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Abstract: Background: The neural basis of treatment-resistant schizophrenia (TRS) remains unclear.
Previous neuroimaging studies suggest that aberrant connectivity between the anterior cingulate
cortex (ACC) and default mode network (DMN) may play a key role in the pathophysiology of TRS.
Thus, we aimed to examine the connectivity between the ACC and posterior cingulate cortex (PCC),
a hub of the DMN, computing isolated effective coherence (iCoh), which represents causal effective
connectivity. Methods: Resting-state electroencephalogram with 19 channels was acquired from
seventeen patients with TRS and thirty patients with non-TRS (nTRS). The iCoh values between the
PCC and ACC were calculated using sLORETA software. We conducted four-way analyses of variance
(ANOVAs) for iCoh values with group as a between-subject factor and frequency, directionality,
and laterality as within-subject factors and post-hoc independent t-tests. Results: The ANOVA and
post-hoc t-tests for the iCoh ratio of directionality from PCC to ACC showed significant findings in
delta (t45 = 7.659, p = 0.008) and theta (t45 = 8.066, p = 0.007) bands in the left side (TRS < nTRS).
Conclusion: Left delta and theta PCC and ACC iCoh ratio may represent a neurophysiological basis
of TRS. Given the preliminary nature of this study, these results warrant further study to confirm the
importance of iCoh as a clinical indicator for treatment-resistance.

Keywords: treatment-resistant schizophrenia; causal effective connectivity; isolated effective
coherence; resting-state electroencephalography; anterior cingulate cortex; posterior cingulate cortex;
default mode network
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1. Introduction

Approximately one-third of patients with schizophrenia do not respond to antipsychotic
treatment [1,2], which is considered as treatment-resistant schizophrenia (TRS). As the quality of life in
patients with TRS is remarkably disturbed through their lifespan, understanding the pathophysiology
of TRS is a priority for mental health research. However, the neural basis of TRS, especially the
difference from non-treatment resistant schizophrenia (nTRS), remains unclear [3].

One brain region commonly reported to show abnormal structural and functional findings
in patients with schizophrenia is the anterior cingulate cortex (ACC) [4–6]. The ACC is an area
crucial for integrating emotional, cognitive/attentional, and nociceptive functioning, as well as motor
processing [7]. Additionally, previous proton magnetic resonance spectroscopy studies demonstrated
that patients with TRS showed increased levels of glutamatergic neurometabolites in the ACC compared
with patients with nTRS [8] or healthy controls [9–11]. Thus, while dysfunction of the ACC is among
pathological neural bases for schizophrenia, it may also be related to that for TRS.

Several resting-state functional magnetic resonance imaging (fMRI) studies have shown that
connectivity within the default mode network (DMN) is increased in patients with schizophrenia
compared with healthy controls [12–14]. The DMN correlates closely with the resting-state human
brain activity and is thought to be involved in the monitoring of internal processes as well as internal
and external cognition [15]. A number of studies suggested that impaired DMN may be related to
various types of symptoms such as cognitive impairment and psychotic symptoms and be associated
with long-term clinical outcomes in patients with schizophrenia [16–18]. In addition, previous
fMRI studies have indicated that connectivity between the posterior cingulate cortex (PCC), one of
the core nodes of the DMN, and ACC is associated with both positive and negative symptoms in
patients with schizophrenia [19–21]. Notably, Alonso-Solís et al. reported that patients with TRS
demonstrated decreased functional connectivity between the PCC and ACC compared with patients
with nTRS [22]. Moreover, patients with schizophrenia who had higher severity of hallucination or
delusions demonstrated reduced fractional anisotropy values of the cingulum bundle, as measured by
diffusion tensor tractography [23], as well as a reduced magnetization transfer ratio, as measured by
MRI [24]. These findings suggest that both functional and structural aberrant connectivity between the
ACC and DMN may play a key role in the pathophysiology of TRS.

A recent development in computational techniques has enabled non-invasive measurements of
scalp electroencephalography (EEG) to estimate not only local activities at arbitrary brain regions,
but also functional connectivities between any two brain regions. Recently, in particular, a new method
has been developed to calculate effective directional connectivities called “isolated effective coherence
(iCoh)” [25]. The iCoh is considered to represent one of the causal effective connectivities that can
specifically estimate the directionality of information flow along a specific path. Most of the brain
nodes not only directly, but also indirectly affect one another. Distinguishing between them leads to
more precise information. Although it is difficult to do so, the partial directed coherence (PDC) can
be used to quantify direct connections that are not confounded by indirect paths, their directionality,
and their spectral characteristics. However, this method is influenced by the sender nodes of interest
and may decrease in the presence of many nodes, even if the relationship between a sender and
receiver node of a particular interest remains unchanged [26]. Here, the iCoh is a novel method that
overcomes the abovementioned limitations by estimating the partial coherence under a multivariate
autoregressive model. Of note, the better accuracy of the iCoh method has been confirmed by several
studies compared with the PDC [25–27].

For further investigation of the pathophysiology of TRS, it is indispensable to detect the direction
of abnormality between the ACC and DMN. In this study, we hypothesized that the aberrant effective
connectivity between the PCC and ACC may be associated with the pathophysiology of TRS. Therefore,
we aimed to investigate the causal effective connectivities as indexed by iCoh of resting-state EEG,
focusing on the path between the PCC and ACC between patients with TRS and nTRS.
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2. Materials and Methods

2.1. Participants

This study was approved by the ethics committees at Komagino Hospital (IRB code: 20160504)
on 22 October 2016 and Keio University School of Medicine (IRB code: 20160320) on 23 July 2018.
All participants were included following the completion of an informed consent procedure. All patients
were recruited from Komagino Hospital, Tokyo, Japan and had a diagnosis of schizophrenia
or schizoaffective disorder based on the Diagnostic and Statistical Manual of Mental Disorders
IV. Seventeen patients with TRS and thirty patients with nTRS were enrolled in this study.
Treatment-resistance to antipsychotics was defined by the modified treatment response and resistance
in psychosis (TRRIP) working group consensus criteria [28]. Specifically, TRS criteria included a history
of treatment failure to optimal treatment with at least two previous non-clozapine antipsychotics,
while nTRS criteria included the following: (i) current intake of a non-clozapine single antipsychotic
and (ii) treatment response: every positive and negative syndrome scale (PANSS) [29] positive score
less than 3 points, and clinical global impression score less than 3 points. We excluded patients who
had (i) substance abuse/dependence within the past 6 months; (ii) history of head trauma resulting in
loss of consciousness for more than 30 min; (iii) serious or unstable physical illness; or (iv) current
administration of lamotrigine, topiramate, or memantine.

2.2. Clinical Assessments

The severity of clinical symptoms was assessed with the PANSS by experienced qualified
psychiatrists (R.T. and S.N.).

2.3. Measurement and Preprocessing of Resting-State EEG

Resting-state EEG was acquired for approximately 5 min with a 19-channel EEG system (Neurofax
EEG-1214, Nihon Kohden, Inc., Tokyo, Japan) according to the 10–20 international system using a
linked earlobes reference. Subjects were instructed to keep their eyes closed while staying awake
during the EEG recording. EEG data were recorded at the sampling rate of 500 Hz and electrode
impedances were kept below 5 kΩ during the recording. EEG data were band-pass filtered off-line at
0.1–100 Hz. Blink and eye-movement related artifacts were removed using independent component
analysis. After removing the periods contaminated with noise with a visual inspection, EEG data were
concatenated and preprocessed with R software (2018). Subsequently, preprocessed EEG data was
processed using standardized low-resolution brain electromagnetic tomography, which is implemented
within sLORETA software [25,30].

2.4. iCoh Analysis

In the present study, we calculated the causal effective connectivity as indexed with the iCoh
using sLORETA software [25] among the various functional connectivity indices. The iCoh is defined
by the formula based on a multivariate autoregressive model, calculating the corresponding partial
coherences after setting all irrelevant connections to zero other than the particular directional paths of
interest. Here, a multivariate autoregressive model is a mathematical model of two-time series data
that can be estimated using a linear sum of the history of the two-time series data. The partial coherence
is a measure of connection between two complex-valued random variables after removing the effect of
other measured variables. Again, technical details are described in a previously published article [25].
Information on effective connectivity provided by the iCoh method is supposed to represent “direct”
paths of connections between the pairs of regions, excluding the influence of indirect connection
paths [25]. Furthermore, iCoh provides two-directional estimators for the strength of oscillatory
information flow between each pair of regions such as from region “A” to “B” and from region “B” to
“A” [31].
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The primary analysis of causal effective connectivity as indexed by iCoh was performed for
region of interest (ROI) pairs between the PCC and ACC individually for each group. Subsequently,
connectivity for each frequency band (i.e., delta: 1.5–3 Hz, theta: 4–7 Hz, alpha: 8–13 Hz, beta: 14–30 Hz,
low-gamma: 30–45 Hz, and high-gamma: 55–70 Hz) was calculated. The ROI names, abbreviations,
and the Montreal Neurological Institute (MNI)-coordinates are listed in Supplemental Table S1.

2.5. Statistical Analysis

Statistical analyses were performed using the SPSS software (version 25, SPSS Inc., Chicago,
IL, USA). Clinico-demographic characteristics, including age, sex, years of education, age of onset,
treatment duration, chlorpromazine (CPZ), and PANSS total scores were compared between the
groups by χ2-tests or independent t-tests for categorical or continuous variables, respectively.
In this study, normal distributions of the iCoh data were confirmed with Shapiro–Wilk tests before
performing the parametric statistical testing. The iCoh values were statistically analyzed by four-way
repeated-measures analysis of variance (rm-ANOVA) using “group” (i.e., two groups: TRS and
nTRS) as a between-subject factor and “frequency” (i.e., six frequency bands: delta, theta, alpha,
beta, low-gamma, and high-gamma), “directionality” (two directions: e.g., PCC to ACC and ACC
to PCC), and “laterality” (two lateralities: right and left) as within-subject factors. When significant
differences were found in any interactions, subsequent post-hoc rm-ANOVAs (i.e., three-way and
two-way ANOVAs) were conducted. Finally, we performed post-hoc independent t-tests for the ratio
of bidirectionality of iCoh values. The ratio was calculated as follows: [(PCC to ACC) − (ACC to
PCC)]/[(PCC to ACC) + (ACC to PCC)]. Here, the significance level of alpha was set as 0.05, however,
only for post hoc analyses of four-way ANOVA, the alpha level was set as 0.01 depending on the number
of frequency bands (0.05/5 = 0.01). Pearson’s correlation coefficients between chlorpromazine (CPZ)
equivalent daily doses and iCoh values were calculated in order to check the effect of antipsychotics on
the iCoh as a confounding factor.

In addition, Pearson’s correlation coefficients were calculated for the results showing significant
findings in the above ANOVA model to examine the correlations among iCoh values within the ROIs
and clinical symptoms as assessed with the PANSS total scores.

Moreover, we conducted a receiver operating characteristic (ROC) analysis to investigate the
sensitivity and specificity of the iCoh index in discriminating between TRS and nTRS.

3. Results

3.1. Clinico-Demographics Data

Clinico-demographic data are summarized in Table 1. There were no significant group differences
in age, sex, years of education, age of onset, and treatment duration other than CPZ equivalent daily
doses and PANSS total scores, suggesting the nature of differences between TRS and nTRS.

Table 1. Clinico-demographics data.

nTRS
(n = 30)

TRS
(n = 17)

t-Value (Chi-Squared
Value for Sex),

p-Value

Age, mean (SD), years 41.2 (12.6) 42.4 (13.4) t45 = 0.29, p = 0.78
Sex (number of male) (%) 13 (43) 5 (29) χ2

45 = 0.89, p = 0.34
Education, mean (SD), years 13.3 (1.81) 13.3 (2.42) t45 = 0.06, p = 0.95

Age of onset, mean (SD), years 26.0 (9.47) 26.6 (7.64) t45 = 0.23, p = 0.82
Treatment duration, mean (SD), years 14.5 (12.0) 15.5 (11.3) t45 = 0.27, p = 0.79

Chlorpromazine equivalents, mean (SD), mg 406 (233.5) 748 (319.0) t45 = 4.22, p < 0.001 *
PANSS total, mean (SD) 48.8 (12.7) 114.6 (21.2) t45 = 13.4, p < 0.001 *

TRS: treatment-resistant schizophrenia; nTRS: non treatment-resistant schizophrenia; SD: standard deviation;
PANSS: positive and negative syndrome scale, * = p < 0.05.
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3.2. Four-Way ANOVA for iCoh Values

Four-way ANOVAs for iCoh values between the PCC and ACC indicated the following results.
There was a significant group × frequency × directionality × laterality interaction for iCoh values
between the PCC and ACC connectivity among the four-way ANOVAs. Consequently, post-hoc
independent t-tests for the iCoh ratio of directionality from PCC to ACC showed significant findings
that the ratio was decreased in TRS compared with nTRS in delta (t45 = 7.659, p = 0.008; alpha = 0.01)
and theta (t45 = 8.066, p = 0.007; alpha = 0.01) frequency bands in the left side (Figure 1). The results of
ANOVAs and post-hoc independent t-tests are summarized in Supplemental Table S2.
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Figure 1. Schematics of the causal effective connectivity between the posterior cingulate cortex
(PCC) and anterior cingulate cortex (ACC). In patients with treatment-resistant schizophrenia (TRS),
the isolated effective coherence (iCoh) ratios [(PCC to ACC) − (ACC to PCC)]/[(PCC to ACC) + (ACC to
PCC)] in delta and theta bands over the left side were significantly decreased compared with patients
with non-TRS (nTRS).

Of note, there were no significant correlations between CPZ equivalent daily doses and iCoh
values in either TRS group (r = −0.196, p = 0.225) or nTRS group (r = 0.064, p = 0.368).

3.3. Clinical Correlation with iCoh

Pearson’s correlational analyses indicated a trend toward a significant correlation between the
iCoh ratio for the left delta PCC–ACC connectivity and PANSS total score only for TRS group (r = 0.38,
p = 0.069), but not for nTRS group (r = −0.18, p = 0.17) (Figure 2).

3.4. ROC Analysis of the iCoh Ratio between TRS and nTRS

Regarding the discrimination between TRS and nTRS groups, the ROC analysis that employed the
iCoh ratio for the left delta PCC–ACC connectivity showed a significant asymptotic p-value (p = 0.023;
confidence interval: 0.536–0.868) with an area under the curve of 0.70. Further, the sensitivity and
specificity at the optimum point of the ROC curve were 0.64 and 0.70, respectively.
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Figure 2. The relationship between the iCho ratio for the left delta PCC–ACC connectivity and positive
and negative syndrome scale (PANSS) total score. In patients with TRS, there is trend toward a
relationship (r = 0.38, p = 0.069), but not for the nTRS group (r = −0.18, p = 0.17).

4. Discussion

In the present study, we found that patients with TRS showed a significantly lower iCoh ratio
between the PCC and ACC in delta and theta frequency bands over the left side than that of patients
with nTRS. Furthermore, there was a trend toward a positive correlation between the PCC and ACC
iCoh ratio in delta band over the left side and PANSS total scores in patients with TRS, but not in
nTRS, suggesting that the higher iCoh ratio between the PCC and ACC in delta band over the left side
was associated with greater psychotic symptoms severity in TRS group. These findings suggest that
the absolute flow of information from the DMN to ACC was significantly attenuated in patients with
TRS compared with patients with nTRS, while patients with TRS who had more severe psychiatric
symptoms showed an increasing trend in relative information flow from the DMN to ACC.

Counterintuitively, we found a positive relationship between symptom severity and PCC–ACC
iCoh ratio in the TRS group, while there was no association between them in the non-TRS group.
These findings suggest that TRS may be accounted for by the hybrid model of categorical and
continuous characteristics [32]. Although previous studies have shown consistent findings of the ACC
abnormalities in patients with schizophrenia, no studies so far have examined the information flow
in the cingulate bundle between the ACC and PCC in detail in this disorder. In addition, our result
of a positive relationship between the PCC–ACC iCoh ratio and clinical severity may be related to
impaired function of the ACC in patients with TRS.

The PCC is considered to play a crucial role in mediating spontaneous activity [33,34]. In addition,
the PCC is thought to contribute to the essential functions such as emotional salience [35] and
autobiographical memory [36]. Thus, dysfunction of the PCC may be related to clinical symptoms of
schizophrenia such as hallucinations [37], delusions [38], or disorganized thinking [39]. Additionally,
the PCC is also one of the core nodes of the theory of mind (ToM) network, which represents the
cognitive ability to understand others as intentional agents by inferring their mental states [40,41].
Some studies showed that patients with schizophrenia had decreased activity of the ToM network
including the PCC during the ToM task [5,42]. Thus, the PCC may be crucial as a pathological basis for
this disorder. On the other hand, the ACC plays a role in mediating awareness and attention [43,44].
The ACC is thought to be a core region affected by schizophrenia [44] and dysfunction of the ACC
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may induce severity of symptoms or global impairment of cognitive function [45–47]. For example,
a smaller volume of the ACC is significantly correlated with more severe positive symptoms of
schizophrenia [45] and related to global cognitive impairment measured by the Brief Assessment of
Cognition in Schizophrenia [47]. Notably, previous studies noted that patients with TRS had elevated
levels of glutamatergic neurometabolites in the ACC [9–11]. These findings suggest that our results
may explain the features of TRS including more severe positive symptoms, poorer cognitive function,
and social function compared with nTRS. Additionally, impaired functional communication between
the two regions might make them worse reciprocally. However, the ROC analysis using the iCoh ratio
demonstrated a moderate accuracy to differentiate between patients with TRS and nTRS. While the
iCoh ratio between the PCC and ACC may be a potential biomarker to distinguish between the two
groups, future work is needed to disentangle the pathophysiology of TRS with a combination of
multimodal biological measures.

Several studies have shown that the left cingulum is more related to positive symptoms of
schizophrenia compared with the right cingulum. Reduced extracellular free-water as measured by
diffusion MRI in the left cingulum was associated with delusions in patients with schizophrenia [48].
In addition, Palaniyappan et al. demonstrated that a reduced magnetization transfer ratio in the left
cingulum was associated with a higher severity of delusions, while no such relationship was observed
in the right cingulum [24]. Collectively, both functional and structural connectivities between the left
PCC and ACC may be related to the severity of symptoms as represented by delusions. Additionally,
Yuan et al. revealed that patients with schizophrenia who had never been treated for a long term
showed more sever white matter abnormalities in the left cingulum-hippocampus pathway compared
with patients with schizophrenia who had been treated [49]. This finding supports our hypothesis that
the persistent symptoms observed in patients with TRS may be associated with functional abnormalities
in the left cingulate cortex. Thus, these findings are in line with our result that the reduction of iCoh
ratio was present only in the left side.

Unlike the neuroimaging studies, EEG enables the assessment of cortical network dynamics because
of the high temporal resolution. Delta band oscillations are linked with learning, memory encoding
and retrieval, and motivation and reward processes [50,51]. The activity of theta band oscillations
has been linked to working memory, emotional arousal, and fear conditioning [51]. For example,
Hlinka et al. reported that, in an inter-subject experimental design, a strong relationship was
established between functional connectivity in delta band oscillations and the DMN [52]. Furthermore,
Neuner et al. demonstrated a highly significant correlation between delta band oscillation and
spontaneous blood-oxygen-level dependent (BOLD) signal within the DMN using simultaneous
fMRI–EEG study [53]. Thus, delta band oscillations may represent the normal functioning of the DMN.

Our findings also suggest a new treatment option for TRS such as neuromodulation. Specifically,
non-invasive novel neurostimulation techniques including transcranial magnetic stimulation (TMS)
and deep brain stimulation (DBS) enable us to modulate the local neural connectivity [54,55]. Thus,
the abnormal neural connectivity in the cingulate bundle can be one of the therapeutic targets. Given
the limited treatment options for TRS, neurostimulation targeting the pathological neural basis as
described above may be a promising therapeutic strategy.

There are several limitations to the present study. First, we did not include a healthy control group.
Comparison between patients with schizophrenia and health control group may reveal comprehensive
dysfunction in patients with schizophrenia, which will help to clarify the position of our current
findings. Second, we did not include the potential covariates in the statistical analyses such as the dose
of antipsychotics as indexed with CPZ equivalent daily doses. However, we did not see a correlation
between the dose of antipsychotics and iCoh values or clinical severity. Third, the present study
included relatively small sample sizes in both subdiagnostic groups (i.e., TRS and nTRS). Owing to
Coronavirus disease 2019 (COVID-19), we could not continue to enroll subjects at this stage. Therefore,
our findings warrant further studies with larger sample sizes in this illness using the TRRIP working
group consensus criteria [28]. Forth, we focused only on the effective connectivity between the ACC
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and PCC as a hypothesis-based manner; however, there may be other potential network abnormalities
in patients with schizophrenia. Further research is needed using multimodal imaging based on
multifaceted perspectives. Fifth, we have only assessed psychiatric symptoms using the PANSS. Thus,
there were no clinical measures for other symptoms like depression or anxiety. As schizophrenia is a
multifaceted disorder, future research needs to include a variety of clinical measures. Lastly, in this
study, we used the standard 10–20 EEG system using 19 electrodes, which could lead to incorrect
localization. Because the number of source-level electrodes in the present study was small, we may
not have been able to accurately estimate the source of the deep brain signals. Therefore, the present
preliminary analyses warrant further studies to confirm the reproducibility and reliability of these
results by, for example, using a higher resolution EEG system with 64 channel electrodes and combining
them with more sophisticated signal source analysis techniques. However, several previous studies
have performed the sLORETA analysis on 19-electrode EEGs [56–59].

5. Conclusions

In conclusion, we found significant differences in the iCoh ratio between the left PCC and
ACC in delta and theta bands between patients with TRS and nTRS. Taken together, these findings
may represent part of the underlying neural basis of TRS. The present findings warrant further
research in larger sample sizes with multimodal examinations to elucidate underlying mechanisms of
treatment-resistance in this illness.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4426/10/3/89/s1.
Table S1: MNI coordinates, Table S2: Summary of significant results of 4-way ANOVA.
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