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Abstract: In recent years, improved deep learning techniques have been applied to biomedical image
processing for the classification and segmentation of different tumors based on magnetic resonance
imaging (MRI) and histopathological imaging (H&E) clinical information. Deep Convolutional
Neural Networks (DCNNs) architectures include tens to hundreds of processing layers that can
extract multiple levels of features in image-based data, which would be otherwise very difficult
and time-consuming to be recognized and extracted by experts for classification of tumors into
different tumor types, as well as segmentation of tumor images. This article summarizes the latest
studies of deep learning techniques applied to three different kinds of brain cancer medical images
(histology, magnetic resonance, and computed tomography) and highlights current challenges in the
field for the broader applicability of DCNN in personalized brain cancer care by focusing on two
main applications of DCNNs: classification and segmentation of brain cancer tumors images.

Keywords: deep learning; DCNN; convolutional neural networks; brain cancer; MRI; histology;
classification; segmentation

1. Introduction

Artificial Intelligence (AI)and Machine Learning (ML) methods play a critical role in industrial
processes [1–3] and biomedicine [4–7]. By using ML techniques, we can efficiently handle
ambiguous and time-consuming biomedical tasks with nearly the same precision as trained specialists.
Advancements in deep learning algorithms as a subfield of ML have demonstrated their strength
in biomedicine data analysis, particularly in cancer data including patients’ images and clinical
information [8–11].

In the recent decade, many researchers have given special attention to Deep Convolutional Neural
Networks (DCNNs) as a very powerful machine-vision tool among deep learning techniques [12].
By applying DCNNs to patients’ X-ray, Computed Tomography (CT), and histopathological images,
various types of cancers such as breast [13,14], prostate [15,16], colorectal [17,18], kidney [19,20],
and brain [21,22] have been diagnosed in their early stages.
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Brain cancer is the first leading cause of mortality among females age 20 and younger, and males age
40 and younger [23]. A large collection of brain cancer patients’ images have been curated and are now
rapidly available [24]. Studies show that brain tumors are highly heterogeneous [25] which constitute
the main problem for brain tumor classification and segmentation and therefore diagnosis and prognosis.
Recently, a very high-quality prospective survey has been done by Muhammad et al. [26] to classify
multigrade brain tumors based on Magnetic Resonance (MR) images. In this study, they explored the
impact of primary stages such as preprocessing, data augmentation, transfer learning, and different
Convolution Neural Network (CNN) architectures on the CNN-based classifiers performance.

After some inspections, we realized that there is a gap in the application of DCNNs to classify or
segment images of brain cancer and most of studies/surveys have just focused on MR or CT images
while there is highly-valuable information in the background of histopathological imaging (H&E)
images. Therefore, in this literature review, we explore recent advances published between 2018 to 2020
in the use of supervised DCNNs as a robust machine-vision tool in the classification and segmentation
tasks of three different kinds of brain cancer images including H&E histology, MR, and CT. For this,
articles were searched using the following keywords: “classification”, “segmentation”, “detection”,
“brain cancer”, “brain tumor”, “brain tumor lesion”, “brain malignancy”, “brain malignant tissue”,
“CNN”, “DCNN”, “convolutional neural network”, “histology”, “pathology”, “histopathology”,
“Magnetic Resonance Imaging (MRI)”, “CT”, “imaging”, and “image”. We then assessed the list of
identified articles for its content and contribution to the field, in order to include these in this survey.
Finally, we also included in this survey some older articles, whose content have contributed key
advances in this field. All the works discussed in this survey have used supervised learning to train
deep convolutional neural networks.

From the selected studies in the classification and segmentation parts, we found that 32% and 40%
of studies have been supervised/validated by a specialist (e.g., pathologists/radiologists), respectively.
In these studies, a specialist has been involved in i) dataset preparation or ii) result validation obtained
by the methods used in the classification and segmentation parts (for further supervision). In the rest
of the articles, the results have been evaluated by testing samples whose results were compared with
the ground truths (labels/masks) created by specialists.

Our focus in this work is to provide a legible and concise explanatory paragraph for each recent
and relevant work. For this purpose, we did our best to describe the main points in each article in a
way that all readers (even the readers who are not very familiar with convolutional neural networks)
are able to familiarize with the recent advances in this field. For simplicity, all information provided
related to the classification and segmentation tasks have been summarized into two tables. We have
also depicted the most important and influential steps of these two tasks in two separated figures as a
roadmap for researchers who are going to apply DCNNs in their future work for the classification or
segmentation of different kinds of brain cancer images.

Furthermore, for more clarity, the articles in each section were sorted based on the complexity of
their methods/algorithms used from simple to complex.

The rest of this article is organized as follows: In Sections 2 and 3, novel articles applying DCNNs
for classification and segmentation tasks to brain cancer images are explored. Indeed, for simplicity,
all information for the two tasks mentioned are briefly compiled in two tables. We have also
summarized the primary steps and proposed a roadmap for those tasks into separate figures. Finally,
in Sections 4 and 5, we discuss the main contributions of the reviewed works, current limitations and a
conclusion summarizing future directions for this rapidly developing field.

2. DCNNs Application in the Classification of Brain Cancer Images

In this section, the application of DCNNs to classify brain cancers from different kinds of brain
cancer images is explained. For this purpose and to add clarity, we have divided this part into three
subsections with each of these focusing on a specific type of images (i.e., H&E histology, MRI, or both).
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2.1. DCNNs Application in the Classification of Brain Cancer H&E Histology Images

Zadeh Shirazi et al. [24] proposed a new DCNN-based classifier, namely DeepSurvNet, short for
“Deep Survival Convolutional Network”, to accurately classify the survival rates of brain cancer
patients. The model assigns ranges of survival likelihood across four classifications based on H&E
histopathological images. The datasets are collected from the TCGA and a local public hospital,
including 450 patients’ H&E slides with different kinds of brain cancer tumors. They considered classes
I, II, III, and IV for patients with 0–6, 6–12, 12–24, and more than 24 months of survival after diagnosis,
respectively. DeepSurvNet is based on the GoogLeNet [27] architecture and was trained and tested on
a public brain cancer dataset from TCGA, and also generalized on a new private dataset. Their model
achieved precisions of 0.99 and 0.8 (recalls of 0.98 and 0.81) in the testing stages on the two datasets,
respectively. Furthermore, they analyzed the frequency of mutated genes associated with each class,
supporting the idea of a different genetic fingerprint associated with patient survival.

Sidong et al. [28] focused on the Isocitrate Dehydrogenase (IDH), an important biomarker in
glioma, and predicted its mutational status by using DCNN. Their dataset includes 266 H&E slides
gliomas of grade 2 to 4 collected from TCGA and a private hospital. They proposed a model based
on using Generative Adversarial Networks (GAN) methodology to generate synthetic but realistic
samples to support data augmentation and Resnet50 DCNN architecture as a primary backbone for
IDH status prediction. They also concluded that by adding patients’ age as a new feature, the DCNN
model can predict IDH status more accurately. They achieved an accuracy of the IDH mutational status
of 0.853 (Area Under the Curve (AUC) = 0.927).

Sumi et al. [29] put forward an architecture which can classify four different types of brain tissues
of categories healthy, benign, Oligodendroglioma, and Glioblastoma (GBM) based on features extracted
from the cellular level (not the tissue level). Their model inputs are H&E histology images of brain
tumors. Their model is based on a spatial fusion network where an entire image-wise prediction can
discriminate between different sparse features in a whole image. To achieve this, a preprocessing stage
extracts patches from each image and applies augmentation. Next, the InceptionResNetv2 (INRV2)
architecture is trained on the augmented patches and predicts probabilistic features of different kinds
of tumor cancers for local patches. In the second stage, a deep spatial fusion network is implemented,
which includes several Fully Connected (FC) and dropout layers to learn spatial relationships between
local patches. Finally, a vector calculates the patch tumor class (patch-wise probability). In their work,
two datasets, The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA) with 2034
and 2005 basic images have been used, though the training set could be increased with additional data
augmentation methods. Additionally, the total patches were extracted, equal to 202,174, and 140,099
from the TCGA and TCIA datasets, respectively. Their model achieved classification accuracy #1 of
0.95 on four-class classification and the classification accuracy #2 of 0.99 on two-class classification
(non-necrosis and necrosis).

Yonekura et al. [30] proposed a 14-layer DCNN-based architecture to classify GBM and Low-Grade
Glioma (LGG) images. The dataset consists of 200 H&E histological Whole Slide Images (WSIs) from
TCGA which contain 100 images. 10,000 distinct patches are extracted from each cohort as inputs to
train the DCNN. Additionally, for further performance checking, some popular DCNN architecture
such as LeNet [31], ZFNet [32], and VGGNet [33] were trained on those patches and their results
were compared with the proposed model. Finally, a classification accuracy of 0.96 for four-fold
cross-validation was achieved by the model.

2.2. DCNNs Application in the Classification of Brain Cancer MR Images

Fukuma et al. [34] implemented a novel architecture combining several sets of features to
identify IDH mutations and TERT promoter (pTERT) mutations. These molecular characteristics are
crucial indicators for diagnosing and treating gliomas grades II/III. The model combines patient age,
61 conventional radiomic features, 3 tumor location parameters, and 4000 texture features as input.
The texture features are extracted from normalized and cropped tumor lesion slides using AlexNet.
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Of these feature sets, a subset is selected using F-statistics. To increase the total dataset, augmentation
is used. The final accuracy on a nonpublic dataset is 63.1%, which outperforms previous models using
only single feature sets.

Chang et al. [35] applied the ResNet50 deep learning model to noninvasively predict IDH1 and
IDH2 mutations in glioma grades II-IV. The initial dataset is built from several medical institutions:
Hospital of the University of Pennsylvania, Brigham and Women’s Hospital, The Cancer Imaging
Center, Dana-Farber/Brigham and Women’s Cancer Center. Skull-stripping, intensity normalization,
and tumor extraction preprocessing are applied to the MRI images. The resulting dataset was input
into a single combined ResNet50 network that resulted in test accuracies of 87.6%. Additional fields
such as age have been shown to improve accuracy by to 89.1%.

Alqudah et al. [36] put forth a new DCNN architecture with just 18 layers for classifying
(grading) MR images into three classes of tumors including Meningioma, Glioma, and Pituitary.
They used a public dataset containing 3064 brain MR images (T1 weighted contrast-enhanced). In the
preprocessing stage, all images are converted into three distinct categories including cropped lesions,
uncropped lesions, and segmented lesions. Then, they trained their own DCNN on these three
categories and found out that the highest overall performance is related to the uncropped lesions
category with 99% accuracy and 98.52% sensitivity.

Kalaiselvi et al. [37] designed and implemented six different DCNN-based classifiers to distinguish
LGG and High-Grade Glioma (HGG) tumors from normal lesions through brain cancer MR images.
Each model contains just two to five layers. First, each model is trained on the BraTS2013 dataset with
4500 images. The criterion used as a hyperparameter to adjust the models and prevent them from
overfitting is early stopping. Then, in the testing phase, they utilized the The Whole-Brain Atlas (WBA)
dataset with 281 images. After the training and testing stages, they realized that among the six models,
the Five-Layer Model with Stopping Criteria and Batch Normalization (FLSCBN) achieved the lowest
3% False Alarm (FA) and 7% Missed Alaram (MA) (as error rates indexes) and a highest accuracy
classification of 89%.

Mzoughi et al. [22] applied a DCNN with 11 layers to 3D whole MR images to classify the grade
of glioma tumors into LGG or HGG. In their approach, whole 3D volumetric MRI sequences are
passed to the DCNN instead of patch extraction from the MR image. In this study, the dataset used is
BraTS2018, which comprises 351 MR T1-weighted images, including mixed grades of glioma tumors.
To solve the problem of data image heterogeneity, all images are preprocessed using adaptive contrast
enhancement and intensity normalization methods. Furthermore, to generate additional training
data, augmentation was used. Based on the results, their proposed 3D DCNN model achieved an
overall accuracy of 0.96 on validation data images, which is relatively higher in comparison with other
traditional and shallow DCNN approaches.

Badža et al. [38] presented a relatively simple DCNN-based architecture with only 22 layers to
classify three brain cancer tumors including Meningioma, Glioma, and Pituitary. The model was trained
on a public dataset which contains 3064 T1-weighted contrast-enhanced MR images. With regard
to their model inputs being MR whole images than extracted patches, they increased the number of
images three times, i.e., to 9192, by using data augmentation techniques (images vertical flipping and
90-degree rotation). The proposed architecture was tested several times and finally found out the
best result with the accuracy of 96.56% is related to the conditions that the model is validated by the
augmented dataset and 10-fold cross-validation method. Their simple model would be suitable for
users who are going to run the network with limited hardware, such as mobile phones or conventional
PCs and who want to see the results quickly.

Liu et al. [39] designed and implemented a model to classify three distinct types of brain tumors
including Meningioma, Glioma, and Pituitary. The publicly available dataset used in their network is
of 3064 T1-weighted contrast-enhanced MR images. Their model is powered by ResNet34 architecture,
which uses an all-convolutional architecture with a global pooling layer right before the output.
They modified the standard ResNet architecture slightly so that additional global average poling
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layers were applied to feature maps much closer to the network input. The output of these layers was
concatenated to the output global average pooling layer, in order to fuse high and low-level features.
They call their network G-ResNet which is short for Global Average Pooling Residual Network. In their
experiments, they tested four combinations of concatenation layers between different layers to integrate
low-level and high-level features and determine which resulted in the best model accuracy. Indeed,
they realized modifying loss function or using the sum of the loss functions such as cross-entropy and
interval, the model accuracy would improve. Based on all modifications they applied, their model
accuracy could achieve 0.95 as total classification accuracy.

Hemanth et al. [40] proposed a simple DCNN architecture with some modifications in the FC layer.
This proposed model considerably reduced computational complexity and is able to classify four brain
tumor types of Meningioma, Glioma, Metastasis, and Astrocytoma. T1, T2, and T2 flair MR images
are fed as inputs into the model. A total of 220 images were used in their paper, as collected from a
private clinic. Their main contribution is to eliminate the updating procedure of weights by using the
GD algorithm in the FC layers by replacing them with a simplified approach such that the number of
trainable parameters is greatly reduced. They proved that with this amendment, the proposed model
can classify brain tumors with an accuracy of 0.96.

Afshar et al. [41] developed a new classifier based on CapsNets to classify three types of brain
cancer tumors. To train their proposed network, they used a publicly available dataset including 3064
T1-weighted MR images related to Meningioma, Glioma, and Pituitary tumors. Although CapsNets
have some benefits over traditional DCNNs, they are considerably more sensitive to image backgrounds.
Hence, preprocessing stages such as tumor segmentation from the whole image and removing
backgrounds are highly recommended. However, in this work, the authors reinforced the CapsNets
architecture by providing the whole tumor images as the main inputs of their model and the tumor
surrounding tissues as extra inputs in its final layer as they considered that tumor segmentation
procedure can at the same time introduce disadvantages as it is not only a time-consuming task but also
can eliminate some important information such as the tumor boundaries. As a result, their proposed
classifier accuracy of 0.91 shows that their developed CapsNet outperforms the previous CapsNets.

Seetha et al. [42] used a transfer learning approach in their DCNN architecture to distinguish brain
tumors from nontumors. They applied a DCNN model pretrained on the ImageNet dataset. The public
datasets used in their work are Radiopaedia and BraTS2015 containing brain MR images. In their
approach, all layers in the pretrained model are frozen, excluding the final layer. The training procedure
on the new MR images remains the same in the latest layer. Although this type of classification task
only differentiates two classes from each other (i.e., tumor and normal tissues), the model was able to
save substantial time in the training phase by using transfer learning method and ultimately achieved
a classification accuracy of 0.97.

Pashaei et al. [43] proposed an ensemble model Kernel Extreme Learning Machine-CNN (KE-CNN)
combining DCNN and the Kernel Extreme Learning Machine (KELM). In their simple model of just
9 layers, the DCNN extracts features from input images and are fed as input vectors to the KELM
as the final layer. In other words, KELM is used as an alternative to FC layers and is responsible for
classifying the images. They used this model to classify 3064 T1-weighted MR images from a public
dataset. This dataset contains three different kinds of brain tumors including Meningioma, Glioma,
and Pituitary. Based on their results, the highest classification accuracy of 0.93 was achieved when
they applied the radial base function as a kernel function in the KELM classifier.

Zhou et al. [44] put forward a classifier based on DenseNet and LSTM (DenseNet-LSTM). In this
model, features are extracted from MR images with an autoencoder architecture i.e., DenseNet.
Those features are then fed to the LSTM structure as inputs for classification. They applied these
methods to two distinct public and private datasets for training and evaluating the proposed model.
The public dataset includes 3064 brain cancer MR images and three types of tumors containing Gliomas,
Pituitary, and Meningiomas. In contrast, the brain tumor types in the private dataset are completely
different including Glioma, Meningiomas, Metastatic tumors and normal lesions. This dataset contains
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422 MR images. The DenseNet-LSTM was trained and tested on both datasets separately and achieved
0.92 and 0.71 of classification accuracies, respectively.

Mohsen et al. [45] used a DNN with seven layers as their classifier rather than DCNN because
of their limited hardware resources. In their proposed model, first, brain tumors/normal lesions
are segmented by using the Fuzzy C-means method. Next, the DWT technique extracts the major
features from the segmented brain tumor MR images and the features are reduced using the Principal
Component Analysis (PCA) method. The extracted features are fed into the next part as the inputs of
the classifier. Finally, a DNN architecture is applied to classify three different types of brain tumors
including GBM, Sarcoma, and Metastasis along with normal brain lesions. The dataset used in this
work is publicly available and comprises 66 T2 weighted brain MR images. Although their proposed
model is not using DCNN for feature extraction and classification, the model achieved a classification
accuracy and AUC of 0.97 and 0.98, respectively.

Ari et al. [46] proposed different models to classify brain cancer as benign or malignant brain cancer
tumors. The dataset used in their work contains 16 patients who have been diagnosed with a brain
tumor via T1-weighted MR images screening. First, the images are preprocessed and the background
noise is filtered. In the next stage, two different kinds of classifiers such as a six-layer DCNN and
ELM local receptive fields (ELM-LRF) were used to classify the tumor types. The results show that the
two classifiers have roughly the same classification accuracy of 0.96 and 0.97, respectively where the
ELM-LRF achieved slightly better performance. However, the lower accuracy of the DCNN model
could be attributed to the limited number of images in the training part.

Suter et al. [47] put forth two different DCNN-based approaches to predict survival rate in GBM
patients. Both used the BraTS2018 dataset containing 293 T1, T1c, T2, and T2-Weighted Fluid-Attenuated
Inversion Recovery (FLAIR) MR images. To increase the number of images in the training phase,
the images were first segmented. Then both the raw and segmented images were fed into the model as
inputs. In the first model, a simple DCNN with five blocks was used. In the second DCNN architecture,
clinical information such as patients’ age and resection status was added as extra features into the final
FC layer of the model. However, the models’ performance results were not satisfactory. When the
extracted features from the second DCNN model (as deep features) were combined with additional
clinical information such as tumors intensity, location, and shape, and an Support Vector Classifier
(SVC) was used as a final predictive model it led to better prediction results. Their final model was
called Ensemble SVC and achieved a survival rate prediction with 0.42 accuracy on the test samples.

Banerjee et al. [48] proposed three distinct DCNN architectures trained on MR images to distinguish
between HGG and LGG. These models are trained on extracted patches from MRIs, simple slices,
and 3D volumetric multiplanar slices and called PatchNet, SliceNet, and VolumeNet, respectively.
To maintain a high number of samples in the training phase and assess all proposed models in the
testing phase, the scheme leave-one-patient-out was used. The dataset used in this work includes
491 T1, T1c, T2, and FLAIR MR images of HGG and LGG samples collected from the TCIA public data
centre. PatchNet is shallower than the other two models and because of the bigger size and complexity
of input images in SliceNet and VolumeNet, they are deeper. The results indicate that the deepest
DCNN architecture i.e., VolumeNet trained on the 3D volumetric dataset achieves better classification
results with a classification accuracy of 0.97 on the test dataset.

Afshar et al. [49] designed and implemented a classifier based on CapsNets to classify three types
of brain cancer tumors. The proposed network used a dataset including 3064 T1-weighted MR images
related to Meningioma, Glioma, and Pituitary tumors. The CapsNets outperformed traditional DCNNs
considering they can better handle overfitting problems caused by insufficient training instances.
In this work, the proposed CapsNet was applied to brain segmented regions and brain whole images as
their model inputs. Eventually, the CapsNet was determined to perform better on segmented tumors
with a classification accuracy of 0.86.
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2.3. DCNNs Application in the Classification of Brain Cancer H&E Histology and MR Images

Bagari et al. [50] put forward a novel DCCN approach by using both H&E WSIs and MR images to
classify low-grade gliomas into categories of Astrocytoma and Oligodendroglioma. The dataset used in
this work contains 30 and 20 different patients in the training and testing phase, respectively. All patients
have both MR and H&E histological images. First, preprocessing stages such as RoI extraction from
H&E histological images, patch extraction, and stain normalization were used. Then, an autoencoder
detected abnormal patches among all patches, and finally, a DenseNet-based architecture was applied
to the abnormal patches to distinguish Astrocytoma tissues from Oligodendroglioma tissues. Next,
a trained 3D DCNN model was applied on MR images including FLAIR, T1, T1C, and T2 MR sequences
to segment the tumor lesions. Then, another DCNN architecture extracts the principal features from
segmented tumors and feeds them as inputs to a logistic linear regression classifier. Finally, the classifier
detects the type of low-grade glioma tumors and combines the results with the previous classifier
and results in the total performance of the model. Their combined approach achieved a classification
accuracy of 0.9.

All information related to the classification/prediction task mentioned above is summarized in
Table 1. We have also depicted in Figure 1 the main steps of this part as a roadmap for researchers who
are going to apply DCNNs in their future work for the classification task.
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Table 1. DCNN-based classifiers brief description (sorted by year published/DCNN performance).

Ref.

Year

Task Tumor Type Image Type Model Name Model Desc. Software Hardware Dataset Instances/
Cases Perf.

[26] **

2020

C
lassification

– Glioma
– Meningioma
– Pituitary
– Glioblastoma

MRI Six DCNN
Architectures *

A prospective
survey on Deep

Learning
techniques applied

for Multigrade
Brain Tumor
Classification

– Caffe
– NVidia DIGITS

NVidia TITAN X
(Pascal)

– multigrade brain
tumor [51]

– Brain tumor public
data Set [52]

– TCIA [53]
– BraTS 2015 [54]
– Harvard

whole-brain Atlas
[55]

– Internet Brain
Segmentation
Repository [56]

– 121
– 3064
– 49
– 274
– 30
– 18

– Accuracy: 0.93
(Achieved by
VGGNet [33] on
multigrade brain
tumor [51])

– Accuracy: 0.94
(Achieved by
VGGNet [33] on
brain tumor public
data [52])

[24] **

2020

C
lassification

– Astrocytoma
– Mixed-glioma
–

Oligodendroglioma
– Glioblastoma

H&E Histology DeepSurvNet

Brain cancer
patients’ survival
rate classification

by using deep
convolutional

neural network

– Python
– TensorFlow
– Keras

4xNVidia 1080 Ti
GPU

– TCGA [57]
– Private dataset

– 400
– 9

– Precision: 0.99
– Precision: 0.80

[28] **

2020

Prediction

– GBM
– LGG
– Gliomas (Grade

II to IV)

H&E Histology GAN-based
ResNet50 *

Gliomas’ IDH
status prediction

by using the GAN
model for data

augmentation and
Resnet50 as a

predictive model

– Python
– TensorFlow N/A

– TCGA [57]
– Privatedataset

– 200
– 66

– Accuracy: 0.88
– AUC: 0.93

[36]

2020

C
lassification

– Glioma
– Meningioma
– Pituitary

MR (T1 weighted
contrast-enhanced)

18 layers
DCNN *

Meningioma,
glioma, and

pituitary tumors
classification by
using 18 layers
DCNN-based
model on MR

images

N/A

– Intel
Core-I7 processor

– 16 Gb RAM

Brain tumor public
dataset [58] 3064

– Accuracy: 0.99
– Sensitivity: 0.98

[38]

2020

C
lassification

– Glioma
– Meningioma
– Pituitary

MR (T1 weighted
contrast-enhanced)

22 layers
DCNN *

Meningioma,
glioma, and

pituitary tumors
classification by
using 22 layers
DCNN-based

model based on
MR images

MATLAB R2018a NVidia 1050 Ti GPU Brain tumor public
dataset [58] 3064 Accuracy: 0.96



J. Pers. Med. 2020, 10, 224 9 of 27

Table 1. Cont.

Ref.

Year

Task Tumor Type Image Type Model Name Model Desc. Software Hardware Dataset Instances/
Cases Perf.

[37] **

2020

C
lassification

– LGG
– HGG MR (T2 weighted) FLSCBN

Tumor vs
non-tumor

classification by
using a five layers

DCNN-based
model on MR

images

– Python
– TensorFlow
– Keras

– Intel
Core-I5 processor

– 4GB RAM

– BraTS2013 [59]
– WBA [60]

– 4500
– 281

– Accuracy: 0.89
– FA: 0.3
– MA: 0.7

[22] **

2020

C
lassification

– LGG
– HGG

MR (T1-Gado or
T1-weighted) 3-D DCNN

11 layers 3-D
DCNN-based

model to classify
glioma tumors
into LGG and

HGG using the
T1-weighted MR

images

– Python
– TensorFlow
– Keras

– Intel
Core-I7 processor

– 19.5 GB RAM
– NVIDI1080

Ti GPU

BraTS2018 [61] 351 Accuracy: 0.96

[34] **

2019

C
lassification

Glioma MRI
AlexNet;

Linear Support
Vector Machine

Identify IDH and
pTERT mutations

using age,
radiomic features,
and tumor texture

features

Caffe N/A Not Publicly Available 164 Accuracy: 63.1%

[29]

2019

C
lassification

– Normal
– Benign
–

Oligodendroglioma
– GBM

H&E Histology

INRV2-based
deep spatial

fusion network
*

A mixed DCNN
architecture
combining

InceptionResNetV2
and deep spatial

fusion network to
classify four

different kinds of
brain tumors

based on H&E
images

PyTorch NVidia 1080 Ti GPU TCGA [57]
TCIA [53]

– 2034
– 2005

– Accuracy#1: 0.95
– Accuracy#2: 0.99

[39]

2019

C
lassification

– Glioma
– Meningioma
– Pituitary

MR (T1 weighted
contrast-enhanced) G-ResNet

Meningioma,
glioma, and

pituitary tumors
classification by

using a
ResNet34-based

model with global
average pooling

and modified loss
function based on

MR images

PyTorch NVidia 1080 Ti GPU Brain tumor public
dataset [58] 3064 Accuracy: 0.95
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Table 1. Cont.

Ref.

Year

Task Tumor Type Image Type Model Name Model Desc. Software Hardware Dataset Instances/
Cases Perf.

[40]

2019

C
lassification

– Metastasis
– Meningioma
– Glioma
– Astrocytoma

MR (T1, T2, and T2
flair) MDCNN

Metastasis,
Meningioma,
Glioma and

Astrocytoma
tumors

classification using
a modified DCNN

with reduced
computational

complexity based
on MR images

N/A N/A Brain tumor private
dataset [62] 220 Accuracy: 0.96

[30]

2018

C
lassification

– GBM
– LGG H&E Histology Deep CNN

GBM and LGG
classification by

using
DCNN-based

model based on
H&E Histological

images

– Python
– TensorFlow

– NVidia 1080
Ti GPU

– Intel
Core-I7 processor

– 32 GB RAM

TCGA [57] 200 Accuracy: 0.96

[50]

2018

C
lassification

– Astrocytoma
–

Oligodendroglioma

H&E Histology;
MR FLAIR, T1, T1C,

and T2 images

A combined
DCNNs-based

network *

Astrocytoma and
Oligodendroglioma

classification by
using

DCNN-based
model based on

both MR and
Histological

images

N/A N/A Private dataset 50 Accuracy: 0.90

[43]

2018

C
lassification

– Glioma
– Meningioma
– Pituitary

MR (T1 weighted
contrast-enhanced) KE-CNN

Meningioma,
glioma, and

pituitary tumors
classification by
using a mixed
approach of
DCNN and

extreme learning
based on MR

images

N/A N/A Brain tumor public
dataset [58] 3064 Accuracy: 0.93
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Table 1. Cont.

Ref.

Year

Task Tumor Type Image Type Model Name Model Desc. Software Hardware Dataset Instances/
Cases Perf.

[44]

2018

C
lassification

Public dataset:

– Glioma
– Meningioma
– Pituitary
– Private dataset:
– Normal
– Meningioma
– Glioma
– Metastasis

– MR (T1 weighted
contrast-enhanced);

– MR FLAIR, T1,
T1C, and
T2 images

DenseNet-LSTM

– Meningioma,
glioma, and
pituitary
tumors
classification
by using
DenseNet-LSTM
based on
MR images

– Normal
lesion and
Meningioma,
Glioma, and
Metastasis
tumors
classification
by using
DenseNet-LSTM
based on
MR images

– Python
– TensorFlow

Nvidia Titan Xp
GPU

– Public dataset [58]
– Private dataset

– 3064
– 422

– Accuracy: 0.92
– Accuracy: 0.71

[41]

2018

C
lassification

– Glioma
– Meningioma
– Pituitary

MR (T1 weighted
contrast-enhanced) CapsNet

Meningioma,
Glioma, and

Pituitary tumors
classification by

using a developed
CapsNet

architecture based
on MR images

– Python
– Keras N/A Brain tumor public

dataset [58] 3064 Accuracy: 0.91

[49]

2018

C
lassification

– Glioma
– Meningioma
– Pituitary

MR (T1 weighted
contrast-enhanced) CapsNet

Meningioma,
Glioma, and

Pituitary tumors
classification by

using a developed
CapsNet

architecture based
on MR images

N/A N/A Brain tumor public
dataset [58] 3064 Accuracy: 0.86

[42]

2018

C
lassification

– Tumor (N/A)
– Non-Tumor

(normal)
MR Pre-trained

DCNN

Brian tumors vs
nontumors

classification by
using a pretrained
DCNN based on

MR images

Python N/A
– Radiopaedia [63]
– BraTS2015 [64] N/A Accuracy: 0.97
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Table 1. Cont.

Ref.

Year

Task Tumor Type Image Type Model Name Model Desc. Software Hardware Dataset Instances/
Cases Perf.

[45]

2018

C
lassification)

– Normal
– GBM
– Sarcoma
– Metastasis

MR (T2 weighted) DWT-DNN *

Normal lesion and
GBM, Sarcoma,
and Metastasis

tumors
classification by

using DWT-DNN
based on MR

images

–
MATLAB R2015a

– WEKA 3.9
N/A Public dataset [65] 66

– Precision: 0.97
– AUC: 0.98

[46]

2018

C
lassification

– Benign
– Malignant MR (T1 weighted) DCNN vs

ELM-LRF *

Benign vs
malignant tumors
classification by

using DCNN and
ELM-LRF models

on MR images

MATLAB R2015a N/A Public dataset [66] 16
– Accuracy: 0.96
– Accuracy: 0.97

[47] **

2018

Prediction

GBM MR (T1-weighted, T1c,
T2-weighted, FLAIR) SVC Ensemble

GBM patient
survival rate

classification by
using two different

DCNN models
based on MR

images

Python Nvidia Titan Xp
GPU BraTS2018 [61] 293 Accuracy: 0.42

[48]

2018

C
lassification

– GBM
– LGG

MR (T1-weighted, T1c,
T2-weighted, FLAIR)

– PatchNet
– SliceNet
–

VolumeNet

GBM and LGG
classification by

using
DCNN-based

models based on
MR images

– Python
– TensorFlow
– Keras

– NVidia
1080 GPU

– Intel
Core-I7 processor

– 32 GB RAM

– TCGA-GBM [67]
– TCGA-LGG [68]
– TCIA [53]

461 Accuracy: 0.97

[35] **

2018

C
lassification

Glioma MRI ResNet50

Identify IDH1/2
mutations in

glioma grades
II-IV using
ResNet50

– Kera
– Tensorflow N/A

From Hospital of the
University of

Pennsylvania, Brigham
and Women’s Hospital,

The Cancer Imaging
Center,

Dana-Farber/Brigham
and Women’s Cancer

Center

603, 414, 471
(With respect

to sources)
Accuracy: 85.7%

* Model names with asterisks are not defined in the original papers and names were assigned based on the models applied. Note: for abbreviations description in this table please refer to
the list of abbreviations on the back partof this article (before References). ** the references with “**” mean that the results achieved by their methods or the dataset used have been
validated/supervised by specialists (e.g., pathologists/radiologist).
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Working and manipulating brain cancer images to recognize the hidden features inside the
images and subsequently detect/classify/predict relevant diseases are extremely essential for clinicians,
and noninvasive methods including CNN-based classifiers can do this task very well. In general,
CNN-based classifiers might be applied to three different kinds of brain cancer images including H&E
histology, MR, or both. These classifiers can categorize various brain tumor types or predict biomarker
status and patients’ survival rate based on the features inside the images. Hence, two separated
and important parts can be considered to achieve the best results: preprocess and CNN architecture.
Based on the various studies that we completed, some steps which play important roles in the
preprocessing part include patch extraction, abnormal patch detection/selection, intensity normalization,
contrast enhancement, and background removing. Overall, there is no best practice to recommend
one or several steps in the preprocessing phase and researchers have to try many experiments to find
the best results. However, studies show that data augmentation techniques to expand the number
of data samples as model inputs have successfully helped the CNNs to achieve higher accuracy.
In the second part, CNN models can be first trained to extract features from brain cancer images,
and then, those feature vectors along with patients’ clinical data together make a numerical dataset.
Afterwards, some linear regression models or nonlinear machine learning methods use this dataset to
classify/predict relevant biomarker status, survival rate, or brain tumor types. However, It would be
simpler to directly apply CNNs as a classifier or predictive model (Figure 1).

3. DCNNs Application in the Segmentation of Brain Cancer Images

In this section, the application of DCNNs to extract the most important features from different
kinds of brain cancer images for detection/segmentation task is explained. For this purpose and more
simplicity, we have divided this part into three subsections where in each one a specific image type i.e.,
H&E histology, MRI, or CT, is explored.

3.1. DCNNs Application in the Segmentation of Brain Cancer MR Images

Ismael et al. [69] applied the DCNN ResNet50 architecture to segment glioma, meningioma,
and pituitary tumor tissues of 3064 MRI images from 233 patients. ResNet50 uses skip connections to
avoid gradient degradation, and thereby enables training of much deeper networks than previously
thought possible. Due to limited sample in the training dataset, data augmentation was used to
generate additional training data to improve results. As the distribution of segmented classes is not
uniform, accuracy alone is not a suitable measure of performance. Instead, a combination of accuracy,
precision, recall, F1-score, and the balanced accuracy were used, which were 97%, 98%, 97%, 97%,
and 97%, respectively, at a patient-level.

Maharjan et al. [70] propose an enhanced softmax loss function. The model was applied to
glioma, meningioma, and pituitary tumor segmentation of 3064 MRI images. The resulting loss
function utilizes regularization and is far more suitable for multiclass classification than traditional
loss functions. This difference helps avoid overfitting when compared to the traditional sigmoid loss
function. Using the enhanced softmax loss function, the accuracy was improved to 99.54% 98.14%,
and 98.67% for meningioma, glioma, and pituitary tissues, respectively. Regularization also improved
runtime by 40–50 ms per sample.

A novel brain tumor segmentation architecture was proposed by Vijh et al. [71] that employs
a blend of Otsu thresholding, Adaptive Particle Swarm Optimization (APSO), and morphological
operations in the skull stripping preprocessing steps. Skull stripping removes noncerebral tissue not
needed for analysis and is a crucial step in neurological imaging. Once preprocessed, 19 features
(cluster prominence, cluster shade, contrast, etc.) are extracted from the cerebral tissue image
using GLCM (Grey Level Co-occurrence Matrix). These features are passed into a densely connected
three-layer CNN. The model yields 98% accuracy applied to the Internet Brain Segmentation Repository
(IBSR) dataset, which consists of 18 samples of various tumor types.
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Rani et al. [72] propose a method that utilizes adaptive thresholding and high boost convolution
filtering to segment brain tumors. Preprocessing steps first extract 2D slices from the 3D MRI scans
and any grainy noise is filtered using averaging techniques. The preprocessed dataset is input into the
segmentation state which applies Region Growing & Local Binary Pattern (LBP) operators to build
a feature vector. This is then fed into the mask generation stage that applies the Fuzzy C-Means
Algorithm, Otsu Thresholding, and high boost convolution filtering to extract the high energy glioma
regions. The resulting model scored 87.20% for HGG on 210 samples and 83.77 for LGG on 75 samples.

Deng et al. [73] propose a novel architecture to segment FLAIR, Tc1, and T2 images from the
BraTS2013 and 2015 datasets of over 270 HGG and LGG scans. The architecture composes HCNN and
CRF-RRNN models to segment. The HCNN creates image slices at mixed scales to better leverage
location and context at a greater scale. The HCNN model also fuses axial, coronary, and sagittal images.
The CRF-RRNN takes the output of the HCNN and produces a global segmentation based on the slices
input into the HCNN. The resulting model scored 98.6% accuracy.

Deng et al. [74] improve upon the FCNN network. Batch normalization is added to the network to
improve computational performance. The addition of Dense Micro-block Difference features also assist
with spatial consistency. Utilizing Fisher vector encoding methods better invariance to texture rotation
and scale. The model achieved 91.29% average Dice score on the BraTS2015 dataset on 220 HGG and
50 LGG scans.

Kumar et al. [75] propose a 3D CNN architecture that focuses on correcting intensity inhomogeneity.
This is achieved through a preprocessing step that utilizes a novel N3T-spline to correct bias field
distortion for reducing noise and intensity variation in the 3D scans. The N3T-spline utilizes the
standard N3 (nonuniformity non-parametric normalization) framework but uses a T-spline smoothing
strategy. A grey level co-occurrence matrix (GLCM) layer extracts feature vectors from the preprocessed
scans. The feature vectors are input into the novel 3D CNN and a simple thresholding scheme is
applied to correct false labels and any other undesired noise. The resulting model scored competitively
on the BraTS2015 dataset. The dataset consists of 220 HGG scans and 50 LGG scans.

Mittal et al. [76] propose an architecture utilizing Stationary Wavelet Transform (SWT) and Growing
Convolution Neural Network (GCNN) to segment neurological images. The model preprocesses input
with Wiener filtering and Otsu Thresholding to remove noise and convert to a binary image. A novel
skull stripping algorithm is proposed that leverages blob detection and labelling methods to more
effectively remove skill, fat, and skin from the regions of interest. Once the images are preprocessed,
features are extracted with SWT and classified with a Random Forest implementation. The GCNN then
encodes the classified features into a segmented output. The model was able to achieve an Structural
similarity (SSIM) score of 98.6% on the BRAINIX dataset of 2457 scans.

Mittal et al. [77] composed a dataset of MRI scans of Glioma, Meningioma, Pituitary, and Negative
brain tumor results. The dataset was used to evaluate the performance of several common pre-trained
CNN architectures (simple CCNs, VGG, and Xception). Next, several of the pretrained models
were fused together in a composite architecture, specifically using simple CNNs, Xception, VGG16,
and VGG19. To avoid overfitting, augmented data was utilized in some branches of the architecture,
scaling the dataset from 1167 to 5835 samples. The composite architecture achieved an accuracy
of 98.89%.

Thillaikkarasi et al. [78] proposed a deep learning model to classify and segment MRI scans.
Images are first preprocessed with LoG and Contrast Adaptive Histogram Equalization (CLAHE)
filters. Preprocessed scans are fed into a Spatial Gray Level Dependency Matrix (SGLDM) and
the following features are generated: contrast, mean, variance, entropy, energy and homogeneity.
The feature set is input into a multiclass-SVM (M-SVM) and the MRI scan is classified as abnormal or
normal. Abnormal images are then input into a CNN to segment brain tumors from healthy tissues.
The resulting model scored 84% accuracy on 40 MRI scans.

Sharma et al. [79] proposed a novel skull stripping algorithm that utilizes Differential Evolution
(DE) and Otsu Thresholding. The algorithm first normalizes the input images and applies a Gaussian
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filter. Next, a global threshold is calculated and iteratively optimized using Otsu Thresholding and DE
method. Morphological operations are then applied to extract the neurological tissues. Features are
extracted from the preprocessed images with GLCM. The features used in this model are contrast,
energy, entropy, correlation, standard deviation. The feature set is used to train the CNN with the
Network Fitting Tool (nf-tool). The model is trained on the IBSR dataset, containing 18 samples of
various tumors, and the MS-Free dataset, containing 38 tumor free samples. The model is able to
achieve 94.73% accuracy.

Kong et al. [80] expand on the traditional UNet architecture and propose the Hybrid Pyramid
U-Net model (HPU-Net). Key additions are batch normalization to the downsampling component
of the network to help combat vanishing gradient during the training process. This is particularly
important for brain tumor segmentation to avoid missing any small lesions that would otherwise
be missed. In the upsampling component, bilinear interpolation is used in favour of convolution
transposing of convolutional layers as to not add additional parameters. Additionally, semantic and
location features are emitted in each upsampling block and combined to capture multiscale information.
This effectively creates a feature pyramid to capture brain tumor lesions with multiscale shapes and
sizes. The resulting network was trained on BraTS2015 and BraTS2017 on a collective 430 HGG and
145 LGG images. The network achieved 71% and 80% Dice score, respectively.

Benson et al. [81] apply a modified Hourglass Network to brain tumor segmentation.
The original Hourglass Network is an encoder–decoder architecture with several residual blocks.
Through experimentation, it was determined that using five downsampling layers instead of seven
performed better and was computationally less intensive. A single residual block per level was used
instead of two. It was also determined that concatenating layers followed by a 1x1 convolution layer
outperformed the original element-wise summation, despite additional memory usage. The resulting
architecture yielded 92% accuracy on BraTS2018 of 210 HGG and 75 LGG scans.

Zhou et al. [82] propose an ensemble network with several variations on Model Cascade (MC) Net
and One-Pass Multi-Task (OM) Net. Modifications made to the MC-Net include an additional series of
nested and dense skip layers to improve the feature map coverage of the encoder-decoder architecture.
Another MC-Net variation includes adding multiscale contextual information by including inputs
at different scales to more effectively extract semantic features at different resolutions. Variations of
the OM-Net include making a deeper model by appending an additional residual block to the
original OM-Net. Variations to both networks include adding “Squeeze-and-Excitation” (SE) attention
mechanisms to adaptively model interdependencies between channel-wise features. This effectively
increases sensitivity to informative features and decreases sensitivity to others. Each model and
variation were separately trained and then ensembled into a single model. The resulting model
achieved 90% accuracy on whole tumor segmentation on the BraTS2018 dataset, consisting of 210 HGG
and 75 LGG scans.

Dai et al. [83] implement an ensemble model consisting of a modified U-Net model and a Domain
Adaptive U-Net (DAU-Net) model. The modified U-Net uses five residual blocks in both the encoding
and decoding components of the network. Group normalization is also applied to add stability
given small batches. The DAU-Net is structurally the same as the modified U-Net except instance
normalization is applied instead since it is experimentally shown to boost domain adaptation. In total,
nine variations of the mentioned models were trained with varying preprocessing techniques and
fused together using XGBoost. The model was trained on BraTS2018 consisting of 210 HGG and
75 LGG scans. The resulting ensemble network scored 91% accuracy on whole tumor segmentation.

Kermi et al. [84] proposed a network based on the U-Net architecture. The modified architecture
introduces three residual blocks in both the encoding and decoding phases of the architecture. Unlike the
original U-Net blocks, each encoding block uses batch normalization and a Parametric Rectified Linear
Unit (PReLU). A convolution layer with a stride of two is applied for downsampling. The novel
U-Net architecture achieved an 86.8% Dice score on the BraTS2018 dataset consisting of 210 HGG and
75 LGG images.
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Mlynarski et al. [85] extend the classic U-Net model to train with “mixed supervision”.
Mixed supervision is defined as a dataset with some images fully-annotated (pixel-wise ground
truth segmentation) and weakly-annotated (image-level label denoting the presence of a tumor).
The model was trained with 210 HGG and 75 LGG fully annotated MRI scans from the BraTS2018
dataset. As a result, the extended U-Net now has an additional subnetwork that performs image-level
classification that determines if the scan has a tumor or not. The additional subnet allows the network
to exploit additional samples that are only weakly-annotated. The extended model is also expanded
to the multiclass problem to segment several classes of interest: nontumor, contrast-enhancing core,
edema, nonenhancing core. The proposed model was shown to output a more accurate segmented
image when provided weakly annotated samples.

Wang et al. [86] introduce a unique architecture Brain Image-specific Fine-tuning Segmentation
(BIFSeg) to address zero-shot learning in medical image segmentation. Zero-shot learning is the
machine learning problem when the model encounters classes not observed during training. BIFSeg,
based on the P-Net architecture, takes a bounding box as user input localized to the desired tumor core.
Once segmented, further optional user input as scribbles can be used to fine-tune the segmentation.
When applied to BraTS2015, the model achieved 86.29% Dice score on 220 HGG and 50 LGG scans.

3.2. DCNNs Application in the Segmentation of Brain Cancer CT Images

Monteiro et al. [87] applied a 3D CNN architecture to Traumatic Brain Injury (TBI) CT scans to
achieve voxel-wise segmentation into multiclass lesions. The methodology was to first train the CNN
on CENTER-TB1 Dataset 1 for initial results & weightings. Then, the CENTER-TB1 Dataset 2 was
incorporated and some segmentations were manually corrected. The resulting model was then applied
to the CQ500 dataset and achieved a 94% AUC accuracy on over 1000 combined CT scans. Though the
overall accuracy of this model is slightly lower than other state-of-the-art models, the proposed model
has the added ability to distinguish between different lesion types and progression to better understand
and personalize care, which is very important in traumatic brain injuries.

3.3. DCNNs Application in the Segmentation of Brain Cancer H&E Histology Images

A standard histopathology scan is on the range of 100,000 × 100,000 pixels. This large scale
makes training such models very difficult. Xu et al. [88] proposed a unique approach to supporting
classification and segmentation on said large-scale brain tumor histopathology. Their architecture
extracts 112 × 112 patches from the original image. The set of patches becomes the input to the
ImageNet LSVRC 2013 architecture, generating a 4096-dimensional feature vector per extracted patch.
Feature vectors are pooled into a linear SVM classifier to produce probability maps to distinguish
necrosis from healthy tissue. The resulting architecture yielded 84% accuracy on the MICCAI 2014
dataset, consisting of 35 samples.

All information related to the segmentation task mentioned above is summarized in Table 2.
We have also depicted in Figure 2 the main steps of this part as a roadmap for researchers who are
going to apply DCNNs in their future work for the segmentation task.
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Table 2. DCNN-based segmentation models brief description (sorted by year published//DCNN performance).

Ref

Year Tumor Type

Task Model Name Image Type Model Desc. Software Hardware Dataset Instances Performance

[70] **

2020

Glioma,
Meningioma,

Pituitary

Segm
entation

ELM-LRF MRI
Implemented an enhanced softmax
loss function that is more suitable

for multiclass applications.
Python 3.6; Keras

– 2.8 GHz Intel Core i7
7th gen processor with
16 GB RAM and 4 GB

– NVIDIA 1050 memory

Brain Tumor
Dataset [58] 3064

99.54%,
98.14%,
98.67%

(Per Tumor
Type)

[69]

2020

Glioma,
Meningioma,

Pituitary

Segm
entation

ResNet50 MRI
Glioma, meningioma, and pituitary

tumor segmentation with the
ResNet50 architecture.

– Python 3.6;
Keras 2.2.4;

– Tensorflow
1.13

– NVIDIA GeForce
RTX 2070

– GPU; Intel i5-9600K @
3.7 GHz and 16
GB RAM

Brain Tumor
Dataset [58] 3064 99%

[73]

2020

Glioma

Segm
entation

HCNN; CRF-RRNN MRI

The composite architecture of
HCNN to capture mixed scale

context and CRF-RRNN
reconstruct a global segmentation.

N/A N/A

– BraTS2013
[59]

– BraTS2015
[64]

220 HGG;
50 LGG 98.6%

[74]

2019

Glioma

Segm
entation

FCNN; DMD MRI

Enhanced FCNN with batch
normalization and DMD features to
provide spatial consistency. Fisher
vector encoding method for texture

invariance to scale and rotation.

Caffe

– CPU Intel Core i7
– 3.5GHz, GPU NVIDIA

GeForce GTX1070
BraTS2015 [64] 220 HGG;

50 LGG 91%

[86] **

2018

Glioma

Segm
entation

P-Net; PC-Net MRI

Addresses zero-shot learning by
taking user input bounding boxes

and scribbles to
fine-tune segmentations.

Caffe

– 2 8-core
E5-2623v3 Intel

– Haswell, a K80
NVIDIA GPU and
128GB memory

BraTS2015 [64] 220 HGG;
50 LGG 86.29%

[75]

2019

Glioma

Segm
entation

FCNN MRI

A novel N3T-spline utilizes is used
to preprocess 3D input images.

GLCM extracts feature vectors and
are inputs into a CNN.

MATLAB R2017a N/A BraTS2015 [64] 220 HGG;
50 LGG N/A

[71]

2020

N/A

Segm
entation

3-layer DCNN * MRI

Utilized Otsu thresholding to create
a novel skull stripping algorithm.

GLCM and a three-layer CNN
segments the stripped images.

MATLAB R2018b N/A IBSR [89] 18 98%
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Table 2. Cont.

Ref

Year Tumor Type

Task Model Name Image Type Model Desc. Software Hardware Dataset Instances Performance

[72]

2020

Glioma

Segm
entation

Automatic Detection
and Segmentation of

Tumor (ADST) *
3D MRI

Region Growing and Local Binary
Pattern (LBP) operators are used to

build a feature vector that is
then segmented

N/A N/A BraTS2018 [61] 210 HGG;
75 LGG

87.20% for
HGG; 83.77

for LGG
(Average
Jaccard)

[81] **

2019

Glioma

Segm
entation

Hourglass Net MRI
Enhanced Hourglass Network with

added residual blocks and novel
concatenation layers.

N/A NVIDIA TITAN X GPU BraTS2018 [61] 210 HGG;
75 LGG 92%

[83] **

2019

Glioma

Segm
entation

XGBoost; U-Net;
DAU-Net (Domain
Adaptive U-Net) *

MRI

Implementation of a U-Net
variation using instance
normalization to boost

domain adaptation.

PyTorch 4 NVIDIA Titan Xp GPU
cards BraTS2018 [61] 210 HGG;

75 LGG
91% (Whole

Tumor)

[82]

2019

Glioma

Segm
entation

MC-Net; OM-Net MRI

Ensemble network of several
MC-Net and OM-Net variations.

Attention mechanisms are added to
increases sensitivity to relevant
channel-wise interdependencies

N/A N/A BraTS2018 [61] 210 HGG;
75 LGG

90% (Whole
Tumor)

[84] **

2019

Glioma

Segm
entation

U-Net MRI

The U-Net variation that uses batch
normalization and residual blocks

to improve performance on
neurological images.

N/A

– Intel Xeon E5-2650
CPU@ 2.00 GHz (64
GB) and
NVIDIA Quadro

– 4000–448 Core CUDA
(2 GB) GPU

BraTS2018 [61] 210 HGG;
75 LGG

86.8%
(Whole
Tumor)

[85]

2019

Glioma

Segm
entation

U-Net MRI

Extension of the U-Net to train with
“mixed supervision”, meaning both

pixel-wise & image-level ground
truths to achieve

superior performance.

N/A N/A BraTS2018 [61] 210 HGG;
75 LGG

N/A for the
entire dataset



J. Pers. Med. 2020, 10, 224 19 of 27

Table 2. Cont.

Ref

Year Tumor Type

Task Model Name Image Type Model Desc. Software Hardware Dataset Instances Performance

[77]

2019

Glioma,
Meningioma,
Pituitary, and

Negative

C
lassification

– CNN,
– Xception,

VGG16, VGG19
MRI

Several of the pre-trained models
(simple CNNs, Xception, VGG16,

and VGG19) were fused together in
a composite architecture.

Keras N/A N/A 1167 98.89%

[87] **

2020

TBI (Traumatic
Brain Injury)

Segm
entation

CNN CT
3D CNN architecture to create

voxel-wise segmentation of TBI
CT scans.

N/A N/A
CENTER-TBI

(Datasets 1 & 2)
[90]; CQ500 [91]

539; 500
(Patients) 94%

[78]

2019

N/A

Segm
entation

M-SVM;
CNN MRI

SGLDM and M-SVM are applied to
extract and classify MRI scans.

CNN is then applied to segment
the extracted feature vectors.

N/A N/A N/A 40 84%

[76]

2019

N/A

Segm
entation

SWT; GCNN MRI

Dataset is preprocessed with a
novel skull stripping. Features are
extracted with SWT, classified with
a Random Forest implementation

and finally segmented with GCNN.

N/A N/A BRAINIX [92] 2457 98.6% (SSIM
Score)

[80] **

2018

Glioma

Segm
entation

U-Net MRI
HPU-Net enhances the traditional
U-Net with multiscale images and

image pyramids.
Keras; Tensorflow NVIDIA Titan X GPU

– BraTS2015
[64]

– BraTS2017
[93]

430 HGG;
145 LGG

71% and 80%
(Respective
to dataset)

[88] ** 2015 Glioma

Segm
entation

ImageNet LSVRC 2013 H&E
Histology

Patches are extracted from large
histopathology scans and passed

into ImageNet LSVRC 2013
architecture. Linear SVM classifier

pools extracted feature vectors.

N/A N/A MICCAI 2014
[94] 35 84%

* Model names with asterisks are not defined in the original papers and names were assigned based on the models applied. Note: For abbreviations description in this table please refer to
the list of abbreviations on the back part of this article (before References). ** the references with “**” mean that the results achieved by their methods or the dataset used have been
validated/supervised by specialists (e.g., pathologists/radiologists).
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Figure 2. Shows suggested roadmap and stages of a typical brain tumor segmentation Architecture
with the following high-level steps: 1. Input: magnetic resonance (MRI) and computed tomography
(CT) scans are input into the model; 2. Preprocessing: apply several techniques to normalize images,
remove noise, and filter irrelevant components; Step 3: Deep Convolutional Neural Network (DCNN)
Application: The preprocessed dataset is fed into a DCNN model the extract features for segmentation,
with localization a key component; 4. Output Images: Specifies the result of the segmentation model.

As explored in the several studies, methods for detecting and segmenting brain tumor tissues can
take several forms. In general, architectures follow the following three stages: preprocess, segmentation,
and postprocess. In the preprocessing stages, several techniques have proven successful including Otsu
thresholding, patch extraction, noise reduction, morphological operations, and intensity normalization.
Outside of these standard processes, several novel extensions of these standard practices have been
developed including variations on Otsu thresholding. Furthermore, during the training segmentation
models, data augmentation techniques have been successful to expand limit datasets to make deep
learning feasible. Several models and variations on classic models including Xception Net, U-Net,
and SVM with very promising outputs result in brain tumor detection and segmentation (Figure 2).

4. Discussion

As seen in the many articles that we have reviewed, DCNNs with classification and segmentation
architectures have proven to be very powerful and effective when applied to medical imaging in
retrospective studies. Specifically, it has been demonstrated that using pretrained models and transfer
learning from generic applications to medical imaging applications saves time and achieves better
model performance. In particular, when applied to the analysis of histopathological and MR images
for brain cancer and is useful as a predictive tool for analysis of patients’ survival and their correlation
with cancer genetic signatures. The reviewed literature provides a roadmap for future classification and
segmentation methods and provides examples of their different type of applications. Although there
is no best practice or specific guidelines to design and implement DCNN-based classification or
segmentation models, some studies reviewed have proved that by applying preprocessing stages such
as data augmentation, background removing, noise reduction, intensity normalization, and patch
extraction, as well as choosing the appropriate architectures as classification and segmentation models,
the performance of DCNN models might be dramatically increased. Figures 1 and 2 summarize the
most important points recommended by reviewed works to achieve the best results with DCNNs.

5. Challenges and Future Considerations

Deep learning techniques in the medical imaging space come with several challenges. Firstly,
there is currently no agreed-upon framework or methodology for selecting model hyperparameters,
such as weight decay, residual blocks, dropout, number of hidden layers, and image input size.
Instead, hyperparameters need to be determined experimentally. Secondly, within current medical
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imaging, dataset curation requires expensive and time-consuming work to be done by specialists e.g.,
radiologists and pathologists which may not be possible in every circumstance. The resulting datasets
are poor quality and of an insufficient quantity, requiring heavy augmentation to achieve the high
number of samples for DCNNs. Moreover, most of the studies are undertaken using retrospective
datasets which leave uncertainty about the extent to which these models can be applied to newly
generated data and whether this newly generated data can be used for training and testing of these
models. Furthermore, it is becoming widely accepted, that at the very early stages of this type of project
(i.e., during the model conception), an often strong, interdisciplinary collaboration between medical
imaging professionals and machine learning experts is required. Image preprocessing techniques,
such as skull stripping and thresholding, are widely used but no standard algorithms or steps have
been defined, even for common datasets or types of medical image. This limits the extent to which
these procedures can be applied by nondeep learning experts. Finally, DCNN models applied to
segmentation and classification analysis of biomedical imaging have not been extensively integrated
with all the available clinical metadata. For example, TCGA data sets contain patient demographics
data, tumor RNAseq data, survival data, as well as pathology and RNAseq images, but relatively little
has been explored in these areas, except for the very few cases detailed in our review.

When considering future directions, despite the advancements of DCNNs, we still face challenges
in translating into clinical practice the use of DCNN-based classification and segmentation methods.
So far, many studies have shown the powerful capacity of DCNN methods but still, we lack prospective
studies that can further validate them. We envisage a future where these methods are incorporated into
clinical trials. These could enable the running and testing of different DCNN models (already created)
and measure their relative efficacy on tumor classification and segmentation. In this regard, we believe
this survey could be an important source of DCNN application to brain cancer images. It could provide
a toolbox for the inclusion of such methods in these studies. As we have seen, classification methods
have been only been applied to a few groups of brain cancer patients (e.g., IDH and mutant). However,
cancer heterogeneity is much more complex, with four subtypes (Proneural, classical, mesenchymal,
and neural, although the neural subtype may be nontumor specific) [95]. Therefore, any uncertainty
regarding the applicability of DCNN models on nonstratified analysis can be overcome by better
designed clinical studies that implement these methodologies. Despite the accuracy of segmentation
approaches increasing significantly, this has not been translated to molecular information regarding
transcriptomic profiles and genetic signatures associated with different tumor regions. If available,
this would permit the determination of the cellular composition of the tumor microenvironment and
tumor-stroma interactions that are important in driving cancer progression. Thus, there are still several
areas that can be improved to be able to translate deep learning methodologies into clinical medicine.
We believe that future studies which address these issues and formulate standard pipelines to deliver
performance and accuracy on reliable datasets will be important to define reference standards for
testing and validating new DCNN approaches.

6. Conclusions

The ability for physicians to quickly and accurately classify and segment brain tumor scans has
never been more important. Breakthroughs in deep learning and DCNN architectures applied to
biomedical radiology have almost brought these functions into practice.

In this study, we have reviewed the most novel research articles on deep learning applied to
medical imaging problems, specifically brain tumor classification and segmentation tasks. The review
has resulted in the creation of a roadmap (summarized in Figures 1 and 2 above) for resolving both
tasks. This can be leveraged by researchers for implementing models of their own. In addition,
Tables 1 and 2 present a compilation of relevant information, applied techniques, deep learning
networks, and DCNN-based models’ performance for the future development of research in this area.
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Abbreviations

AI Artificial Intelligence
ANN Artificial Neural Network
APSO Adaptive Particle Swarm Optimization
AUC Area Under the Curve
BraTS-xxxx Brain Tumour Segmentation Challenge-year
CapsNets Capsule Networks
CLAHE Contrast Adaptive Histogram Equalization
CRF Conditional Random Forest
CT Computed Tomography
DCNN Deep Convolutional Neural Network
DenseNet Densely Connected Convolutional Networks
DMD Dense Micro-block Difference
DNN Deep (Artificial) Neural Network
DWT Discrete Wavelet Transform
ELM Extreme Learning Machines
FA False Alarm
FC Fully Connected
FLAIR T2-Weighted Fluid-Attenuated Inversion Recovery
GAN Generative Adversarial Networks
GBM Glioblastoma
GCNN Growing Convolution Neural Network
GD Gradient Descent
GLCM Grey Level Co-occurrence Matrix
H&E Haematoxylin and Eosin
HCNN Heterogenous Convolution Neural Network
HGG High-Grade Glioma
IDH Isocitrate Dehydrogenase
LBP Local Binary Pattern
LGG Low-Grade Glioma
LoG Laplacian of Gaussian
LRF Local Receptive Fields
LSTM Long Short-Term Memory
MA Missed Alarm
MC-Net Model Cascade Net
ML Machine Learning
MR Magnetic Resonance
M-SVM Multiclass-Support Vector Machine
N/A Not Available
OM-Net One-Pass Multi-Task Net
PCA Principal Component Analysis
Pr Predictive Model
ResNet Residual Network
RNN Recurrent Neural Network
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RoI Region of Interest
RRNN Recurrent Regression-based Neural Networks
SVC Support Vector Classifier
SWT Stationary Wavelet Transform
T1 (T1-Weighted) Longitudinal Relaxation Time
T1c T1-Weighted Post-Contrast
T1-Gado Gadolinium contrast medium in MR images
T2 (T2-Weighted) Transverse Relaxation Time
TBI Traumatic Brain Injury
TCGA The Cancer Genome Atlas
TCIA The Cancer Imaging Archive
WBA The Whole-Brain Atlas
WSI Whole Slide Image
xD x Dimensional
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38. Badža, M.M.; Barjaktarović, M.Č. Classification of Brain Tumors from MRI Images Using a Convolutional
Neural Network. Appl. Sci. 2020, 10, 1999. [CrossRef]

39. Liu, D.; Liu, Y.; Dong, L. G-ResNet: Improved ResNet for brain tumor classification. In International Conference
on Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2019.

40. Hemanth, D.J.; Anitha, J.; Naaji, A.; Geman, O.; Popescu, D.E.; Son, L.H.; Hoang, L. A modified
deep convolutional neural network for abnormal brain image classification. IEEE Access 2018,
7, 4275–4283. [CrossRef]

41. Afshar, P.; Plataniotis, K.N.; Mohammadi, A. Capsule networks for brain tumor classification based on
MRI images and coarse tumor boundaries. In ICASSP 2019—2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP); IEEE: Piscataway Township, NJ, USA, 2019.

42. Seetha, J.; Raja, S.S. Brain tumor classification using convolutional neural networks. Biomed. Pharmacol. J.
2018, 11, 1457. [CrossRef]

43. Pashaei, A.; Sajedi, H.; Jazayeri, N. Brain tumor classification via convolutional neural network and extreme
learning machines. In 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE); IEEE:
Piscataway Township, NJ, USA, 2018.

44. Zhou, Y.; Li, Z.; Zhu, H.; Chen, C.; Gao, M.; Xu, K.; Xu, J. Holistic brain tumor screening and classification
based on densenet and recurrent neural network. In International MICCAI Brainlesion Workshop; Springer:
Berlin/Heidelberg, Germany, 2018.

45. Mohsen, H.; El-Dahshan, E.S.A.; El-Horbaty, E.S.M.; Salem, A.B.M. Classification using deep learning neural
networks for brain tumors. Future Comput. Inform. J. 2018, 3, 68–71. [CrossRef]

46. Ari, A.; Hanbay, D. Deep learning based brain tumor classification and detection system. Turk. J. Electr. Eng.
Comput. Sci. 2018, 26, 2275–2286. [CrossRef]

47. Suter, Y.; Jungo, A.; Rebsamen, M.; Knecht, U.; Herrmann, E.; Wiest, R.; Reyes, M. Deep learning versus
classical regression for brain tumor patient survival prediction. In International MICCAI Brainlesion Workshop;
Springer: Berlin/Heidelberg, Germany, 2018.

48. Banerjee, S.; Mitra, S.; Masulli, F.; Rovetta, S. Brain tumor detection and classification from multi-sequence
MRI: Study using convnets. In International MICCAI Brainlesion Workshop; Springer: Berlin/Heidelberg,
Germany, 2018.

49. Afshar, P.; Mohammadi, A.; Plataniotis, K.N. Brain tumor type classification via capsule networks. In 2018
25th IEEE International Conference on Image Processing (ICIP); IEEE: Piscataway, NJ, USA, 2018.

50. Bagari, A.; Kumar, A.; Kori, A.; Khened, M.; Krishnamurthi, G. A combined Radio-Histological Approach
for Classification of Low Grade Gliomas. In International MICCAI Brainlesion Workshop; Springer:
Berlin/Heidelberg, Germany, 2018.

51. Sajjad, M.; Khan, S.; Muhammad, K.; Wu, W.; Ullah, A.; Baik, S.W. Multi-grade brain tumor classification
using deep CNN with extensive data augmentation. J. Comput. Sci. 2019, 30, 174–182. [CrossRef]

52. Cheng, J.; Huang, W.; Cao, S.; Yang, R.; Yang, W.; Yun, Z.; Wang, Z.; Feng, Q. Enhanced performance of brain
tumor classification via tumor region augmentation and partition. PLoS ONE 2015, 10, e0140381. [CrossRef]

53. Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.;
Pringle, M.; et al. The Cancer Imaging Archive (TCIA): Maintaining and operating a public information
repository. J. Digit. Imaging 2013, 26, 1045–1057. [CrossRef]

54. Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.;
Wiest, R.; et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans.
Med. Imaging 2014, 34, 1993–2024. [CrossRef]

55. Vidoni, E.D. The Whole Brain Atlas: Www. med. harvard. edu/aanlib. J. Neurol. Phys. Ther. 2012, 36, 108.
56. Caldairou, B.; Passat, N.; Habas, P.A.; Studholme, C.; Rousseau, F. A non-local fuzzy segmentation method:

Application to brain MRI. Pattern Recognit. 2011, 44, 1916–1927.

http://dx.doi.org/10.30534/ijatcse/2019/155862019
http://dx.doi.org/10.1002/ima.22433
http://dx.doi.org/10.3390/app10061999
http://dx.doi.org/10.1109/ACCESS.2018.2885639
http://dx.doi.org/10.13005/bpj/1511
http://dx.doi.org/10.1016/j.fcij.2017.12.001
http://dx.doi.org/10.3906/elk-1801-8
http://dx.doi.org/10.1016/j.jocs.2018.12.003
http://dx.doi.org/10.1371/journal.pone.0140381
http://dx.doi.org/10.1007/s10278-013-9622-7
http://dx.doi.org/10.1109/TMI.2014.2377694


J. Pers. Med. 2020, 10, 224 26 of 27

57. Cancer Genome Atlas Research Network; Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.;
Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The cancer genome atlas pan-cancer
analysis project. Nat. Genet. 2013, 45, 1113. [PubMed]

58. Brain Tumor Dataset. Available online: https://figshare.com/articles/brain_tumor_dataset/1512427/5
(accessed on 10 September 2020).

59. BraTS2013. Available online: https://qtim-lab.github.io/ (accessed on 10 September 2020).
60. The Whole Brain Atlas. Available online: http://www.med.harvard.edu/AANLIB/ (accessed on

10 September 2020).
61. BraTS2018. Available online: https://www.med.upenn.edu/sbia/brats2018/data.html (accessed on

10 September 2020).
62. Devaki Scans & Diagnostics. Available online: https://www.medindia.net/labs/devaki-scans-diagnostics-

madurai-tamil-nadu-1680-1.htm (accessed on 10 September 2020).
63. Radiopaedia. Available online: https://radiopaedia.org/ (accessed on 10 September 2020).
64. BraTS2015. Available online: https://www.smir.ch/BRATS/Start2015 (accessed on 10 September 2020).
65. Suhag, S.; Saini, L.M. Automatic brain tumor detection and classification using svm classifier. In Proceedings

of the ISER 2nd International Conference, Singapore, 20–21 September 2015.
66. Kwan, R.-S.; Evans, A.C.; Pike, G.B. MRI simulation-based evaluation of image-processing and classification

methods. IEEE Trans. Med. Imaging 1999, 18, 1085–1097. [PubMed]
67. Scarpace, L.; Mikkelsen, L.; Cha, T.; Rao, S.; Tekchandani, S.; Gutman, S.; Pierce, D. Radiology data from the

cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection. Cancer Imaging Arch. 2016, 11, 1.
68. Pedano, N.; Flanders, A.E.; Scarpace, L.; Mikkelsen, T.; Eschbacher, J.M.; Hermes, B.; Ostrom, Q.

Radiology data from the cancer genome atlas low grade glioma [TCGA-LGG] collection. Cancer Imaging Arch.
2016, 2.

69. Ismael, S.A.A.; Mohammed, A.; Hefny, H. An enhanced deep learning approach for brain cancer MRI images
classification using residual networks. Artif. Intell. Med. 2020, 102, 101779.

70. Maharjan, S.; Alsadoon, A.; Prasad, P.W.C.; Al-Dalain, T.; Alsadoon, O.H. A novel enhanced softmax loss
function for brain tumour detection using deep learning. J. Neurosci. Methods 2020, 330, 108520.

71. Vijh, S.; Sharma, S.; Gaurav, P. Brain Tumor Segmentation Using OTSU Embedded Adaptive Particle Swarm
Optimization Method and Convolutional Neural Network. In Data Visualization and Knowledge Engineering;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 171–194.

72. Rani, N.S.; Karthik, U.; Ranjith, S. Extraction of Gliomas from 3D MRI Images using Convolution Kernel
Processing and Adaptive Thresholding. Procedia Comput. Sci. 2020, 167, 273–284.

73. Deng, W.; Shi, Q.; Wang, M.; Zheng, B.; Ning, N. Deep Learning-Based HCNN and CRF-RRNN Model for
Brain Tumor Segmentation. IEEE Access 2020, 8, 26665–26675.

74. Deng, W.; Shi, Q.; Luo, K.; Yang, Y.; Ning, N. Brain tumor segmentation based on improved convolutional
neural network in combination with non-quantifiable local texture feature. J. Med. Syst. 2019, 43, 152.
[CrossRef] [PubMed]

75. Kumar, G.A.; Sridevi, P. Intensity Inhomogeneity Correction for Magnetic Resonance Imaging of
Automatic Brain Tumor Segmentation. In Microelectronics, Electromagnetics and Telecommunications; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 703–711.

76. Mittal, M.; Goyal, L.M.; Kaur, S.; Kaur, I.; Verma, A.; Jude Hemanth, D. Hemanth Deep learning based
enhanced tumor segmentation approach for MR brain images. Appl. Soft Comput. 2019, 78, 346–354.

77. Mittal, A.; Kumar, D. AiCNNs (Artificially-integrated Convolutional Neural Networks) for Brain Tumor
Prediction. Eai Endorsed Trans. Pervasive Health Technol. 2019, 5, 346–354. [CrossRef]

78. Thillaikkarasi, R.; Saravanan, S. An enhancement of deep learning algorithm for brain tumor segmentation
using kernel based CNN with M-SVM. J. Med. Syst. 2019, 43, 84. [CrossRef]

79. Sharma, A.; Kumar, S.; Singh, S.N. Brain tumor segmentation using DE embedded OTSU method and neural
network. Multidimens. Syst. Signal Process. 2019, 30, 1263–1291. [CrossRef]

80. Kong, X.; Sun, G.; Wu, Q.; Liu, J.; Lin, F. Hybrid pyramid u-net model for brain tumor segmentation.
In International Conference on Intelligent Information Processing; Springer: Berlin/Heidelberg, Germany, 2018.

81. Benson, E.; Pound, M.P.; French, A.P.; Jackson, A.S.; Pridmore, T.P. Deep hourglass for brain tumor
segmentation. In International MICCAI Brainlesion Workshop; Springer: Berlin/Heidelberg, Germany, 2018.

http://www.ncbi.nlm.nih.gov/pubmed/24071849
https://figshare.com/articles/brain_tumor_dataset/1512427/5
https://qtim-lab.github.io/
http://www.med.harvard.edu/AANLIB/
https://www.med.upenn.edu/sbia/brats2018/data.html
https://www.medindia.net/labs/devaki-scans-diagnostics-madurai-tamil-nadu-1680-1.htm
https://www.medindia.net/labs/devaki-scans-diagnostics-madurai-tamil-nadu-1680-1.htm
https://radiopaedia.org/
https://www.smir.ch/BRATS/Start2015
http://www.ncbi.nlm.nih.gov/pubmed/10661326
http://dx.doi.org/10.1007/s10916-019-1289-2
http://www.ncbi.nlm.nih.gov/pubmed/31016467
http://dx.doi.org/10.4108/eai.12-2-2019.161976
http://dx.doi.org/10.1007/s10916-019-1223-7
http://dx.doi.org/10.1007/s11045-018-0603-3


J. Pers. Med. 2020, 10, 224 27 of 27

82. Zhou, C.; Chen, S.; Ding, C.; Tao, D. Learning contextual and attentive information for brain tumor
segmentation. In International MICCAI Brainlesion Workshop; Springer: Berlin/Heidelberg, Germany, 2018.

83. Dai, L.; Li, T.; Shu, H.; Zhong, L.; Shen, H.; Zhu, H. Automatic brain tumor segmentation with domain
adaptation. In International MICCAI Brainlesion Workshop; Springer: Berlin/Heidelberg, Germany, 2018.

84. Kermi, A.; Mahmoudi, I.; Khadir, M.T. Deep convolutional neural networks using U-Net for automatic brain
tumor segmentation in multimodal MRI volumes. In International MICCAI Brainlesion Workshop; Springer:
Berlin/Heidelberg, Germany, 2018.

85. Mlynarski, P.; Delingette, H.; Criminisi, A.; Ayache, N. Deep learning with mixed supervision for brain
tumor segmentation. J. Med. Imaging 2019, 6, 034002. [CrossRef]

86. Wang, G.; Li, W.; Zuluaga, M.A.; Pratt, R.; Patel, P.A.; Aertsen, M.; Doel, T.; David, A.L.; Deprest, J.;
Ourselin, S.; et al. Interactive medical image segmentation using deep learning with image-specific fine
tuning. IEEE Trans. Med. Imaging 2018, 37, 1562–1573. [CrossRef]

87. Monteiro, M.; Newcombe, V.F.; Mathieu, F.; Adatia, K.; Kamnitsas, K.; Ferrante, E.; Das, T.; Whitehouse, D.;
Rueckert, D.; Menon, D.K. Multiclass semantic segmentation and quantification of traumatic brain injury
lesions on head CT using deep learning: An algorithm development and multicentre validation study.
Lancet Digit. Health 2020, 2, 314–322. [CrossRef]

88. Xu, Y.; Jia, Z.; Ai, Y.; Zhang, F.; Lai, M.; Eric, I.; Chang, C. Deep convolutional activation features for large
scale brain tumor histopathology image classification and segmentation. In 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP); IEEE: Piscataway Township, NJ, USA, 2015.

89. Internet Brain Segmentation Repository. Available online: https://datamed.org/display-item.php?repository=

0058&id=590247f25152c6571cff8916&query= (accessed on 11 November 2020).
90. CENTER-TBI. Available online: https://www.center-tbi.eu/data (accessed on 10 September 2020).
91. CQ500 Dataset. Available online: http://headctstudy.qure.ai/dataset (accessed on 10 September 2020).
92. DICOM Image Sample Sets. Available online: https://www.osirix-viewer.com/resources/dicom-image-

library/ (accessed on 10 September 2020).
93. BraTS2017. Available online: https://www.med.upenn.edu/sbia/brats2017/data.html (accessed on

10 September 2020).
94. MICCAI 2014 Boston. Available online: http://miccai2014.org/ (accessed on 10 September 2020).
95. Wang, Q.; Hu, B.; Hu, X.; Kim, H.; Squatrito, M.; Scarpace, L.; Decarvalho, A.C.; Lyu, S.; Li, P.; Li, Y.; et al.

Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the
microenvironment. Cancer Cell 2017, 32, 42–56.e6.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1117/1.JMI.6.3.034002
http://dx.doi.org/10.1109/TMI.2018.2791721
http://dx.doi.org/10.1016/S2589-7500(20)30085-6
https://datamed.org/display-item.php?repository=0058&id=590247f25152c6571cff8916&query=
https://datamed.org/display-item.php?repository=0058&id=590247f25152c6571cff8916&query=
https://www.center-tbi.eu/data
http://headctstudy.qure.ai/dataset
https://www.osirix-viewer.com/resources/dicom-image-library/
https://www.osirix-viewer.com/resources/dicom-image-library/
https://www.med.upenn.edu/sbia/brats2017/data.html
http://miccai2014.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	DCNNs Application in the Classification of Brain Cancer Images 
	DCNNs Application in the Classification of Brain Cancer H&E Histology Images 
	DCNNs Application in the Classification of Brain Cancer MR Images 
	DCNNs Application in the Classification of Brain Cancer H&E Histology and MR Images 

	DCNNs Application in the Segmentation of Brain Cancer Images 
	DCNNs Application in the Segmentation of Brain Cancer MR Images 
	DCNNs Application in the Segmentation of Brain Cancer CT Images 
	DCNNs Application in the Segmentation of Brain Cancer H&E Histology Images 

	Discussion 
	Challenges and Future Considerations 
	Conclusions 
	References

