. An increased plasma
AG usually indicates an imbalance between acid generation caused by tissue hypoperfusion
and acid excretion based on the renal function [20]. Thus, the presence of an increased
plasma AG may reflect subtle hemodynamic abnormalities caused by tissue hypoperfusion
but not overt shock [20]. Additionally, tissue acidosis has been shown to have deleterious
effects on ischemic injury in the nervous system [21]. At the cellular level, acidotoxic
cellular calcium accumulation and cytotoxic edema, which are mediated by ion channels
sensitive to an acidic shift in tissue pH (e.g., the acid-sensing ion channel 1a, proton-
activated chloride channels, and sodium-hydrogen exchanger isoform 1), may be limited
with the use of selective ion channel blockers. This leads to spreading depolarization with
the evolution of ischemic stroke, which might aggravate tissue acidosis and induce cell
death [22]. In a previous cohort study, the plasma AG was independently associated with
the risk of mortality [9]. In this study, we expounded on that finding, revealing that there
was a positive linear trend between the plasma AG and the in-hospital mortality.

Blood gas analysis, as an alternative means to evaluate acid–base disturbances, might
also predict prognosis in critically ill patients; however, blood gas analysis can be influenced
by a compensatory respiratory alkalosis. The plasma AG is relatively independent of acute
respiratory changes and a sensitive tool of metabolic derangement [4]. Furthermore, the
calculation of the plasma AG is simple and does not require an arterial puncture. In this
study, the plasma AG was an independent predictor for in-hospital mortality in patients
with ischemic stroke. We noted that the level of pH was not associated with the in-hospital
mortality. Furthermore, hypoalbuminemia was commonly seen in critically ill patients,
which might result in the underestimation of the AG. We adjusted the AG by using the
equation of Figge [17,23]. The results showed that an elevated corrected AG significantly
increased the risk of in-hospital mortality. Thus, the plasma AG may be a viable option to
evaluate the prognosis among critically ill patients with ischemic stroke.

In a meta-analysis, Glasmacher et al. [19] included 19 studies to estimate the accuracy
of the AG in critically ill patients. The summary AUC of plasma AG was 0.72 with 95%
CI 0.59–0.86, and the summary AUC of the corrected AG was 0.67 with 95% CI 0.62–0.71.
However, high statistical heterogeneity was found in the meta-analyses. Similarly, in
our study, the plasma AG only presented a satisfactory prediction ability for in-hospital
mortality (AUC was 0.631 with 95% CI 0.603–0.658). The highest prediction rate (AUC
was 0.644 with 95% CI 0.585–0.698) was noted when the plasma AG was ≥17 mmol/L.
Consequently, using a single measurement of plasma AG may not be an effective tool for



J. Pers. Med. 2021, 11, 1004 9 of 10

risk classification. Hence, a tailored evaluation strategy should be considered for patients
with ischemic stroke.

The main strength of our study was being a large and diverse population study design
using real-world data. However, the results should be elucidated in the context of the
following limitations. First, this was a retrospective study, and the diagnosis of ischemic
stroke was according to the administrative diagnosis codes. Although the first sequence
of diagnosis was used in this study, there remained the possibility of misclassifications
that could cause false associations. Second, hypoalbuminemia was commonly seen in
critically ill patients, which might result in the underestimation of the AG. Thus, we used
the equation of Figge to correct the AG, and the results showed a similar trend for the
in-hospital mortality. Third, because of the nature of the MIMIC database, we lacked some
potential variables such as the National Institute of Health Stroke Scale and the subtypes of
ischemic stroke (TOAST classification). Therefore, we used other severity scoring systems
such as the SIRS and SOFA scores as well as the simplified acute physiology score III
to assess the severity of stroke. No long-term follow-up events were provided from the
MIMIC-IV database, so the functional outcomes and poststroke disposition of patients
were unknown. Finally, the study might have selection bias, as it was a single-institution
study. Some stroke patients might not be referred from other hospitals because of a narrow
window time for reperfusion therapy after symptom onset of ischemic stroke and the
evolution of stroke severity. These high-risk patients might not have been enrolled in our
study. Furthermore, the patients with a low severity of ischemic stroke might be admitted
to the general ward and not involved in our analysis. Hence, to investigate the external
generalizability, further studies are necessary.

5. Conclusions

The AG was an independent risk factor for in-hospital mortality and was associated
with adverse clinical outcomes among ischemic stroke patients. According to our results,
an AG of ≥17 mmol/L had a satisfactory ability to predict a poor prognosis. However, to
confirm the AG’s role as a clinical indicator for the prognosis of ischemic stroke patients,
more prospective case-control studies are warranted.
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