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Abstract: Brain magnetic resonance imaging (MRI) is useful for predicting the outcome of patients
with acute ischemic stroke (AIS). Although deep learning (DL) using brain MRI with certain image
biomarkers has shown satisfactory results in predicting poor outcomes, no study has assessed the
usefulness of natural language processing (NLP)-based machine learning (ML) algorithms using brain
MRI free-text reports of AIS patients. Therefore, we aimed to assess whether NLP-based ML algorithms
using brain MRI text reports could predict poor outcomes in AIS patients. This study included only
English text reports of brain MRIs examined during admission of AIS patients. Poor outcome was
defined as a modified Rankin Scale score of 3–6, and the data were captured by trained nurses and
physicians. We only included MRI text report of the first MRI scan during the admission. The text
dataset was randomly divided into a training and test dataset with a 7:3 ratio. Text was vectorized
to word, sentence, and document levels. In the word level approach, which did not consider the
sequence of words, and the “bag-of-words” model was used to reflect the number of repetitions
of text token. The “sent2vec” method was used in the sensation-level approach considering the
sequence of words, and the word embedding was used in the document level approach. In addition
to conventional ML algorithms, DL algorithms such as the convolutional neural network (CNN),
long short-term memory, and multilayer perceptron were used to predict poor outcomes using 5-fold
cross-validation and grid search techniques. The performance of each ML classifier was compared
with the area under the receiver operating characteristic (AUROC) curve. Among 1840 subjects
with AIS, 645 patients (35.1%) had a poor outcome 3 months after the stroke onset. Random forest
was the best classifier (0.782 of AUROC) using a word-level approach. Overall, the document-level
approach exhibited better performance than did the word- or sentence-level approaches. Among all
the ML classifiers, the multi-CNN algorithm demonstrated the best classification performance (0.805),
followed by the CNN (0.799) algorithm. When predicting future clinical outcomes using NLP-based
ML of radiology free-text reports of brain MRI, DL algorithms showed superior performance over
the other ML algorithms. In particular, the prediction of poor outcomes in document-level NLP DL
was improved more by multi-CNN and CNN than by recurrent neural network-based algorithms.
NLP-based DL algorithms can be used as an important digital marker for unstructured electronic
health record data DL prediction.
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1. Introduction

Stroke is one of the leading causes of disability in developing and developed countries.
According to the 2016 Global Burden of Disease, Injuries and Risk Factors Study report, strokes caused
5.5 million deaths and 116 million disability-adjusted life-years annually [1]. A stroke is not a
communicable disease and can be prevented through education and the management of risk factors,
such as hypertension, diabetes, dyslipidemia, and atrial fibrillation. In addition, intensive treatment of
patients whose stroke prognosis is expected to be poor can improve the prognosis. Therefore, predicting
the prognosis of a stroke is important in rapid treatment decisions and the effective distribution of
medical resources.

Recently, machine learning (ML) or deep learning (DL) strategies have been used to predict
stroke outcomes more accurately than did conventional logistic models. Lin et al. reported an ML
method using 206 clinical variables that could reach an area under the receiver operating characteristics
(AUROC) of 0.94 in predicting the 90-day functional outcome of ischemic and hemorrhagic stroke
patients [2]. Heo et al. reported the efficacy of DL algorithms over the Acute Stroke Registry and
Analysis of Lausanne (ASTRAL) score—which is a widely used logistic regression-based algorithm for
stroke outcome prediction [3]—to predict the poor functional outcome in patients with acute ischemic
stroke (AIS). DL algorithms showed considerably better performance than traditional prediction models
did in predicting the prognosis of stroke patients using numerical data. In addition, DL algorithms
using brain magnetic resonance imaging (MRI) showed improved accuracy in predicting the final
infarct volume and reperfusion status [4]. Hilbert reported that computed tomography angiography
DL using ResNet and an autoencoder could provide well-performing image biomarkers for predicting
the functional outcomes in AIS patients who received endovascular treatment [5].

Electronic health records (EHRs) are mainly composed of unstructured data. Among them,
unstructured text data such as a doctor’s note, nursing records, and radiology and pathology text
reports, account for the largest proportion of the EHR [6]. Natural language processing (NLP) is a
well-known artificial intelligence technology, from which valuable information for proper diagnosis,
treatment strategy, and outcome prediction can be obtained using text vectorization and DL algorithms.
In the field of stroke research, NLP and ML algorithms have proven their efficacy in differentiating the
specific diagnosis and image phenotype of a stroke [7–11]. However, only a few studies have been
conducted by utilizing radiology text reports of brain MRI to predict future functional outcomes or
certain phenotypes using NLP and ML algorithms. Therefore, we aimed to assess whether brain MRI
text analysis using NLP and ML algorithms can predict a 3-month functional outcome in AIS patients.

2. Materials and Methods

2.1. Study Participants

We used a prospectively collected stroke database from a tertiary academic hospital, in which all
patients’ records—including demographic, clinical, laboratory, and radiology reports—were regularly
collected and audited by trained stroke practitioners. From January 2014 to December 2019, a total of
2538 AIS patients were eligible for this study. We excluded patients with a history of strokes (n = 563)
because we analyzed the impact of brain MRI text reports, which usually included text information for
acute structural lesions and previous structural abnormalities. In other words, we excluded patients
with previous strokes because the importance of text data regarding recent acute lesions may be reduced
with an increase in the number of text descriptions of previous lesions. In addition, patients without
proper magnetic resonance (MR) images (n = 135) were also excluded. This study was approved by the
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Chuncheon Sacred Heart Hospital Institutional Review Board/Ethics Committee (IRB No. 2019-I064).
Written informed consent for the registry enrollment and 3-month outcome capture was provided by
the participants or their guardians.

2.2. Data Collection Using MRI Radiology Reports

When patients with acute cerebral infarction are hospitalized, performing multiple MRI scans is a
common clinical practice to define the dynamic status of ischemia and vessel occlusion. Therefore,
we limited the data to be used for text analysis to the MRI text report of the first MRI scan during
admission. Conventional stroke MRI sequences included T1/T2-weighted sequence, apparent diffusion
coefficient and diffusion-weighted sequence, fluid-attenuated inversion recovery sequence, gradient
echo sequence, time-of-flight, and gadolinium-enhanced angiography sequences [12]. We used 3.0T
brain MRI scanner (Skyra, Siemens, Germany) with the following parameters: TR, 9000–11,000 range;
TE 120–130 range; matrix size, 256 × 256; field of view, 230 × 230 mm; slice thickness, 5mm; inter-slice
gap, 1mm. During the study period, one neuroradiologist interpreted the brain MRI and reported the
narrative descriptions and final conclusions in the text data. Examples of brain MRI radiology reports
are shown in Supplemental Figure S1. We only used narrative descriptions of the MRI images and
removed clinical information and conclusions.

2.3. NLP and ML Algorithms

As described earlier, we only used the description texts of the brain MRI radiology reports to
predict the 3-month poor outcomes. All text data were parsed into vectors of different levels. We used
the quanteda R package and the NLTK Python package to tokenize the MRI text data.

2.3.1. Word-level Approach

First, all texts were parsed into word vectors, in which one word became a one word “token”
vector. All texts were changed into tokens using lowercase alphabets, and stop words, punctuation,
symbols, and hyphens were removed. Each word token was entered into the ML algorithms as a
“bag-of-words” (BOW) model (Figure 1) [13]. In addition, we applied DL algorithms to classify MRI
texts for good and poor outcomes. The detailed architecture of the DL algorithms for the word-level
approach is shown in Supplemental Figure S2.
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2.3.2. Sentence-Level Approach

In a sentence-level approach, a patient’s brain MRI document is divided into sentence units and
entered into a vector. Unlike the word embedding method, the meaning of a sentence is expressed
as a vector using the sent2vec sentence embedding library. Then, the vectored sentences perform
classification tasks by concatenating dense layers.

2.3.3. Document-Level Approach

In this method, the entire MRI reading text corresponding to one patient was used as an input to
the ML algorithms. All the words in a document were vectorized using BioWordVec [14], which is a
pretrained biomedical FastText embedding model that includes the meaning of words in 200 dimensions.

2.4. Primary Outcome Measure

All the patients visited outpatient clinics after hospital discharge to evaluate stroke outcomes.
The functional outcomes were evaluated using the modified Rankin Scale (mRS) score 3 months after
the onset of stroke symptoms—with scores ranging from 0 for “no stroke-related symptoms” to 6 for
“stroke-related death” [15]—and mRS scores of 3–6 indicated a poor stroke prognosis. In almost
all stroke clinical trials, the assessment of functional recovery of the stroke patient for drugs or
interventions is evaluated with mRS at 3 months after the stroke symptom onset. Therefore, we used
3-month mRS as a main outcome to predict using the brain MRI text. Our goal was to identify which ML
algorithm was superior in predicting 3-month poor outcomes using these admission brain MRI texts.

2.5. ML Task

All MRI texts were randomly divided into training and test datasets in a ratio of 7:3, in which
the proportion of poor outcome MRI texts was similar. After dividing the training data into 5-folds,
model training was performed in 4-folds, the model was validated using the remaining 1-fold training
data, and the model’s performance was measured using the other test dataset. In the word-level
approach, we used the least absolute shrinkage and selection operator (LASSO) regression, single
decision tree, random forest (RF), and support vector machine (SVM) techniques for the ML algorithm.
For this ML task, we extracted the feature importance of the text vectors in the RF classifier to
identify which tokens were important for predicting poor outcomes in MRI texts [16]. In addition,
convolutional neural network (CNN), multilayer perceptron (MLP), long short-term memory (LSTM),
and bidirectional LSTM (bi-LSTM) CNN&LSTM techniques were employed as DL algorithms to predict
poor outcomes in MRI texts. In the document-level approach, all document vectors preprocessed
with word embedding were then applied to the CNN, multi-kernel CNN (multi-CNN), LSTM,
and bi-LSTM algorithms to predict the stroke prognosis. The detailed architecture of the DL algorithms
is depicted in Supplemental Figure S3. The grid search technique was used to optimize the best
hyperparameters of each algorithm [17]. Model training was performed on TensorFlow and Keras
platform using NVIDIA’s GeForce GTX 1080ti graphics processing units, dual Xeon central processing
units, and 128 GB RAM server. Table 1 shows the summarized ML algorithms used in different level of
text vectorization approach.

2.6. Statistical Methods

Baseline characteristics of the patients—for poor and good outcomes—were compared using the
Student’s t-test, Mann–Whitney U, or Pearson’s χ2-test, as appropriate. To identify which words were
observed more in the MRI report of patients with poor outcomes than in those with good outcomes,
we performed the χ2-test, and the results were provided as a keyness plot [18]. The performance of
each ML classifier was evaluated using unseen test data. We calculated the probability score of the data
in each ML algorithm, and the performance of each ML algorithm was measured using the AUROC
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curve. ML classification tasks were performed with R version 3.6.1 (the R Foundation for Statistical
Computing) and Python version 3.7.7 in the anaconda environment.

Table 1. Type of machine learning algorithm used in different level of natural language processing
approach. The filled cell indicates the machine learning algorithm used. (ML, machine learning;
LASSO, least absolute shrinkage and selection operator; SDT, single decision tree; RF, random forest;
SVM, support vector machine; CNN, convolutional neural network; MLP, multilayer perceptron; LSTM,
long short-term memory; Bi-LSTM, bidirectional LSTM; CNN-Max, max-pooling CNN; Multi-CNN,
multi-kernel CNN).

Type of ML Algorithm Level of Approach

Word Level Sentence Level Document Level
LASSO regression

SDT
RF

SVM
CNN
MLP

LSTM
Bi-LSTM

CNN&LSTM
CNNmax

Multi-CNN

3. Results

A total of 1840 MRI text reports were included in the final analysis. The proportion of poor
outcomes in the training and test datasets were 36.7% and 33.0%, respectively. Comparisons of
the clinical characteristics of the participants between poor and good outcomes are presented in
Table 2. There were no differences in the clinical and demographic variables between the training and
test datasets.

Table 2. Baseline characteristics of the total study population.

Training (n = 1288) Test (n = 522) p Value

Age, years 69.3 ± 12.7 69.1 ± 12.8 0.773
Male, % 736 (57.1) 321 (58.2) 0.726

Height, cm 165.0 ± 13.1 164.4 ± 67.5 0.603
Weight, kg 68.5 ± 12.7 67.3 ± 13.5 0.698

NIHSS scale,
mg/dL 4.8 ± 5.6 4.4 ± 5.3 0.226

Risk factors
Hypertension 835 (64.8) 353 (63.9) 0.758

Diabetes 420 (32.6) 198 (35.9) 0.192
Dyslipidemia 228 (17.7) 94 (17.0) 0.779

Current smoking 301 (23.4) 130 (23.6) 0.981

Values are presented as mean ± standard deviation or number (column percent) as appropriate. NIHSS, National
Institute of Health Stroke Scale.

Supplemental Table S1 shows the most frequently observed tokens in the training and test
datasets—word tokens from the MRI texts being similarly distributed in both. The keyness plot
(Figure 2A) shows that several tokens that described large territory infarct lesions were frequently
observed in the poor outcome brain MRI texts. Using the RF algorithm, we identified which tokens
were important for predicting poor outcome MRI texts (Figure 2B). In this variable importance plot,
several tokens that described large territory involvement in brain MRI texts (middle cerebral artery
(mca); intravascular; territori) were the most important tokens for predicting poor outcome brain
MRI texts.
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Performance of ML Algorithm for Poor Outome Brain MRI Texts

Supplemental Table S2 shows the comparison of input tokens between the training and test
datasets using the BOW model. There were no significant input features between them. Figure 3A
shows the performance of the LASSO regression, single decision tree, SVM, and RF algorithms in
predicting poor outcome brain MRI texts. The RF algorithm had the best AUROC (0.782) score among
them. Figure 3B shows the result of the BOW DL model, in which the CNN’s performance (0.769)
was better than that of the other DL algorithms. However, the RF algorithm was the best classifier in
predicting poor outcome brain MRI texts using a word-level approach.
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Figure 3C shows the results of the sentence- and document-level DL models. The sentence-level
approach was not superior to the document-level approach in predicting poor outcomes. Overall,
the document-level approach exhibited better performance than did the word- or sentence-level
approaches. Among all the ML classifiers, the multi-CNN’s performance was the best (0.805), followed
by the CNN (0.799) algorithm.
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4. Discussion

In this study on the prediction of poor outcomes using NLP-based DL of radiology text reports,
we identified that the multi-CNN DL algorithm can successfully predict future outcomes in patients
with AIS. In particular, document-level vectorization of the entire radiology text reports showed better
performance than did the word- or sentence-level NLP approaches. Although the DL algorithms did
not show which word vectors were important for this classification, other ML procedures such as the
RF could identify important text features from the brain MRI texts to predict future outcomes using
ML algorithms.

MRI is essential for sophisticated stroke diagnosis, and we can predict the future outcome of
AIS patients to some extent through certain imaging findings such as distal hyperintensity vessel
sign [19], diffusion restrictive infarct volume [20], or hemorrhagic transformation lesion [21] in MR
images. However, MRI radiology text reports are often described more freely than with a structured
format and are difficult to quantify because a radiologist’s subjective judgment is reflected in the text
rather than the MR image itself. However, we found that NLP-based DL of free text MRI reports taken
only once (at admission) could successfully predict the prognosis of AIS patients.

We found that DL using a document-level approach was a better method for predicting the
prognosis of AIS patients using brain MRI free text reports than using word- or sentence-level
approaches. Several NLP-based ML studies have shown good classification performance in
differentiating certain disease phenotypes from the corresponding free text MRI reports with a
word-level approach alone [22–25]. However, the studies did not implement DL algorithms to
predict their own targets. NLP processing was also found to have performed analyses using only
the BOW model. Our findings showed better performance in the document-level approach—which
understands the sequence of sentences as a whole—than the BOW model—which interprets each
word as a machine-readable vector. However, the performance of the CNN and multi-CNN
algorithms using a document-level approach was superior to that of the recurrent neural network
(RNN) approach—which better reflects the sequence of texts or signals, using LSTM and bi-LSTM
methods [26,27]. This suggests the possibility that a CNN’s performance is better than that of an
RNN because the structural vectorization of the sequential sentences is already reflected in the
document-level approach. The advantages of CNNs over RNNs—such as LSTM and gated recurrent
units—are that they have a smaller number of parameters, thus delivering good computational speed
and affording a more efficient setup of convolutional layers to learn local information than is the
case with RNNs [28,29]. In addition, the CNN needs to construct an algorithm into a deeply layered
architecture for the machine to learn the whole sequence of sentences efficiently, and this increase in
layers can lead to vanishing gradients or exploding problems in the CNN algorithm. In this study,
however, we suggested that the classification performance of the CNN algorithm might have been
better than that of the RNN because the CNN architecture used in the document-level approach did not
have many layers, which in turn did not require learning for the local minima. In other words, we have
shown that when predicting a certain phenotype using ML of brain MRI texts using a document-level
approach, it is sufficient to use CNNs rather than RNNs, which require significant computing power.

There are numerous risk predictors for poor outcomes in AIS patients. First, conventional risk
factors and relevant laboratory results, such as hypertension, diabetes, dyslipidemia, hyperglycemia,
and blood pressure, are important biomarkers for poor outcome predictions [30]. As multimodal MRI
for AIS has been widely used, collateral vessel signs [31], diffusion-weighted lesion volumes [32],
cerebral microbleeds [33], and combined hemorrhagic transformation lesions [34], are well-known
as important image markers for poor outcomes. In recent years, DL algorithms for MRI have also
been a useful for treatment effect of AIS patients [35]. However, there have been no reports of text
biomarkers for the EHRs of stroke patients. We showed that this text vector of image reports could
also be sufficiently useful for outcome prediction.

DL generally shows superior performance over conventional prediction models. This study also
showed that the performances of DL using CNN and RNN was better than that of ML methods such
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as RF and SVM [36]. However, we did not determine what type of text vectors could predict the poor
prognosis of AIS patients in NLP-based text DL tasks. However, ML algorithms such as RF can show
which factors are important in classification/regression prediction tasks, as shown in Supplementary
Figure S2. Similar to the infarct volume in the stroke MR image, the variable importance plot of the
poor outcome brain MRI texts showed that a combination of stemming words depicting large territory
lesions such as “mca, territori, intravascular (thrombosis), and complet (occlusion)” are important
features in differentiating poor outcome brain MRI text reports from those with a good outcome.
Although the DL algorithm has evolved more than conventional ML algorithms, ML methods such as
RF or SVM techniques in text-based prediction are still important in identifying important “digital
phenotypes” in vast unconstructed EHR text data and converting them into structured data.

Our study has some limitations. First, because the MRI text report was read by neuroradiologists
in one hospital, an external validation using data from another hospital is needed to determine
whether the DL algorithm would demonstrate the same performance in predicting stroke outcomes.
Second, we performed NLP-based DL only on English texts. The sequential combination of words
is considerably important for understanding sentences in the case of inflectional languages such as
English. However, the type of prefix added to the word root is more important than the order of words
in the case of agglutinative languages such as Korean, Turkish, and Japanese. Therefore, we cannot
conclude whether these DL algorithms will perform better in predicting poor outcomes using brain
MRI text reports in languages other than English. Despite these limitations, our study has some
strengths. First, we used prospectively collected stroke outcomes from stroke physicians and certified
nurses. This prospective clinical outcome capture strategy guaranteed the performance of our ML
model. We did not classify the findings of brain MRI from the text data but predicted the future clinical
outcome of the patient. We believe that this study may have provided some insights for conducting
further studies using EHR information that could predict future clinical events.

5. Conclusions

In this study, we found that when predicting future clinical outcomes using NLP-based ML of
brain MRI radiology free text reports, DL algorithms showed superior performance over other ML
algorithms. In particular, the prediction of poor outcomes in document-level NLP DL was improved
more by using multi-CNN and CNN than by using RNN-based algorithms. In later, unstructured
EHR text, data can be widely used for extracting and predicting important clinical outcomes using an
NLP-based DL strategy.
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