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Abstract: While attempting to bridge motor control and cognitive science, the nascent field
of embodied cognition has primarily addressed intended, goal-oriented actions. Less explored,
however, have been unintended motions. Such movements tend to occur largely beneath awareness,
while contributing to the spontaneous control of redundant degrees of freedom across the body in
motion. We posit that the consequences of such unintended actions implicitly contribute to our
autonomous sense of action ownership and agency. We question whether biorhythmic activities from
these motions are separable from those which intentionally occur. Here we find that fluctuations in
the biorhythmic activities of the nervous systems can unambiguously differentiate across levels of
intent. More important yet, this differentiation is remarkable when we examine the fluctuations in
biorhythmic activity from the autonomic nervous systems. We find that when the action is intended,
the heart signal leads the body kinematics signals; but when the action segment spontaneously
occurs without instructions, the heart signal lags the bodily kinematics signals. We conclude that
the autonomic nervous system can differentiate levels of intent. Our results are discussed while
considering their potential translational value.

Keywords: embodied cognition; agency; action ownership; network analysis; graph theory; motor
control; voluntary motion; precision medicine

1. Introduction

The field of embodied cognition (EC) has provided a powerful theoretical framework amenable to
bridge the gap between research probing our mental states and research investigating our physical
actions [1–3]. Indeed, within the framework of EC, the construct of agency conceived as a cognitive
movement phenomenon [4–6] may provide a way to finally connect the disparate fields of cognitive
science and motor control. An important component of agency is action ownership [6–8], i.e., the sense
that sensory consequences of the actor’s action are intrinsically part of the actor’s inner sensations.
When the actor owns the action, s/he has full control over those sensations that are internally
self-generated and self-monitored by the actor’s brain and yet extrinsically modulated by external
sensory goals. A critical aspect of this internal–external loop is the identification of the level of actor’s
intent and its differential contribution to the action’s intended and unintended sensory consequences.

In recent years, a body of knowledge has increased our understanding on the sensory consequences
derived from intentional actions, as such action components deliver an overall sense of agency [9,10]
through elements of body-ownership closely interrelated with motor control [11,12]. Less explored,
however, have been parts of the action that are unintended or that transpire spontaneously and largely
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beneath awareness. Such actions’ components exist at the involuntary (uncontrolled, random motions)
and at the autonomic (pacemaker, periodic motions) levels of neuromotor control (Figure 1). They do
not require explicit instructions or precisely defined external goals, yet they too contribute to the
differentiation of levels of intent in our actions [13,14]. More importantly, at the cognitive level of
decision making, these unintended movements contribute to the acquisition of decision accuracy
within the context of the type of motor learning that is induced by different cognitive loads [15,16].
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autonomic.) Multi-layered signals contributing from each of these layers are proposed to differentially 
contribute to the sense of action ownership and to the overall sense of agency via sensory 
consequences preceded by different levels of intent. (B) Contributions of the central and peripheral 
nervous systems (CNS and PNS, respectively), including the autonomic nervous system (ANS), can 
be tracked in a closed loop that helps the autonomous realization of intended thoughts into physical 
actions under volitional control. (C) Network connectivity analyses of kinematics and heart 
biorhythmic signals encompassing these levels of control enable the study of agency through objective 
quantitative methods. 

At the motor control level, autonomous and spontaneous movements are important to develop 
a sense of action ownership in the face of motor redundancy [17]. Spontaneous motions can be covert, 
as those subtle motions occurring in a coma patient [18] or those occurring in a neonate [19]; or overt, 
as when they coexist with deliberate/staged ones, embedded in complex sports routines [13,14] 
and/or ballet choreographies [20]. Such complex overt movements require the coordination and 
control of many degrees of freedom (DoFs) across the body. Thus, as we produce fluid and timely 
goal-oriented actions, kinematic synergies self-emerge and dynamically recruit and release the bodily 
DoFs, according to task demands [21–23]. Conscious decisions generating movements that attain 
external goals take place as the brain interweaves deliberate and spontaneous movement segments. 
Such segments in our complex actions gracefully build an ebb and flow of actions intended to a goal, 
and sensory consequences from those actions [13]. Some of these sensations that voluntary 
movements give rise to [24] return to the brain as feedback from the intentional part of the 
movements, thought to contribute to our internal models of action dynamics [25,26]. This form of 
volitionally controlled kinesthetic reafference cumulatively helps us build accurate predictions of 

Figure 1. Defining quantitative aspects of agency for the study of embodied cognition. (A) A highly
simplified schematics reflecting the phylogenetically orderly taxonomy of nervous system functions
involving different levels of voluntary control (intent) ranging from deliberate to spontaneous movement
segments, to involuntary motions and autonomic control. Levels correspond to three fundamental
muscle types (skeletal for voluntary, smooth for involuntary, and cardiac for autonomic.) Multi-layered
signals contributing from each of these layers are proposed to differentially contribute to the sense of
action ownership and to the overall sense of agency via sensory consequences preceded by different
levels of intent. (B) Contributions of the central and peripheral nervous systems (CNS and PNS,
respectively), including the autonomic nervous system (ANS), can be tracked in a closed loop that
helps the autonomous realization of intended thoughts into physical actions under volitional control.
(C) Network connectivity analyses of kinematics and heart biorhythmic signals encompassing these
levels of control enable the study of agency through objective quantitative methods.

At the motor control level, autonomous and spontaneous movements are important to develop
a sense of action ownership in the face of motor redundancy [17]. Spontaneous motions can be
covert, as those subtle motions occurring in a coma patient [18] or those occurring in a neonate [19];
or overt, as when they coexist with deliberate/staged ones, embedded in complex sports routines [13,14]
and/or ballet choreographies [20]. Such complex overt movements require the coordination and
control of many degrees of freedom (DoFs) across the body. Thus, as we produce fluid and timely
goal-oriented actions, kinematic synergies self-emerge and dynamically recruit and release the bodily
DoFs, according to task demands [21–23]. Conscious decisions generating movements that attain
external goals take place as the brain interweaves deliberate and spontaneous movement segments.
Such segments in our complex actions gracefully build an ebb and flow of actions intended to a goal,
and sensory consequences from those actions [13]. Some of these sensations that voluntary movements
give rise to [24] return to the brain as feedback from the intentional part of the movements, thought to
contribute to our internal models of action dynamics [25,26]. This form of volitionally controlled
kinesthetic reafference cumulatively helps us build accurate predictions of those intended sensory
consequences [24], while other unintended movements return to the brain as spontaneous reafference
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in the precise sense that they do not follow from instructed acts. These spontaneous activities provide
contextual cues that support motor learning, motor adaptation and action generalization across different
situations [13], including pathologies of the nervous systems [27,28].

One informative aspect of this ebb and flow of intent and spontaneity in our actions is the
fundamental differences that emerge in the geometric features of the positional trajectories that the
moving body describes [29–31]. When the motions are intended, geometric measures related to path
curvature and path length show invariance to changes in movement dynamics, i.e., these metrics remain
robust to changes in speed, mass, etc. [21,31–34]. In contrast, trajectories from unintended motions
produce different signatures of motor variability bound to return to the brain as spontaneous feedback.
These internal sensations could help the brain differentiate contextual variations emerging from
external environmental cues from sensory information that is internally self-generated by the nervous
systems [13,14]. External information may include, for example, changes in visual and auditory inputs,
such as shifts in lighting conditions, or modulations in sound and music [20,35].

The geometry of the uninstructed spontaneous movements’ trajectories dramatically changes with
fluctuations in the movements’ dynamics. Changes in speed [21,30–32] or mass [14] affect their motor
variability in fundamentally different ways (if we compare the signatures of variability derived from the
spontaneous samples to those derived from deliberately staging the same movement trajectories [14,32].)
More importantly, the fluctuations in the motor variability of these spontaneous motions can forecast
symptoms of Parkinson’s disease before the onset of high severity [27,36]. They have also aided
in evoking the sense of action ownership and agency in young pre-verbal children [28]. For these
reasons, here we posit that deliberate and spontaneous segments of complex covert actions ought
to differentially contribute to our physical sense of action ownership and to our overall sense of
agency. To examine this proposition, we follow a phylogenetically orderly taxonomy of the nervous
systems’ maturation (Figure 1B) and examine all levels of neuromotor control—from autonomic to
deliberate—necessary to coordinate voluntary motions (Figure 1A).

More specifically, since autonomic systems are vital to our survival and wellbeing, they may
remain impervious to subtle distinctions between deliberate and spontaneous motions that take place
across the body, as the end effector completes goal-directed actions. Here we explore the interplay
between autonomic signals and voluntary motor control in actions that integrate deliberate and
spontaneous motions across the body. We use a new unifying statistical framework for individualized
behavioral analyses and network connectivity analyses and offer a quantitative account of how these
movement classes contribute to the overall embodied sense of agency.

2. Materials and Methods

2.1. Experimental Design

2.1.1. Participants

Nine undergraduate students (2 males and 7 females) between the ages of 18 and 22 years
were recruited from the Rutgers human subject pool system. Two were left-handed and seven
were right-handed, and all had normal or corrected-to-normal vision. All participants received
credit for their participation, and provided informed consent, which was approved by the Rutgers
University Institutional Review Board. The study took place at the Sensory Motor Integration Lab at
Rutgers University.

During the experiment, movement kinematics and heart signals were recorded from each
participant. However, one participant’s recording had too much noise (i.e., inaccurate sensor position
with error larger than 10 cm), so we excluded this participant’s data in the analysis. For that reason,
eight participants’ motor and heart signals were analyzed.
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2.1.2. Sensor Devices

Motion capture system (kinematics data): Fifteen electromagnetic sensors sampling at a frequency
of 240 Hz (Polhemus Liberty, Colchester, VT, USA) were attached to the participant’s upper body
in the following locations: center of the forehead, thoracic vertebrate T7, right and left scapula,
right and left upper arm, right and left forearm, performing hand, and the performing hand’s index
finger. These sensors were secured with sports bands to allow unrestricted movement during the
recordings. Motor signals were recorded in real-time by Motion Monitor (Innovative Sports Training
Inc., Chicago, IL, USA) software, where the participant’s body was constructed by a biomechanical
model, and movement data were preprocessed by an embedded filtering algorithm of the software,
providing the position and kinematics of each sensor.

Electrocardiogram (heart data): Three sensors of electrocardiogram (ECG) from a wireless
Nexus-10 device (Mind Media BV, Herten, The Netherlands) and Nexus 10 software Biotrace
(Version 2015B) were used to record heart activity. At a sampling rate of 256 Hz, the sensors
were placed across the chest according to a standardized lead II method.

2.1.3. Experimental Procedure

Participants sat at a desk facing an iPad tablet (Apple, Cupertino, CA, USA), which was used
to display stimuli during the experiment, and participants responded by touching the tablet screen.
The tablet display was controlled with an in-house developed MATLAB (Release 2015b, The MathWorks,
Inc., Natick, MA, USA) program and TeamViewer application (Germany).

As shown in Figure 2, for each trial, the participant was presented with a circle on the tablet
screen. This circle served as a prompt for the participant to touch the tablet screen within five seconds.
After the touch, either 100 ms, 400 ms, or 700 ms elapsed, and the participant heard a tone at 1000 Hz
for 100 ms. Then, on the tablet screen, the participant was presented with a sliding scale, ranging from
0 to 1 (second), to indicate how long he/she perceived the time elapsed between the touch and the tone.
The response was to be made within five seconds upon the display of the sliding scale. The five second
time-window was considered enough for the participant to provide a response, as it took approximately
1 s to touch the screen and retract the hand back to its original position. There was a total of three
conditions, namely control, low cognitive load, and high cognitive load, and each condition consisted
of 60 trials. In the control condition, the participant simply performed each trial with no additional
task; under the low cognitive load condition, the participant performed each trial while repeatedly
counting forward 1 through 5; under the high cognitive load condition, they counted backwards from
400 subtracting by 3 while they performed each trial. Participants counted forward and backward at
their own comfortable pace, and they took breaks in between each condition. The experiment set up
took about 30 min, and the recording took about 40 min.

2.2. Statistical Analysis Overview

2.2.1. Preprocessing

In this study, we extracted the kinematics (i.e., linear speed, angular acceleration) and heart data
during time segments when the participant made a pointing motion towards the circle presented on
the tablet screen, and we combined them across the three conditions. As a result, we analyzed the
kinematics and heart data recorded while the participant made 180 pointing motions (less any trials
that were deemed noisy; the most trials we excluded per participant due to instrumentation noise were
12 trials).

To analyze the ECG and kinematics data in tandem, we up-sampled the kinematics data from
240 Hz to 256 Hz using piecewise cubic spline interpolation. Note, the ECG signals were not
synchronized with the kinematics data but were manually time stamped at the start and end of each
experimental condition. For that matter, we expected the presence of a lag between the two modes of
signals—kinematics and ECG—but the lag did not exceed 1 s.
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To exclude effects of muscle motion from the ECG heart data, we bandpass filtered the data
with Butterworth IIR for 5–30Hz at 2nd order. This filter was effective in identifying QRS complexes
and extracting R-peaks in previous studies [16,37]. Here, the filter excluded the dominant frequency
range where typical kinematics signals are present (see Appendix A Figure A1). We performed
our analyses using both filtered and non-filtered EKG data and found similar trends and patterns.
However, the paper only presents the results from using the filtered data, as it is a better reflection of
the heart activity.Sensors 2020, 20, x FOR PEER REVIEW 5 of 26 
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Figure 2. Experimental assay and instrumentation setup. (A) Experimental procedure. In a single trial,
the participant was presented with a display screen, as shown on the top panel. During the first 5 s,
the participant was presented with a circle as a prompt to touch the circle on the screen. After the
touch, the participant heard a tone. The duration between the touch and the tone was randomly set
to be 100 ms, 400 ms, or 700 ms. In the next 5 s, the participant was presented with a sliding scale,
where s/he indicated how long the time was perceived to have elapsed between the touch and the tone,
by touching the corresponding number on the scale. For each trial, the participant made two pointing
gestures—one to touch the circle and another to indicate their time estimation on the sliding scale.
Such pointing gesture was composed of a forward reaching segment (red) and a backward retracting
segment (blue), as shown in the bottom panel. (B) Motion capture sensor positions. The sensors were
attached on the following body parts: center of the forehead, thoracic vertebrate T7, right and left
scapula, right and left upper arm, right and left forearm, non-performing hand, and the performing
hand’s index finger. (C) Snapshot of the experiment. During the experiment, the participant was seated
in front of the tablet screen to perform the tasks, and wired sensors were secured with athletic tape.

2.2.2. Data Analysis Structure

We used the rationale in Figure 1 to structure our analyses, with a focus of two main axes denoting
the level of motor intent and awareness that the brain may have during complex tasks (Figure 3A).
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More precisely, one axis explored possible differentiations between time segments of the pointing
movements that were deliberately aimed at an external target (forward/high motor intent) vs. segments
that were consequential to the deliberate ones (backward/low motor intent). The latter may occur when
the hand retracts back to rest, or when after touching the target the person transitions the hand in route
to another goal-directed motion. These segments have been studied in our lab across very complex
motions in sports (boxing, tennis) and in the performing arts (ballet, salsa dancing). We have coined
them spontaneous movements and discovered that they have precise signatures that distinguish them
from the deliberate ones. For this reason, we hypothesized here that these spontaneous motions would
have different stochastic signatures or be differentially expressed in relation to the deliberate ones.
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Figure 3. Overview of analytics pipeline. (A) Behavioral assay to quantify ranges of motor intent along
two axes to highlight externally and internally defined goals. Along the former, motions are classified
across time based on the end-effector’s movement, ranging from backward–spontaneous (lower motor
intent) to forward–deliberate (higher motor intent) motions. Along the other axis, motions are classified
across locations of the body, based on the proximity to the end-effector, from non-performing side of the
body parts (lower motor intent) to the performing side including the end-effector (higher motor intent).
Note, the two axes are not necessarily orthogonal as the schematics imply. (B) Two types of network
analyses were made. Within the kinematics network, kinematics data served to compare patterns of
variability from movement segments of higher level of intent (deliberately aimed at the goal) and
movement segments with lower level of intent (spontaneous retractions of the hand to rest, without
instructions), including as well comparison of patterns from the performing and non-performing
parts of the body. Within the kinematics-heart network, a similar comparison was made, with a layer
of autonomic function added, using signals from the EKG sensors. (C) For the spatial domain of
connectivity analysis, raw biophysical data (biorhythms) co-registered from multiple layers of the
peripheral and autonomic nervous systems were converted to MMS and used to compute pairwise
similarity/synchronicity metrics to build adjacency matrices to represent weighted/undirected graphs.
For the temporal domain, the raw biophysical data were directly used to build adjacency matrices.
For both domains, with the obtained adjacency matrices, network connectivity analyses combined with
non-linear dynamical systems approaches were used to identify self-emerging kinematic synergies and
various indexes to enable objective quantification of the embodied cognition phenomena.

The other axis explored possible contributions of body parts that were not directly related to the
end effector (the performing hand) executing the pointing task. We reasoned that there may be higher
motor intent devoted to the performing hand of the participant than to the non-performing side of the
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body. Furthermore, we explored how other body parts (also co-registered within the sensors’ network)
contributed to the overall performance of this task.

These two axes were explored at the voluntary level of motor control interleaving deliberate
goal-directed (forward) actions and spontaneous (backward) segments of the full pointing loop. We also
included in our analyses the autonomic level of control in the taxonomy of Figure 1A, and to that end,
we co-registered the heart activity and incorporated it into the bodily kinematics activity (Figure 3B).
We next explain how to overcome challenges in sensor data fusion from disparate systems along with
new approaches to analyze these multi-modal data.

2.2.3. Challenges of Multilayered Data with Non-Linear Dynamics and Non-Normally
Distributed Parameters

Disparate physical units: Different instruments to assess biorhythms from different layers of the
nervous system (i.e., kinematics vs. EKG) output biosignals with different physical units (e.g., m/s
from the kinematics speed, mV from the EKG). This poses a challenge to integrate these signals and
examine their interrelations across these layers.

Allometric effects: Another issue is that when examining such data from different participants with
different anatomical sizes, allometric effects may confound our results. This is so because, e.g., the speed
ranges that a person attains depend on the length of the arm. Longer arms tend to broaden the
ranges of speed and contribute to the distribution of speed values that the person attains in any given
experiment. As such, we needed to account for these possible allometric effects.

Assumption of normality: Another related matter to the ranges of speed and their distributions is
that they vary from person to person according to multiple factors (e.g., age, body mass, sex, fitness,
etc.) [38]. These variations result in probability distributions with heavy tails, which are incompatible
with common assumptions of normality in the literature. When the effects of the task, or the inherent
motor noise in the system, are such that most values related to the speed distribute more densely
toward the left of the frequency histogram (e.g., in autism exponentially distributed maximum speed
amplitude is common [39]), assuming normality may incur spurious results. This is so because
speed ranges from 0 to some limiting value for each person (the maximum speed that the person can
reach before damaging the joints). As such, when one obtains the mean ± two standard deviation
values to approximate standard error bars (which is very common in the motor control literature)
while summarizing the statistical features of the data, the data may fall in the negative speed ranges
(which is physically absurd).

Assessing similarity in probability space: Going beyond significant hypothesis testing models,
one may need to assess the differences between probability distributions. To that end, one may
need a proper similarity metric. Yet, when our data represent points in probability space, and the
distributions are not symmetric, it is challenging to assess their similarity in a consistently proper
way. Measures like the Fisher information metric are designed to compare symmetric distributions
and the Kullback–Leibler divergence is computed asymmetrically between distributions (one-sided).
We would like to have a proper (two-sided) distance metric to assess change and its rate when points are
related to non-symmetric continuous probability density functions, or to their discrete approximations.

Degrees of freedom across intent levels of motor control: Multiple locations of the grid of sensors,
co-registering biorhythms from different nervous systems, contribute differently to the overall behavior
of the system. Some may be more directly related to action success, while others may provide support.
Separating the bodily region within a kinematics-heart network can be challenging because of the
non-linear dynamics of the interactive systems. Yet, most methods assume or impose local linearities
to model such phenomena. Here we propose to approach this problem by treating the grid of sensors
as a dynamically evolving weighted interconnected network, whereby we track self-emerging modules
informing us of spontaneous synergies and connectivity patterns.
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2.2.4. Some Solutions to the Challenges

New data type for disparate physical units: We created a data type called the micro-movement
spikes (MMS), which is a unitless, standardized waveform derived from the moment to moment
fluctuations in the raw data peaks’ amplitude and/or timing. This data type extracts the fluctuations in
amplitude and/or timing of any waveform with peaks and valleys (e.g., time series of speed values
or kinematic related values derived from them). To that end, we obtained the empirically estimated
moments from the peaks in the raw waveform. We then built a new waveform that can be normalized
according to various criteria. This new waveform is then unitless and refers to a relative quantity
(rather than to an absolute quantity).

Data standardization to account for allometric effects: The anthropology and paleontology
literature has several solutions to address comparative data that may come from different bone
sizes across, e.g., different humanoids [40,41]. Equation (1) provides an example of standardization to
scale values derived from any waveform with peaks and valleys, which can be derived, e.g., from data
series with different physical units, from effectors of different sizes.

StandardizedPeak =
LocalPeak

LocalPeak + Avrgmin−to−min
(1)

The standardized quantities are in the real-valued [0,1] interval. They are coined MMS amplitudes
and treated as a continuous random process. We characterized several complex behaviors from various
layers of the nervous systems using the MMS and expressed them in two forms: (1) without preserving
the original frames of the data, i.e., just focusing on the MMS amplitude fluctuations, and (2) conserving
the original frames, in which case, we would 0-pad those that are not spikes or preserve their values as
additional gross data contributing to the phenomena in question. Either way, these fluctuations ought
not to be averaged out by assumptions of normality. Whereas in the extant literature these fluctuations
are considered noise or superfluous, here we treated them as important signals.

Distribution-free approach to counter current assumption of normality: We did not assume
normality in the data. Instead, we gathered enough data to empirically estimate the best family of
probability distributions that fits the data. To that end, we here used maximum likelihood estimation
(MLE) with 95% confidence intervals and sought the best continuous family that fit our data.

Distance metric to assess similarity in probability space: We here introduced the use of the earth
mover’s distance metric (EMD) [42–44] to approximate (using the frequency histograms of the MMS
amplitudes) the stochastic shifts in probability space that occur for different movement types. This is
an appropriate similarity metric that allowed us to examine the extent to which different levels of
motor control change the stochastic patterns. We briefly describe it below:

The EMD, also known as the Kantarovich–Wasserstein distance [45], measures the distance
between two discrete probability distributions. Given two discrete distributions P = {(p1,wp1), . . .
(pm,wpm)}, where pi is the cluster representative and wpi is the weight of the cluster; and Q = {(p1,wp1),
. . . (pn,wpn)}, EMD computes how much mass is needed to transform one distribution into another.
Defining D [dij] as the ground distance matrix, where dij is the ground distance between clusters pi

and qj, and F = [fij] with fij as the flow between pi and qj; EMD is computed by minimizing the overall
cost of such:

Work (P, Z, F) =
∑m

i=1

∑n

j=1
di j fi j

As there are infinite ways to do this, the following constraints are imposed to yield EMD values:

fi j ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n

n∑
j=1

fi j ≤ wpi 1 ≤ i ≤ m
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m∑
j=1

fi j ≤ wqi 1 ≤ j ≤ n

∑m

i=1

∑n

j=1
fi j = min(

∑m

i=1
wpi ,

∑n

j=1
wq j

)
EMD(P, Q) =

∑m
i=1

∑n
j=1 di j fi j∑m

i=1
∑n

j=1 fi j

Network connectivity analyses to assess degrees of freedom recruitment across modalities of motor
control: We used graph theory to examine the inter-relations across the nodes of the multilayered
kinematics-heart network. To that end, we derived an adjacency metric of pairwise quantities reflecting
the cross-correlation between any pair of nodes in the grid. We then constructed weighted directed
networks and borrowed connectivity metrics from brain-related research. We extended these methods
to represent the peripheral network using the bodily biorhythms from multiple layers of the nervous
systems’ functioning, spanning from voluntary to autonomic (Figure 1A).

2.2.5. Choice of Kinematics Parameter

The recording of positions over time across 10 upper body parts allowed us to estimate two aspects
of the biorhythmic data: spatial and temporal aspects, both of which are critical to characterize proper
coordination and control. A parameter encompassing both aspects is the velocity. The derivative of
position over time creates vector fields with direction and extent. Each point in the field (along the
velocity trajectory) occurs in time and moves in space.

To assess spatial components, we used the scalar speed (distance traveled per unit time, where
the unit time is taken constantly at the rate of 240 frames per second). We used the Euclidean norm
to compute the length of the velocity vector at each unit time, thus quantifying the rate of change
in position per unit time—the linear speed (m/s). Likewise, we used the orientation data from each
sensor and obtained the angular velocity from the rotations of each body part. Using appropriately
the quaternion representation of rotations and the Euclidean metric to quantify the magnitude of the
angular velocity vector, we obtained the angular speed (deg/s). These waveforms derived from the
first order change are useful, but at the time scale (~1/2 h) of our experimental assay, they provided
fewer peaks per trial than waveforms derived from the second order change (i.e., linear acceleration
(m/s2) or angular acceleration (deg/s2)).

As we needed many spikes for our distribution-fitting and stochastic analyses, we used the
angular acceleration kinematics data. Note, it was possible to have had participants perform more
trials to obtain a larger number of spikes using the linear speed; however, this would have fatigued
the participants as the length of the experiment was around 70 min (inclusive of 40 min for set up).
For that reason, within this amount of time, it was ideal to use the angular acceleration as our kinematic
parameter of interest. This choice of parameter to analyze the stochastic patterns of the moment
by moment fluctuations in signal amplitude (i.e., the spatial component of our analysis) provided
a tighter confidence interval in the empirical estimation of the best probability distribution family
fitting the data.

We also examined temporal components of the data. To that end, we used the linear speed patterns
and the cross-correlation function. We extended our analyses to different kinematics parameters,
and while they all showed similar patterns and trends, we found the linear speed to best characterize
the differing patterns of motor intent. For that reason, we presented the results of the temporal
analyses involving cross-correlation based network connectivity patterns using the linear speed as our
waveform of choice (Figure 3C).
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2.3. Data Analysis on Kinematics Network Connectivity

As a first step, we separated the kinematics data obtained from all 10 body parts, using the
start and end time of the performing hand making a forward–deliberate motion, and the hand
making a backward–spontaneous motion (Figure 4A). This was possible to do (automatically) because
(1) the speed was near 0 at the onset of the motion towards the target; (2) the distance to the target
monotonically decreased and once again the hand paused at the target at near 0 speed. As the deliberate
(forward) segment was completed, the speed rose again away from 0, and the distance to the target
increased as the hand followed the backward segment of the full pointing loop. The two segments
could be automatically differentiated also because the deliberate (forward) one was less variable than
the spontaneous (backward) one [14].
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Figure 4. Analytical pipeline and visualization methods for the kinematics network. (A) Representative
movement trajectory of the performing hand during a pointing motion to a target (denoted by a small
open circle). Each trial was comprised of a forward–deliberate (red) and backward–spontaneous (blue)
segment. These could be automatically separated by the speed and distance criteria (see Figure A2).
(B) Time series of angular acceleration of the performing hand’s index finger during a typical pointing
task. To examine kinematics-based connectivity, we used the angular acceleration time series, focusing
on the moment by moment fluctuations in waveform amplitude. Here, peaks (maxima) and valleys
(minima) are shown in red and black dots, respectively. The inset shows a zoomed-in picture of
a single angular acceleration segment (i.e., two local minima and a single peak in between, used
for standardization described in Equation (1). (C) Pairwise absolute difference in waveform was
obtained and standardized using Equation (1). The resulting waveform provided the input to obtain
MMS. (D) MMS train scaling the waveform amplitude for a typical pointing task. All standardized
spike amplitude values from (B) and (C) were maintained, while all non-spike values were set to 0.
(E) Frequency histogram of MMS amplitudes fitted to a Gamma probability distribution function (PDF)
using maximum likelihood estimation (MLE). (F) The empirically estimated Gamma parameters (shape
and scale) were obtained and plotted on a Gamma parameter plane, with marker lines representing the
95% confidence interval. Noise-to-signal ratio (NSR) (i.e., fitted Gamma scale parameter) were later
used for comparison between motor segments and different performing side. (G) Representative time
series of linear speed of the performing hand’s index finger in one trial. (H) Pairwise cross-correlation
between two body parts. (I) Adjacency matrix obtained from all pairwise maximal cross-correlation
across all body parts under consideration, to represent a weighted undirected graph. (J) Connectivity
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metrics (e.g., clustering coefficient) were used to quantify patterns of temporal dynamics. (K) Network
connectivity analyses to unveil self-emerging clusters, where nodes correspond to each body part.
For the spatial domain, NSR derived from MMS amplitudes of angular accelerations were visualized
as node size, and NSR derived from MMS amplitudes of pairwise absolute difference in angular
acceleration as edge thickness. For the temporal domain, cluster coefficients were visualized as node
size, and median cross-correlations as edge thickness.

For the connectivity analysis centered on spatial aspects of the signal amplitude, we pooled the
angular acceleration data from each body part and extracted the MMS amplitudes (referred to as MMS
from here on). We then built frequency histograms of the MMS and explored several families of PDFs
using MLE. The continuous family of Gamma PDFs yielded the best fit (Figure A2) and served to
provide the noise-to-signal ratio (NSR; computed to equal the Gamma scale parameter) for each body
part (Figure 4B,D–F). These were then visualized as node size in the schematics of the network in
Figure 4K across different motor intent levels.

To characterize the connectivity of 2 body parts, we took the pairwise absolute difference
between angular acceleration and based on the obtained absolute difference time series, computed
the corresponding MMS. We then fitted the Gamma scale parameters (i.e., NSR) (Figure 4C–F),
which were visualized as edges in the schematics of the network in Figure 4K. The intuition behind
taking the absolute difference in angular acceleration time series from two body parts is that this
reflects the change in positional distance between those two body parts and thus represents the
connectivity (physical distance) between those two. The NSR values were then compared between
different movement segments (i.e., forward vs. backward) and different sides (i.e., performing vs.
non-performing arm/hand), to understand the noise level during different levels of motor intent.
Note, for each type of motor segment (i.e., forward vs. backward), and for each side (i.e., performing
vs. non-performing), more than 2500 spike amplitude data were extracted. These spike amplitude data
were then plotted on a frequency histogram using Freedman–Diaconis binning rule [46]. They were
used for empirical estimation of the best PDF in an MLE sense. The results yielded the Gamma
probability distribution function (PDF) (see Figure A2B).

Connectivity analyses on temporal aspects of coordination involved the linear speed from
each pair of body parts. We computed pairwise cross-correlations to derive an adjacency matrix
that would represent a weighted undirected graph. Here, the ij-link’s weight is the maximum
cross-correlation value between nodes i and j (that is, the corresponding two body parts). From these
matrices, we computed clustering coefficients, which are measures that characterize the local
connectivity (i.e., functional segregation). They would represent self-emerging kinematic synergies.
Specifically, the degree of a node in the network (number of links at a node) between a set of nodes form
triangles, and the fraction of triangle numbers formed around each node is known as the clustering
coefficient (Figure 4G–J). This measure essentially reflects the proportion of the node’s neighbors
(i.e., nodes that are one degree away from the node of interest) that are also neighbors of each other [47].
Here, we computed the average intensity (geometric mean) of all triangles associated with each node,
where the triangles reflect the degree strength, and is computed as shown below (using an algorithm
by [48]; Equation (2)).

Ci =
∑
i∈N

ti

ki(ki − 1)
(2)

N: set of all nodes (composed of 10 body parts)
Ci: cluster coefficient for node i (i ∈ N)

ti: geometric mean of triangles links formed around node i (i ∈ N)

ki: number of degrees (links) formed around node i (i ∈ N)

To visualize the network, we represented the median pair-wise cross-correlation values as the
edge thickness and median cluster coefficient values as the node size (Figure 4K). The median
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cross-correlation and cluster coefficient values were then compared between different movement
segments (i.e., forward vs. backward) and different sides (i.e., performing vs. non-performing
arm/hand) to understand how linear correlations differed across varying levels of motor control.

2.4. Data Analysis on Kinematics-Heart Network Connectivity

As with the kinematics connectivity analysis, we segmented the data of the filtered EKG data along
with the kinematics data by the time intervals when the performing hand was making a deliberate
forward motion and a spontaneous backward motion (Figure 5A).
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Figure 5. Analytical pipeline and visualization methods for the kinematics-heart network. (A) Typical
movement trajectory of the performing hand position, while performing a single pointing action towards
a target. Each trajectory was separated into forward–deliberate (red) and backward–spontaneous
segments (blue) according to hand–target updated distance and near-zero-speed value (see Figure A2 for
details). (B) Angular acceleration time series of the hand during a typical pointing task. MMS amplitudes
from the angular acceleration time series were extracted for each body part. (C) Filtered EKG time
series during a pointing task. MMS amplitudes from the filtered EKG time series were extracted.
(D) Histograms of compiled MMS amplitudes. For spatial analysis, pairwise EMD was computed
between histograms from each body part and heart activity. (E) Linear speed time series of the performing
hand. For temporal analysis, linear speed kinematics time series was used. (F) Cross-correlation
between a single body part’s linear speed and filtered EKG signal. For each trial, cross-correlation
was computed between a pair of filtered EKG and a single body part’s linear speed time series, and
the maximal value (red dot) and its corresponding lag values were extracted. (G) Visualization of
connectivity. Network connectivity was visualized, where node size represented the EMD between the
corresponding pair of body part and heart signals (i.e., spatial metric), and edge thickness represented
the median cross-correlation values between the signal pairs (i.e., temporal metric). The edge colors
were visualized, such that red would indicate EKG signals temporally leading linear speed signals,
and blue would indicate linear speed leading EKG signals.

For the spatial domain of connectivity, we took the segmented data of angular acceleration and
EKG data, extracted MMS from both signals, and plotted a histogram of the MMS. Because the MMS
of EKG signals did not follow a Gamma distribution, in order to assess the connectivity between the
two, we computed the earth mover’s distance (EMD) between the histogram from a single body part
and from the EKG data (Figure 5A–D).
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For the temporal domain, we computed pairwise cross-correlations, along with lag, between the
EKG filtered time series and each body part’s linear velocity time series. In fact, in our analysis,
we found an interesting pattern in directionality (i.e., lag) of correlation and deemed it informative to
present them in the network graph. For that reason, edge thickness was represented by the median
cross-correlation values, and color of the edges were visualized, where red indicated EKG signals
leading linear velocity signals, and blue indicated linear velocity leading EKG signals (Figure 5G).

For all these metrics, we compared the medians between different movement segments (i.e., forward
vs. backward) and different sides (i.e., performing vs. non-performing arm/hand), to understand how
stochasticity and temporal dynamics changed across varying levels of motor intent between the heart
(from ANS) and kinematics (from PNS/CNS).

3. Results

3.1. Higher Motor Intent Results in Higher NSR in Spatial Parameters

Motor intent in the context of our experimental assay specifically refers to the level of deliberateness
(or spontaneity) of the movement segment in route to an external target (away from it). An instructed
pointing action to touch the target is a goal-directed reach with high level of intent. In contrast,
the uninstructed spontaneous retraction away from the target carries lower motor intent than the
goal-directed one.

As a first set of analysis, the MMS extracted from the angular acceleration data from each body
part were aggregated across all trials and conditions and arranged by different movement segments
(forward–deliberate vs. backward–spontaneous) and different sides (performing vs. non-performing).
The same was also done on the MMS extracted from the absolute difference in angular acceleration
from all pairs of body parts. The NSR was found to be significantly higher when the motions were
deliberate and on the performing side (Figure 6).
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Figure 6. NSR signatures during pointing can differentiate the levels of intent. Comparison includes
forward–deliberate vs. backward–spontaneous segments and performing vs. non-performing effector.
(A) Network visualization of a right-handed representative participant. Node size is represented by
the NSR derived from the corresponding body part’s kinematics time series, and edge thickness is
represented by the NSR of the absolute difference in kinematics between the corresponding pairs of
body parts. Node size and edge thickness are graphed in the same scale across different movement
segments (i.e., forward and backward segments). (B) NSR for different movement segment and sides.
Each dot is the median NSR values for each participant’s different movement segments (left) and
different sides (right) from the unitless MMS derived from the angular acceleration (AA) fluctuations in
amplitude. The x-axis denotes the NSR from individual body part’s kinematics (NSR AA), and y-axis
denotes the NSR from the MMS derived from the absolute pairwise body parts’ difference (NSR AA
Diff). Generally, for the former (NSR AA) measure, NSR is higher during a forward segment (F; red)
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than during a backward segment (B; blue), and on the performing side (P; pink) than on the
non-performing side (NP; cyan). (C) NSR difference between performing vs. non-performing
side. Left panel shows the NSR median difference between the performing and non-performing side for
each participant, denoted as a single marker. Right panel shows the NSR median difference between
the performing and non-performing side for the forward motion (F; red) and backward motion (B; blue).
When the difference between the performing and non-performing side is examined separately for each
motion segment, the NSR AA difference is wider during forward motion segments (F; red) than during
backward motion segments (B; blue). (D) NSR difference between forward vs. backward movement
segment. Left panel shows the NSR median difference between the forward and backward motion
segments for each participant, denoted as a single marker. Color scheme as in (B).

Specifically, NSRs of the kinematics time series from each body part shown was highest when
an individual exerted higher motor control under higher level of motor intent, such as on the performing
side of the body and during a forward–deliberate motion. Conversely, when an individual did not
deliberately intend to move the arm, as exhibited on the non-performing side of the body and during
a backward–spontaneous motion, the NSR was at its lowest. The NSRs for all pairs of body parts’
absolute difference in angular acceleration (i.e., change in distance between the pairs of body parts),
on the other hand, was higher on the performing side (vs. non-performing side) but did not show
such a consistent pattern when comparing between the two motion segments (forward vs. backward).
Details of the 95% confidence interval of the fitted Gamma scale parameter (i.e., the NSR) for all
participants, all body parts (Figure A3), and all pairs of body parts (Figure A4) can be found in the
Appendix A.

3.2. Higher Motor Intent Results in Higher Cross-Correlations and Clustering of Temporal Parameters

We used the MATLAB Network Connectivity toolbox [49] and examined the adjacency matrix
derived from the pairwise maximal cross-correlation coefficient based on the time series of linear
speed values. The clustering coefficient (CC) was obtained for each body part as a metric of functional
segregation. For analysis, we examined the median cross-correlation values as a function of the
CC values. Here we found that higher level of motor intent (i.e., during forward–deliberate motion
performed with the performing hand) resulted in a tendency of increased CC and increased median
cross-correlation values (Figure 7).

When we compared between different motion segments, median cross-correlations were higher
for forward motions than for backward ones for all but two participants. When we compared
between different sides, all participants showed higher correlation on the performing side than the
non-performing one. The median CC was higher for forward motions than for backward segments
for all participants and higher for the performing side than the non-performing side for all but two
participants. For all participants, both measures showed statistical significance in their difference
(see Table A1 of Appendix A for detailed statistical results).

The distinctions that we observed from these findings, on how different levels of motor intent had
separable network connectivity patterns based on temporal aspects of the kinematics data, are consistent
with the patterns uncovered using spatial aspects of the kinematics data. Specifically, when we exerted
higher intent on our body, regardless of the physical trajectory of the motion, there was a stronger
connectivity across our body parts. However, we noted that this pattern was not as uniform across all
participants as we had found in the spatial aspect of the network analysis.
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Figure 7. Network connectivity metric (cluster coefficient) and median cross-correlation differentiates
between levels of intent. (A) Network visualization of a representative right-handed participant.
Cross-correlation is represented by the line weight and cluster coefficient (CC) by the node size, during
the forward (left) and backward movement segments (right). (B) Median cross-correlation (y-axis;
Xcorr) and CC (x-axis) of linear speed for each participant’s movement segment (left) and different sides
(right). Forward motions (red) and performing side (pink) exhibits higher cross-correlation and CC
values than backward segments (blue) and non-performing side (cyan). (C) Median cross-correlation
and CC difference for different movement segments (left) and different sides (right). Each participant’s
data is denoted as a single marker. Higher motor intent tends to show higher cross-correlation and
CC values.

3.3. Kinematics and EKG (Heart) Signals Show Larger Stochastic Differences for Higher Motor Intent
and Control

To assess patterns of connectivity between biophysical signals derived from voluntary and
autonomic levels of motor control we examined the kinematics (generated by the CNS–PNS) and the
heart activity (generated by the ANS). The patterns of MMS stochasticity and temporal correlation
across these systems distinguished levels of motor intent and control.

The analyses involving EKG and kinematics revealed larger stochastic differences in MMS data
when higher motor intent and control were exerted. More precisely, the pairwise EMD showed higher
differentiation between these two signals in all but one participant when forward motion was made,
but only on the performing side of the body. Furthermore, all but two participants showed higher EMD
on the performing side of the body, but only during forward motions. On the other hand, however,
when backward motion was made, we found an opposite pattern, where all participants showed
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higher EMD on the non-performing side. We inferred that there may have been a modulating factor
that underlied the stochastic relation between kinematics and heart signals.

When we examined the temporal relations between the two signals, by computing pair-wise
cross-correlations, we saw higher cross-correlations when there was lower motor intent across all
participants, that is, during backward motions and on the non-performing side. Here, we noted the
low range of the correlation coefficient values of around 0.1. However, we saw a similar trend when
this was based on the non-filtered raw EKG data, with a higher range around 0.6.

3.4. EKG Leads Kinematics under Higher Motor Intent, but Opposite Pattern Emerges in Spontaneous Motions
Requiring Less Motor Intent

We also examined the lag values to assess which signal leads the other. We found that with motions
under higher motor intent (i.e., during forward–deliberate motions performed with the performing
side of the arm), EKG signals tended to lead the kinematics signal. On the other hand, in movements
performed under lower intent (i.e., during backward–spontaneous motion, and on the non-performing
side of the arm), kinematics signals tended to lead the EKG signals. This is depicted in Figure 8.Sensors 2020, 20, x FOR PEER REVIEW 16 of 26 
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Figure 8. Differentiation of spatial and temporal connectivity within the kinematics-heart network
according to levels of motor intent. (A) Network visualization of a right-handed representative
participant. 1/EMD is represented by the node size, and median correlation is represented by the
line weight. The color of edges indicates the temporal directionality between signals, where red
indicates that heart leads the body linear speed and blue indicates that body linear speed leads the
heart signals. (B) Median EMD (z-axis) and correlation (x-axis) and lag (y-axis) for each participant’s
movement segment (left) and different sides (right). There is an overall pattern where higher motor
intent (denoted by red for forward motions, and pink for performing side) is exhibited by lower
correlations and EKG leading the kinematics signal (i.e., lag is positive value). (C) Median EMD,
correlation, and lag difference for different sides (left), and this difference separated by movement
segment (right). We find a pattern where pairwise EMD show higher differentiation under higher
motor intent on the performing side, but only when forward motion was made. (D) Median EMD,
correlation, and lag difference for different movement segments (left), and this difference separated by
sides (right). We find a pattern where pairwise EMD show higher differentiation under lower motor
intent on the non-performing side, but only when the backward motion was made.

We caveat that because the EKG device and motion capture system were not exactly synchronized,
the absolute lag value may not be as meaningful. Nevertheless, as we analyzed these data in terms
of the difference (i.e., the delta lag values between forward and backward motions, and between
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performing and non-performing sides), it was indeed meaningful to find such patterns uniformly
across all participants.

Table 1 summarizes the results that we showed in the sections above. We emphasize that
although we examined a small number (eight) of participants, each individual’s data were composed
of a significant amount of data points with unique non-Gaussian stochastic characteristics. For that
reason, instead of presenting the results with NHST (null hypothesis significant tests), we presented
the results by comparing the median difference between data points, from different levels of intent,
for each individual.

Table 1. Summary of the connectivity results, where symbols 1 are shown to indicate which category
shows higher values.

Kinematics (AA) Network

Forward Backward Performing Non-Performing

Spatial NSR AA o o

NSR AA Diff o

Temporal Cross-Correlation ∆ o

Cluster Coefficient o ∆

Kinematics (LS)-Heart Network

Forward Backward Performing Non-Performing

Spatial EMD ∆ (P) 2 - ∆ (F) 3 o (B) 4

Temporal Cross-Correlation ∆ o

Lead *,5 EKG LS EKG LS
1 o indicates that it is higher for every participant; ∆ indicates that it is higher for most participants.
2 Forward–deliberate motions have higher EMD only on the performing (P) side. 3 Performing side has
higher EMD only during forward–deliberate (F) motions. 4 Non-performing side has higher EMD only during
backward–spontaneous (B) motions. 5 Lead* shows which signal leads between the 2 signals.

4. Discussion

This paper examined elements of the construct of agency from the embodied cognition
framework and dissected several layers of neuromotor control contributing to the sense of action
ownership. These layers, defined along a phylogenetically orderly taxonomy of maturation, follow
a higher-to-lower gradient of intent, from voluntary, to involuntary, to autonomic signals. At the
voluntary level, we followed the instructed–deliberate and the uninstructed–spontaneous segments of
the target-directed pointing act, positing that they could differentiate between levels of intent and as
such, delineate (from the fluctuations in their biorhythmic activity) when a given movement segment
was deliberately performed with intent vs. when the segment happened spontaneously without
instruction. This differentiation is important to distinguish the sensory consequences of voluntary acts
from those of acts that are not intended or that occur autonomically. The sensory consequences of
the latter have not been currently studied, yet they seem important to complement von Holst’s and
Mittelstaedt’s principle of reafference as we know it today [24].

Our initial thought was that autonomic systems contributing to our brain’s autonomy over the
body and to our overall embodied sense of agency would remain impervious to stochastic shifts at
the voluntary levels. We reasoned that given the vital role of these systems for survival, their robust
signal would not reflect subtle changes in levels of intent, motor awareness, and voluntary control.
As such, our guess was that if during voluntary movements, there were stochastic differences between
instructed–deliberate and uninstructed–spontaneous segments of the reach, or between performing
and non-performing sides of the body, such shifts in patterns of variability would not be appreciable
in the heart signals’ fluctuations. Our guess was altogether wrong. Not only were the heart signal
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differences quantifiable at the level of micro fluctuations in signal amplitude, these differences were
appreciable as well in the inter-dynamics of the kinematics and cardiac signals.

4.1. The Autonomic Nervous System Differentiates across Levels of Motor Intent: Implications for
Computational Models and Basic Cognitive Neuroscience

We found that when movements are intended and deliberately performed to attain the goal defined
by an external (visual) target, the heart signal leads the movement kinematics signal. Yet, when these
overt movements are spontaneous in nature, i.e., uninstructed and not pursuing the completion
of a specific externally defined task goal, the heart signal lags the movement kinematics signal.
Across spatial and temporal parameters, we found consistent trends and confirmed the trends through
different parameters. Indeed, deliberate motions, executed with the performing effector, carry higher
levels of NSR, denoting higher fluctuations away from the empirically estimated mean.

We interpret these findings considering the principle of reafference, treating micro-movements
as a form of re-entrant sensory feedback [24]. Furthermore, we discuss the possible contributions of
these self-generated signals to the self-emergence of cognitive agency from motor agency, namely the
sense that one can physically realize what one mentally intends to do, confirm the consequences
(both intended and unintended), and, as such, mentally own the physical action.

Von Holst and Mittelstaedt studied the complexities of reafference across the nervous systems in
the 1950s. They tried to capture the inherent recursiveness that relates movements and their sensations
as they flow within closed feedback loops between the external and the internal environments of the
organism. They wrote, “Voluntary movements show themselves to be dependent on the returning
stream of afference which they themselves cause.” Undeniably, feedback from voluntary movements
currently play an important role in theoretical motor control, particularly within the framework of
internal models for action [25,26] and more recent models of stochastic feedback control [50]. Central to
all these conceptualizations of the motor control problem has been the notion of anticipating the
sensory consequences of impending intended actions. Nevertheless, nothing has been said about the
consequences of action segments that bear a lower level of intent, which occur spontaneously, or that
are altogether occurring autonomously.

The implications of our results are manifold: Modelers and experimenters in motor control
do not seem to be aware of self-emergent, uninstructed, spontaneous motions. These motions are
rather assumed to be far removed from cognitive processes, perhaps because they transpire largely
beneath awareness (although see [13,51] more recently). Yet, unintended consequences from the
uninstructed–spontaneous segments of the voluntary action seem as important as those sensory
consequences that result from the instructed–deliberate segments. They may serve to inform learning
new tasks, adapting to new environmental conditions or situations, and more generally, they may play
a role as a surprise factor to aid propel curiosity and/or to stimulate creative, exploratory thinking.
They may help make our “invisible” automatic movements visible to the conscious brain planning and
controlling them, and/or to the external observer tracking our behaviors.

Neither these models, nor Von Holst’s work considered the contributions of unintended
consequences from spontaneous acts quantifiable at different anatomical and physiological layers
of the nervous systems, while trying to model the basic problem that the organism faces,
i.e., the paradox of understanding the “self”, which entails parsing out external from internal reafference.
Without a unifying framework to quantify these multilayered interactions and their contributions to
the emergence of the notion of self, it becomes rather challenging to bridge the cognitive sense of
agency, and more basically of action ownership, “I can do this!; It’s me who’s doing this!”, with the type
of autonomous motor control that enables successful self-initiation and completion of the intended
act. We argue that inclusion of the unintended consequences from overt spontaneous motions and
autonomic signals in our models of motor control will help define embodied agency and provide a new
framework to objectively quantify it.
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The present work provides empirical evidence that (1) different levels of cognitive intent, awareness,
and control are indeed embodied and quantifiable in natural, unconstrained movements, and (2) there
are important contributions to central cognitive control quantifiable at the periphery in spontaneous
segments of our motions and their consequences, but also in motions from supporting (non-performing)
body parts. Importantly, such differentiating contributions are also present in patterns from signals
generated by the autonomic nervous systems. Recent work from our lab has examined cognitive
load in relation to autonomic signals and found systematic changes bound to impact the type of
feedback that these signals mediated by cardiac muscles generate within the nervous systems [16,52].
These aspects of the motor control problem are not considered at present in any of the mathematical
and computational frameworks used to model the human brain, despite a body of empirical data
differentiating classes of movements that are less sensitive to changes in dynamics [14,21,30–34] from
those which are dynamic dependent [14].

Our work augments Von Holst’s and Mittelstaedt’s principle of reafference nontrivially by
including reafferent contributions from other layers of the nervous systems (Figure 1A) and highlighting
the need to update our conceptualization of internal models for action. In the past, the literature has
focused on voluntary control and goal-directed behavior to define and to characterize agency [5,6,8,11].
However, if new generations of AI models aim to attain artificial autonomous agents with real agency,
it may be necessary to reformulate our models and reconceptualize our experiments in embodied
cognition to encompass these multiple layers of intent, awareness, and motor function. These results
provide a way to distinguish levels of intent in the stochastic feedback from a robust (autonomic signal),
as an important addition to prior work distinguishing levels in more variable speed and acceleration
signals [14].

4.2. Distinguishing Performing vs. Non-Performing End Effector

Another aspect of this work explored the differentiation between the performing end effector
and the non-performing one, within the context of connectivity network analyses and levels of NSR.
There we found that the micro fluctuations in kinematics activity taken as a weighted directed graph
representing an interconnected network of nodes (body parts), can automatically reveal which side of
the body is performing the goal-directed task with intent vs. which side of the body is performing the
uninstructed spontaneous segment. The importance of this result is several-fold: First, it demonstrates
that we can gain information by considering arm movements within a broader context of bodily
motions, treated as a fully interconnected network, rather than examining the end effector in isolation.
The network connectivity analyses presented here adapt and extend similar methods used in brain
analyses to full bodily motions. This is important to connect data from the CNS and the PNS within
a full network (see here [52]) and infer the contributions of different bodily sides on the planning,
execution, and coordination of the many DoFs of the body in motion. We need these empirical data to
improve our multi-layered generative analytical models of neuromotor control involving different
spaces of joints and end effectors [21,29,32,33]. Secondly, these results underscore the importance
of not eliminating gross data through grand averaging methods that assume a priori a probability
distribution and take theoretical means across all data. Here we personalize the analyses and for
each participant, we examine the micro fluctuations (away from empirically estimated distribution
moments) contributed by both the performing and the non-performing limbs. We do so within
the context of full body macro- and micro-motions, thus considering the value of the NSR derived
from the gross data that is often thrown away as superfluous noise. The importance of these new
methods is that we can examine possible asymmetries in neurological disorders like Parkinson’s
disease, where, e.g., tremor may emerge at the performing hand and yet be forecasted in the NSR
of activity recorded in the non-performing limbs. Differentiating performing from non-performing
NSR in the context of voluntary motions is now possible using these new statistical methods and
network connectivity analyses adapted to full body motions. This type of data is rarely examined in
clinical work. Lastly, we offer new ways to examine kinematics synergies and possible patterns of
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co-articulation across the body, while examining the outcomes from the traditional pointing task now
extended to also include the spontaneously retracting segments of the full pointing loop.

4.3. Implications of the Results for Translational Cognitive Science

An area where these results could be relevant is smart health and AI, connecting digital biomarkers
with clinical observational criteria (e.g., [53]). In the clinical world, there are many problems that will
require us to be mindful of this intended vs. unintended dichotomy, as there are phenomena that occur
spontaneously and largely beneath awareness. It is difficult to model these phenomena within the
voluntary reafference framework. The type of reafference that we need to model those problems belongs
in the realm of self-emerging aspects of naturalistic behaviors. Among those which are disrupted
due to pathologies of the nervous systems are sudden freezing of gait in Parkinson’s disease, leading
to the loss of balance and occasional falls; seizures across a broad range of disorders; heart attacks;
a subset of repetitive behaviors and self-injurious or aggressive episodes in autism; among others.
All these episodes have in common the element of surprise connected to their spontaneity. Several new
emerging areas in basic research with a focus on the relationships between property and agency in
neurological disorders can also be incorporated in new AI concepts for smart health [15,19,28,53–55].

No algorithm relying exclusively on intentional control signals can appropriately capture the
essence of these phenomena. To properly characterize it, forecast it, and quickly detect it, we need
veridical generative models that understand the differences between the consequences of something that
was intended and under voluntary control, something that spontaneously happened, and something
that happens autonomically, with high accuracy. We do not have autonomous robots with embodied
agency yet, because their staged motions are mostly pre-programmed. These programs may only
mimic the predictive consequences of voluntary actions. Self-correcting robotic systems, where such
behaviors spontaneously self-emerge, are less common. It is perhaps self-emerging awareness derived
from the consequences of spontaneous and autonomic phenomena that makes our embodied agency
a special human trait contributing to intelligent control. This type of control, combining deliberate and
spontaneous acts, may produce solutions that are capable of generalizing from a small set of specific
situations; transfer the learning from one context to another (using contextual variations); and retain
robustness to potential interference from new situations in unknown contexts. In future research,
it will be important to understand how the type of differentiation that we discovered here, paired with
externally vs. internally generated rewards, may contribute to the fast or slow acquisition of memories
from transient acts vs. memories from systematic, periodic repetitions of those acts.

Here we offer a unifying framework with a taxonomy of function and differentiable levels of intent,
awareness, and control paired with a new statistical platform for personalized analyses of natural
behaviors. This new model aims to capture and characterize the micro-fluctuations in the gross data of
our biorhythms that traditional approaches throw away as noise through grand averaging and “one size
fits all” methods. Our approach allows integration of multilayered hierarchical signals and provides
the means to differentiate re-entrant contributions from multilayered exo- and endo-afference. This can
help our self-realization of embodied agency as the spontaneous transformation of mental intent into
physical volition. We invite the reader to consider this new model for embodied cognition and offer
novel avenues to bridge the currently disconnected fields of motor control and cognitive phenomena.
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as such. Because angular acceleration is shown to have the largest number of peaks during a single
pointing motion, we decided to examine this kinematic waveform, as this would provide the highest
statistical power for the MLE process. Note, linear speed data was used to extract the timing that
would separate the start and end time of a forward–deliberate motion (shown in red) and of a
backward–spontaneous motion (shown in blue arrow). This was done by finding the timepoint when
instantaneous zero linear speed occurs, since this indicates the moment the index finger reaches
the target. (B) Maximum likelihood estimated values for the corresponding histogram on top of
each graph. The horizontal axis contains the value of the gradient at the end of the optimization
process, and the vertical axis contains the maximum likelihood estimation (MLE) value for the Gamma,
normal, exponential, and lognormal distributions. Overall, we found that the Gamma and lognormal
distributions have a good fit to these kinematics data. However, because Gamma distributions have
been shown to be a better fit to the kinematics data from individuals with neurological disorders
than lognormal distributions, for consistency, we chose to use the Gamma probability distribution for
fitting purpose.
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Figure A3. Fitted Gamma scale parameter (i.e., NSR) 95% confidence interval for a single body part’s
kinematics data. The 95% confidence interval is plotted for all eight participants (P1 to P8). Each row
represents a single body part: under the “All body” category shows all 10 body parts during forward
(red) and backward (blue) motions; under the “P (performing)” category shows the 4 body parts from
the performing side of the arm; under the “NP (non-performing)” category shows the 4 body parts
from the non-performing side of the arm; under the “All seg (all segment)” category shows the 4 body
parts on the performing (pink) and non-performing (cyan) side during the entire pointing motion;
under the “F (forward)” category shows the 4 body parts on both P and NP side during forward
motion; and under the “B (backward)” category shows the 4 body parts on both P and NP side during
backward motion.
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Figure A4. Fitted Gamma scale parameter (i.e., NSR) 95% confidence interval from the absolute
difference in kinematics between pairs of body parts. The 95% confidence interval is plotted for all
eight participants (P1 to P8). Each row represents a pair of body part: under the “All body” category
shows all 45 body part (10C2) pairs during forward (red) and backward (blue) motions; under the
“P (performing)” category shows the 6 body part pairs (4C2) from the performing side of the arm; under
the “NP (non-performing)” category shows the 6 body parts pairs (4C2) from the non-performing
side of the arm; under the “All seg (all segment)” category shows the 6 body parts pairs (4C2) on
the performing (pink) and non-performing (cyan) side during the entire pointing motion; under the
“F (forward)” category shows the 6 body parts pairs (4C2) on both P and NP side during forward
motion; and under the “B (backward)” category shows the 4 body parts on both P and NP side during
backward motion.
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Table A1. Kolmogorov–Smirnov test statistics (KS-stat) and their p-values (p) on cluster coefficients
comparison (left) and cross-correlation (right) between different movement segments (forward (F) vs.
backward (B)) and different sides (performing (P) vs. non-performing (NP)) 1.

Cluster Coefficient Cross-Correlation

Subject ID
F vs. B P vs. NP

Subject ID
F vs. B P vs. NP

KS-stat p KS-stat p KS-stat p KS-stat p

P01 0.29 <0.01 ** 0.16 <0.01 ** P01 0.14 <0.01 ** 0.40 <0.01 **
P02 0.55 <0.01 ** 0.57 <0.01 ** P02 0.55 <0.01 ** 0.57 <0.01 **
P03 0.38 <0.01 ** 0.16 <0.01 ** P03 0.38 <0.01 ** 0.16 <0.01 **
P04 0.09 <0.01 ** 0.09 <0.01 ** P04 0.09 <0.01 ** 0.09 <0.01 **
P05 0.14 <0.01 ** 0.26 <0.01 ** P05 0.14 <0.01 ** 0.26 <0.01 **
P06 0.17 <0.01 ** 0.28 <0.01 ** P06 0.17 <0.01 ** 0.28 <0.01 **
P07 0.35 <0.01 ** 0.41 <0.01 ** P07 0.35 <0.01 ** 0.41 <0.01 **
P08 0.13 <0.01 ** 0.35 <0.01 ** P08 0.13 <0.01 ** 0.35 <0.01 **

** p-value is less than 0.05. 1 Note, the Kolmogorov–Smirnov test was used, as this test is appropriate for data that
do not follow a Gaussian distribution and has a large sample size (n > 1000) that may yield low statistical power.
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