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Abstract: The integration of digital voice assistants in nursing residences is becoming increasingly
important to facilitate nursing productivity with documentation. A key idea behind this system
is training natural language understanding (NLU) modules that enable the machine to classify
the purpose of the user utterance (intent) and extract pieces of valuable information present in the
utterance (entity). One of the main obstacles when creating robust NLU is the lack of sufficient labeled
data, which generally relies on human labeling. This process is cost-intensive and time-consuming,
particularly in the high-level nursing care domain, which requires abstract knowledge. In this paper,
we propose an automatic dialogue labeling framework of NLU tasks, specifically for nursing record
systems. First, we apply data augmentation techniques to create a collection of variant sample
utterances. The individual evaluation result strongly shows a stratification rate, with regard to both
fluency and accuracy in utterances. We also investigate the possibility of applying deep generative
models for our augmented dataset. The preliminary character-based model based on long short-term
memory (LSTM) obtains an accuracy of 90% and generates various reasonable texts with BLEU scores
of 0.76. Secondly, we introduce an idea for intent and entity labeling by using feature embeddings
and semantic similarity-based clustering. We also empirically evaluate different embedding methods
for learning good representations that are most suitable to use with our data and clustering tasks.
Experimental results show that fastText embeddings produce strong performances both for intent
labeling and on entity labeling, which achieves an accuracy level of 0.79 and 0.78 f1-scores and 0.67
and 0.61 silhouette scores, respectively.

Keywords: nursing record systems; natural language understanding; dialogue systems; machine
learning

1. Introduction

Task-oriented dialogue systems or virtual assistants are designed to assist users in solving a
specific task with explicit intent within minimal dialogue turns. As smart speakers (e.g., Amazon Alexa
(https:/ /www.alexa.com), Google Home (https://store.google.com/product/google_home), Apple
HomePod (https:/ /www.apple.com/homepod), and Microsoft Cortana (https://www.microsoft.com/
en-us/cortana)) become more sophisticated and robust in homes, their utility in clinical settings will
grow as well. The most apparent use for voice assistants is transforming electronic health record (EHR)
interactions. This field has received significant attention in recent years, not only among academic
communities but also in clinical settings [1-3].

With the advancement in machine learning, agents can understand the user’s speech in audio
signals and convert text into speech. They provide a natural language for the free text of medical
records, which contain valuable patient-specific information and a nuanced reflection. They further
help to increase sterility and speed up the process by use of the hands-free or voice-activated modes,
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thus enabling nurses to have more time for direct patient care. Still, several challenges have continued
to pose obstacles to the unstructured data when compared to the structured data. The extraction
of medical events and their attributes from unstructured clinical notes are challenging to read and
categorize with straightforward algorithms. In other words, we can probably still see incomplete
responses from these systems and accept that they may not correctly understand human language the
way humans perceive it. However, any inaccurate information, such as with symptoms, diagnosis,
or medical documents in healthcare can have disastrous outcomes.

Traditional rule-based systems can be circumvented, but are often hand-crafted features which
require constant manual intervention for improvement [4-8]. Presently, algorithms that learn from
labeled training data are commonly used to handle these problems. As we can see, well-known chatbot
platforms (e.g., Amazon Lex (https://aws.amazon.com/lex), Google Dialogflow (https:/ /dialogflow.
com), IBM Watson (https:/ /www.ibm.com/watson), and Microsoft LUIS (https:/ /www.luis.ai)) have
comprehensive natural language processing (NLP) capabilities. They still need a sufficient number of
labeled data to learn a given intent. Most of the previous novel research has also been focused primarily
on supervised machine learning algorithms [9-15]. Existing datasets used to train these models usually
rely on human-labeled datasets. One conventional technique is using the Wizard-of-Oz (WOZ) in
which trained agents and crowd-sourced workers interact to complete the task [16-21]; however, it is
labor-intensive and time-consuming. Furthermore, assessing the quality of labels is a difficult problem
because it is highly subjective. The problems arise particularly when dealing with domain-specific
tasks, such as a nursing domain that requires experts to define knowledge [22-24] and consequently
involves enormous costs. Accordingly, automated data labeling and processing approaches with little
to no human involvement are viable and scalable solutions to handle these matters.

In this paper, we propose an automatic dialogue labeling framework that can be used to train
Natural Language Understanding (NLU) modules specifically for recording care activities in nursing
homes. NLU is considered a core component in implementing task-oriented dialogue systems, which
helps to understand the purpose of a user’s utterances (i.e., intent) and extract pieces of valuable
information present in the utterance (i.e., entity). As an example, consider an utterance “I have finished
preparing a syringe with 2.5 cc of vitamin B12 to a patient’s room 303", where a dialogue utterance is
labeled with intent #prepare-injection, and the following entities are mentioned: @drug-type = vitamin
B12; @shot = 2.5 cc; target-resident = patient’s room 303. Figure 1 shows an overview of our proposed
method. In essence, our main contributions are the following:

1. Dialogue Generation: Due to the lack of an utterance of the nurse transcript (a cold start problem)
and expertise from developers in the nursing domain, we develop a data augmentation-based
framework to create initial training utterances. The results show that our dataset qualifies 4.71
fluency and 4.66 accuracy scores with crowd-sourced human judgments. This method can be
used for other tasks, in which training data is unavailable. Furthermore, we explore scalable ways
to generate new statements by computing the character-based model based on long short-term
memory (LSTM) [25]. The model achieves an accuracy level of 90% and shows the generated
reasonable outputs, which look similar to utterances from the original dataset (0.76 BLEU scores
on average).

2. Dialogue Labeling: We propose a semantic similarity-based clustering model for intent and
entity labeling. To obtain similarity features between utterances, we compare several word-level
and sentence-level embedding models to get the best result. The embeddings used are as
follows: word-level models include Word2Vec [26], fastText [27], and embeddings from
language models (Elmo) [28]; sentence-level include the Universal Sentence Encoder (USE) [29],
InferSent [9] Bidirectional Encoder Representations from Transformers (BERT) [30], and Elmo
fixed mean-pooling. The evaluation results show that the fastText embeddings model outperforms
other embeddings by achieving 0.79 and 0.78 fl-scores and 0.67 and 0.61 silhouette scores of
intent and entity clustering.
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The paper is organized as follows: First, we describe the background of our study and examine
the related works involving the different strategies applied to text augmentation and feature extraction
in Section 2. In Section 3, we introduce our proposed dialogue generation method. In Section 4,
we explain the implantation of a dialogue labeling task. In Section 5, we present a performance
evaluation. In Section 6, we discuss the result obtained. Finally, we conclude the paper with future
direction in Section 7.
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Figure 1. The proposed automatic labeled dialogue generation for nursing record systems, consisting
of two tasks—a dialogue generation task and a dialogue labeling task.

2. Background & Related Work

In this section, we divide the backgrounds into four subsections. First, we explain the basic
concept of a task-oriented dialogue system, NLU components, and related works involving entity
extraction on EHR data. Second, we describe the challenge of implementing the dialogue labeling
framework for the nursing field. Third, we present data augmentation procedures that can be applied
in our sequence generation processes. Finally, considering we mainly focus on the process of feature
extraction, we provide an overview of previous work in traditional feature engineering methods and
more advanced strategies that often leverage machine-learning and deep-learning models, which are
involved in our work.

2.1. Task-Oriented Dialogue Systems

Dialogue systems are automatic systems that mimic human conversations using text or spoken
language [31]. These systems are usually divided into two different groups: First is task-oriented
dialogue systems designed for a particular task and set up to have short conversations [32], such as a
voice for documentation or health information-seeking for patients; and second are non-task-oriented
dialogue systems that are designed for unstructured conversation as a conversation between humans
and to maximize long-term user engagement.

NLU is considered a core component in implementing task-oriented dialogue systems, which
helps to understand and interpret human language. It consists of two main parts: an intent and an
entity. Intents represent the purpose of a user’s utterances, each of which contains different expressions
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that can be spoken by the user. For example, when talking about how headaches are treated, many
different statements may be expressed, such as “How do I stop getting headaches?”, “How can I get
immediate relief from a headache?”, “What is the best painkiller for headaches?”, “The best painkiller
for headaches?”. Entities provide a specific context to fulfill these intents. For example, in the utterance
“Why am I having headaches at night?”, we can extract two entities, both what kind of symptom that
the user notices (headaches) and the time that the symptom occurs (at night). NLU can be either
hand-crafted based on domain knowledge, or trained on task-specific labeled data. We focus on the
latter, as this is then applied to model the dialogue in an end-to-end manner.

Many related works have been done in developing such techniques in entity classification on
EHR data. Liu et al. [33] used LSTM for clinical entity recognition and protected health information
recognition. Jagannatha et al. [34] also applied LSTM for classifying relations from clinical notes
and extended conditional random fields (CRFs) to improve the accurate phrase detection of various
medical entities. Wei et al. [35] presented bidirectional recurrent neural networks (Bi-RNNs) and
CREFs for disease and chemical entity recognition in scientific articles. Chlapathy et al. [36] combined
Bi-LSTM-CREF for clinical concept extraction. Although these studies showed the positive impact of
entity extraction, we need to consider how the extraction model is built upon large and high-quality
labeled data, which is expensive to obtain, especially in the nursing care domain that requires
domain experts to label them. In contrast, several studies investigated the method of clustering
texts to eliminate this need. Wang et al. [37] adopted the dependency-based word embeddings to
cluster medical terms (e.g., symptoms, antibiotic medications) on clinical notes from the EHR system.
Huang et al. [38] used the k-means algorithm to cluster patients according to medical utilization on
emergency department (ED) data. Nicole et al. [39] applied latent cluster analysis (LCA) to cluster
among elderly ED patients. Sobhani et al. [40] presented the Non-negative Matrix Factorization
(NMF) for argument-tagging based on topic modeling. Kim et al. [41] presented a divisive hierarchical
clustering technique to identify clinically interesting sub-populations in EHR data. However, the
clusters on their own do not provide any form of utterance. To the best of our knowledge, our study is
the first to formalize standard nursing records as dialogue data structures.

2.2. Nursing Care Recording

Healthcare is undergoing dramatic changes driven by digital technologies. The transformation
from paper to EHR has unquestionably increased the performance and productivity of nurses.
It enables quick access to patient records and a share of electronic information with other providers for
more efficient care.

A typical EHR interaction is based on graphical user interfaces (GUI) (e.g., input field, select form,
checkbox, or radio box), either computers or smartphones [42,43]. However, the typing speed is slow,
and the error rate is relatively high for taking long notes, especially those who are inexperienced and
unfamiliar with computer screens and keyboards. Nurses may also be unable to record in real-time if
their hands are not free, such as the situation where they are taking care of patients. Speech recognition
technology allows users to interact with voice only and helps to capture speech at a faster rate than
typing [2,3]. Moreover, with the capabilities of the voice assistants and natural language processing
(NLP), users do not need to remember an exact command or syntax to control the device with spoken
commands. The results of our previous experiment [44] showed that integrating the voice assistant
into EHR systems can help to minimize documentation errors and time. Although it is still hard
to replace GUI wholly with the voice, it creates the best user experience in many situations, as we
mentioned above.

In this work, we focus on EHR for nursing records, especially recording activities of direct care for
the elderly, different from general EHR systems that are used for entering information on new patients
or updating with each new encounter. In care homes, nurses usually provide patients with nursing
care up to 24 h a day, and often perform two or more activities simultaneously. Thus, the record of
activities can have many applications, like the execution time of activities and record care routines.
The details of activities and records will be described in Section 3.1.
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2.3. Data Augmentation

Data augmentation is an approach used for increasing the diversity of data available for training
models, without actually collecting new data. It is widely used in the field of image transformation
in computer visual areas, such as to crop, rotate, or mirror an image without changing the original
label. In the NLP task it is much more complicated, as it is challenging to preserve the contextual and
grammatical structure of language texts.

A useful method is replacing words or phrases with their synonyms. Zhang et al. used a word
from the thesaurus obtained from WordNet, where the geometric distribution [45] ranks every word or
phrase synonym. Thesauruses are alternative resources for NLP tasks, which gather words according
to similarity. Wang et al. [46] presented k-nearest-neighbor (KNN) and cosine similarity of word
embeddings to find a similar word for replacement. Instead of using static word embeddings, authors
in [47] used contextualized word embeddings to replace the target word. The author in [48] also
proposed a bi-directional language model to predict possible replacement by giving surrounding
words. Kafle et al. introduced a generation method for visual question answering by replacing the
whole sentence rather than a single one of few words [49]. The authors of [50] presented easy data
augmentation techniques by combining four operations, including synonym replacement, random
insertion, random swap, and random deletion.

Paraphrasing user utterances is another approach that can be applied to increase training sets
to enhance model performance. Barzilay et al. [51] presented an unsupervised approach using
multiple-sequence alignment to paraphrase utterances. Kauchak et al. [52] applied the paraphrasing
method in the context of machine translation by finding a paraphrase of the reference sentence that is
closer in wording to the machine output than the original reference. Quirk et al. [53] applied statistical
machine translation (SMT), where translations are generated based on statistical models to generate
novel paraphrases of input sentences in the same language. Zhao et al. [54] also used a statistical model
to generate paraphrases. Sennrich et al. [55] presented another approach used for machine translation:
the back translation technique (i.e., translation of the target language back into the original language).
Furthermore, several works have recently been a focus on crowdsourcing to increase the utterance
variations from user feedback [56,57]. Among all these, we extend some augmentation approaches to
solve our problems. Details are in Section 3 in generation processes.

2.4. Feature Extraction

The traditional strategy for representing text data for a machine learning algorithm is a
bag-of-words (BOW) model. It represents each text document as a numeric vector by calculating
the frequency that each word appears in a document. BOW consists of two conventional approaches:
CountVectorizer and Term Frequency Inverse Dense Frequency (TF-IDF) [58]. CountVectorizer converts
the text document collection into a matrix of integers, while TF-IDF transforms a count matrix into a
normalized TF-IDF representation. BOW offers better performance when positioning or contextual
information is not relevant; however, it also has some limitations, such as large feature dimensions
and sparse representation.

Word embedding is an alternative technique that convert words or phrases to vectors of real
numbers in a low-dimensional space relative to the vocabulary size. Since similar words have similar
representation, they therefore it can be used to address the limitation of the BOW representation.
The most popular word embedding model is Word2Vec, which learns word embeddings using a
shallow neural network. Two more popular methods are the continuous bag-of-words (CBOW) model
and the skip-gram model [26]. The CBOW model predicts the current word from a window of
surrounding context words, while the skip-gram uses the center word to predict the surrounding
words instead. Global Vectors (GloVe) was proposed by [59] and works quite similarly to Word2Vec,
but learns vectors from their global co-occurrence information. Its loss function is calculated by taking
the difference in the product of word embeddings and the log of the probability of co-occurrence.
FastText [27] extends the Word2Vec model but represents each word as an n-gram of characters. Thus,
the vector for a word is composed of the sum of these character n-grams.
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In recent years, several studies have focused on a contextual embedding technique that captures
the context of a word and takes word order into account, rather than outputs with one embedding for
each word. Elmo [28] representation is a contextual and character-based model. It uses morphological
information to form representations even for out-of-vocabulary (OOV) tokens. Bidirectional encoder
representations from transformer (BERT) [30] also incorporates context using a transformer-based
model with positional encoding to represent word positions. Instead of solely averaging embeddings
of the words, sentence embeddings propose to embed a whole sentence into a vector space. Google
presents universal sentence embedding (USE) [29], which is trained on large corpora and results in
better generalizable sentence representations for multiple downstream tasks. Another famous sentence
encoder model is InferSent [9], which outperforms the results obtained by the SkipThought vectors.
It is trained on natural language inference data and also generalizes well to different tasks.

Since there is no clear evidence in previous research that show how one architecture outperforms
others, most of the earlier studies are designed to solve problems that authors are facing in their
problems. In the following, we examine some approaches that are given above and compare them to
each other to find the best setting for our task.

3. Dialogue Generation

To train the NLU for accurate intents and entity extractions, it is necessary to capture a variety of
different example utterances for each intent. However, there are no publicly available NLU datasets of
the nursing care domain. We cannot begin with training a text generation model, such as a typical
stacked RNN or sequence-to-sequence (seq2seq) [60], since it needs data to learn sequence pairs to
generate one from the others. Furthermore, it is laborious to create and annotate a large number of
utterances manually. To address these challenges, we propose to apply data augmentation techniques
and the rules of linguistics syntax to generate varied utterance patterns. In the following subsections,
we describe the model of care details associated with activity classes and constructing utterances in
more detail.

3.1. Data Modelling

In contrast to the way users converse with a virtual assistant, the traditional natural language
uses considerably complex conversations which tends to be simple commands and directly specific
actions. Thus, it can be defined as semi-structured, as it contains more semantic tags or entities. In our
prior work on a dialogue-based annotation for activity recognition [61], we suggested that for the
usage across all users, there were very general action words and name-specific activities (e.g., show
activity, start sitting, stop walking), with 47.7% being just two words and 35.7% being a single word.
Thus, we designed our utterances based on action-driven intents and avoided long sentences to
accomplish the task efficiently. Each intent consists of a verb that indicates an action and an activity
class that supports the action of the verb (e.g., #add-vital, #clean-oral, #prepare-meal, #change-diaper,
#assist-toilet, #assist-bath). Note that this concept is related to the “dobj” edges of a dependency tree
(direct object of a verb phrase), as shown in Section 4. The data model is flexible, based on the different
records of each activity type. Each model mainly includes the following information:

*  Nursing activity class (e.g., vital signs measurements, blood collection, diaper exchange);

¢ Information for one or more target residents, depending on the individual business (e.g., a
patient’s name, a patient’s room number);

e The execution time of activity (start and finish times);

*  Care records linked with activity (e.g., blood volume for blood collection).

Given is an example of a data model oral assistant activity (#clean-oral), as shown in Figure 2.
Nurses desired to record the oral assistance that they provided to patient A within the interval of
9:00 a.m. to 9:30 a.m. The intent #clean-oral can have @oral-type as the activity class entity and
@oral-material, @start-time, @stop-time, and @target as the record entities. The @oral-type can have
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values such as mouth and denture cleaning. The @oral-material can have various fields belonging
to @oral-type, such as sponge brush, interdental brush, dental floss for mouth cleaning, or detergent
and freshwater for denture cleaning. Different time expressions can represent the @start-time and
@stop-time, for example, an exact time (at 10:30 p.m., at half-past six), a period (in the morning),
a duration (for two hours), and a point in time (since 11 o’clock). The @target can be the patients’
information, such as the patient’s name, the patient’s room number, and a group of patients.

Intent: #clean-oral

Activity entity @oral-type: denture

Record entities @oral-material: detergent, fresh water, etc.
@start-time and @stop-time: 9:30 am
@target: patent's name

¢ A. Word shuffling

unshuffled shuffled

with @oral- from

clean @oral-type material @start-time

to @stop-time for @target

¢ B. Word replacing
clean denture with detergent from 9 am to 9:30 am for patient A

¢ C. Utterance paraphrasing

I have helped to

clean a denture with detergent from 9 am t0 9:30 am for patient A

Figure 2. An example of the utterance augmentation task. The task is carried out with the following
steps: (A) word shuffling; (B) word replacing; and (C) utterances paraphrasing.

Table 1. Examples of nursing care data include intent, entity, sample values, and sample utterances.

Intent Entity Sample Values Sample Utterances

add-vital vital-type blood pressure, body temperature, pulse beats Can you add pressure with 103 systolic blood pressure?
vital-value  mmHg, systolic BP, ¢, celcius, bpm, heartrate Set temperatures with 39 deg

clean-oral oral-type mouth, dentures,partial denture, orthodontic braces Clean mouth ventilations with fluoridated toothpaste

oral-material interdental brushes, dental floss, detergent, water =~ Wash partial dentures with detergents
ine assist-toilet toilet-type  portable toilets, port potty, urinals, waterless urinal Ihave helped to use urinals on sofa

toilet-place  toilets, lavatory, restroom, bathroom, loo help to use porta potty at restroom
prepare-meal meal-type  breakfasts, lunch, brunch, dinner, meal, supper Prepare chicken noodle soup for breakfasts
food-type noodles, tofu, vegetable soup, chicken soup, fruits Make udon for supper
assist-bath bath-type baths, shower, wipe Help to baths with bar stool
bath-material lift, steal, bar stool, worktable, swivel chair I have helped to shower with bath transfer chairs
change-diaper toilet-place  toilets, lavatory, restroom, bathroom, loo Change dirty diaper at urinal

Help to change nappies at restroom

In this paper, we employed nursing activities and recorded information performed in a real
nursing care facility in Japan as an ontology (see Appendix A for details). We selected the activities
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in which nurses performed more than a five-minute interval. In total, we generated 3546 sample
utterances with six intent types, each of which contains different unique entities. An example of intents
and entities are presented in Table 1. The statistics of the data are described in Table 2.

Table 2. Statistics of the data.

No. of Utterances  No. of Words  Avg. Utterance Length

add-vital 876 6016 6.867
clean-oral 606 4163 6.869
assist-toilet 408 3074 7.534
prepare-meal 756 4830 6.388
assist-bath 560 3572 6.378
change-diaper 340 2658 7.817
Total 3546 24,313 6.856

3.2. Utterance Augmentation

To create initial data for model training, we performed a set of defined data with augmentation
operations as the following steps:

3.2.1. Word Shuffling

Figure 2-A shows an example of a word shuffling step. We first created a list of prepositional
phrases of record entities to make a complete and coherent phrase in which entities are reduced to
placeholders (referred to @). A prepositional phrase is a group of words containing a preposition,
a noun, or pronoun object of the preposition, and any object’s modifiers. In our approach, we used
two common phrase patterns:

1.  Preposition + Noun, Pronoun, Gerund, or Clause
2. Preposition + Modifier(s) + Noun, Pronoun, Gerund, or Clause

(1) A prepositional phrase will begin with a preposition and end with the entity (e.g., on the
second floor, before the meeting, at the room, under the bed). (2) The preposition’s object can have one
or more modifiers to describe it (e.g., in my room, on his front porch).

Then, we shuffled those entities in the list created if they did not reflect the meaning of the sentence
by considering the ordering of subject, object, and verb in a transitive clause (e.g., subject-verb-object
order). We created iterators for finding all possible combinations and accessing them one by one.
To avoid duplicate entries, we kept a state of the previously generated list and compared it. We skipped
it if it had already been used. Subsequently, we connected them with the activity entity to create a
new utterance.

3.2.2. Word Replacing

Figure 2-B shows an example of a word replacing step. We replaced placeholders with their
real values and expression synonyms. For example, @oral-type was replaced by mouth and denture;
@oral-material was replaced by sponge brush, interdental brush, and dental floss; @time was replaced
by 8 a.m. and eight o’clock; and @time-range was replaced by the morning, afternoon, and evening.

To find synonyms in words for replacement, we proposed a pre-trained Word2Vec model and
cosine similarity. We used the pre-trained Google Word2Vec model [62] that trained on roughly
100 billion words from a Google News dataset. It contained 300-dimensional embeddings for 3 million
words and phrases. We loaded the model and looked up the top 10 words that positively contributed
to the similarity with a higher count threshold of 0.5 using Gensim [63]. The similarity was determined
using the cosine distance between a simple mean of the projection weight vectors of the given words
and the vectors for each word in the model. Some abbreviations and units of measurement (e.g., mmHg,
bpm, cm, kg) may have included special characters, so these were removed before application.
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Some unique words, such as medical and scientific terms, may not exist in the vocabulary of
the pre-trained word embeddings model. Instead, we retrieved data from Wikipedia and focused on
anchor text (i.e., the tag) in the first paragraph of the article. The anchor text typically links to other
related articles. For example, the article on dysphagia contains the text “swallowing”, and the article
on swallowing also contains the text “deglutition”.

3.2.3. Utterance Paraphrasing

Figure 2-C shows an example of an utterance paraphrasing step. We reformatted utterances
using syntactic transformation techniques that we looked over from the two benchmark NLU datasets,
Snips [64] and Kvret [21]. A transformation is defined by the rules whereby words or other elements
of sentence structure are combined to form grammatical sentences. Both datasets were collected using
different methods, but had a similar syntactic structure to ours.

*  Snips: Datasets were collected from real-word usage of chatbot and voice assistant platforms.
We chose the Snips dataset performed in June 2017. It contained custom intent engines from
5=five platforms, including Google’s Dialogflow, Wit.ai, Microsoft’s Luis, Amazon’s Alexa, and
Snips Voice Platform. This dataset contained 2400 queries for each of seven user intents: add to
playlist, play music, book restaurant, get weather, rate book, search creative work, and search
screening event.

e  Kvret: The dataset using a Wizard-of-Oz scheme which incorporates crowdsourcing (Amazon
Mechanical Turk platform) for data collection. Thus, utterances tend to be correct compared to
real Snips. The dataset contained intent and entity annotations for 3031 multi-turn dialogues
associated with in-car voice assistants. The three different sub-domains are provided, including
calendar scheduling, weather information retrieval, and point-of-interest navigation.

From these datasets and their techniques, we inferred and designed the set of transformation
following four rules:

¢  Change statement into question forms with Wh-questions (e.g., what, when, where, who, whom,
which, whose, why, and how) and Yes/No questions (e.g., be, do, have, or a modal verb).
For example, from “add 80 beats” to “Can you add 80 beats to a patient A?”;

e Insert “I” or “Please” words before the activity entity. For example, “Please, put this 155 cm on
the record of a patient A”;

e Transform a sentence from an active to passive voice. For example, transform from “I have
cleaned dentures with detergent” to “Dentures are cleaned with detergent”;

*  Replace keywords with synonyms, as described in Section 3.2.2. For example, “Clean” is replaced
by “wash, scrub, wipe, sponge”, and “Add” is replaced by “attaching, put, set”.

3.3. Utterance Generation

Since we started with an augmented-based model, we wanted to supply future models on deep
generative models as alternatives to scalable data. Thus, we used a set of utterances in the previous
steps to train a character-based LSTM model. To create utterance generation, we built the model using
the following steps:

3.3.1. Model Selection

With the rise of advancement in research in NLP, especially in mainly text generation tasks, these
approaches use standard recurrent neural networks (RNN). LSTM is an improvement over the general
RNN, which possesses a vanishing gradient problem by incorporating gating functions into their state
dynamics and utilizes a memory cell that may maintain its state value over a long time. LSTM contains
three non-linear gates, namely, an input, an output, and a forget gate. The input gate decides what
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new information we are going to store in the cell state. The forget gate decides what information we
are going to throw away from the cell state. The output gate decides what we are going to output.

We trained a generation language model using the character-based LSTM on our augmented
dataset, which will be used to generate new utterances. We arbitrarily chose the character-based one
for the preliminary experiment because the fastText one, based on the character n-grams model, had
shown the highest accuracy compared to other embedding models for our clustering tasks. The basic
idea is that we trained the model to predict the next character in the sequence based on the probability
distribution of the last character of the current sequence and repeated sequence of characters for
creating words or sentences. For example, given a sequence of characters “vita”, the next character
is predicted as “1”, and the result will be “vital”. In the following subsections, we describe the
implementation of the generation model step-by-step.

3.3.2. Data Preparation

We split the text into sequences with a fixed length of 100 characters. Each sequence is followed by
a target input, which moves one character step from the 100 character input window. Thus,characters
of timesteps 0 to 99 in the sequence, the model predicts characters of timesteps 1 to 100. For example,
if the sequence length is 4, the input sequence would be “vita”, and the target sequence would be
“ital”. To avoid a large vocabulary size, we calculated the frequency for each of the characters. Then,
we mapped each character to a unique integer, including white-space and newlines (\n). We added \n
at the end of each utterance to facilitate the model’s capacity of learning how to finish the creation of
the new sequence. For example, [add pressure\n] characters mapped to int [12 15 151 27 29 16 30 30
3229 16 0]. These numbers of sequence length were fed in at each step of the training.

3.3.3. Generation Model

Since the dataset has just 136,389 characters and only 38 unique characters in the vocabulary for
the network to learn, we defined the model with a simple three-layer stack using Tensorflow [65].

Logits Logits hdd Logits
1 f 1
Dense Layer Dense Layer b Dense Layer
1 f 1
Hidden States Hidden States b Hidden States
Char Embedding Char Embedding oo Char Embedding
1 f 1
Embedding Embedding coe Embedding
Layer Layer Layer
1 f 1
Input char Input char oo Input char

} [batch_size x sequence_length] {

Figure 3. The architecture of a character-based model based on long short-term memory (LSTM). The
first layer is a hidden embedding layer. The second layer is a single hidden LSTM layer. The last layer
is a dense layer that was applied with the categorical cross-entropy loss function.

Figure 3 reflects a high-level understanding of the model. The first layer is an hidden embedding
layer that projects each character into a character lookup table with 256 dimensions. The second layer
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is a single hidden LSTM layer with 1024 memory units with a probability of 0.2 dropouts that returned
the hidden state output for each input time step. The last layer is a dense layer that was applied with
the categorical cross-entropy loss (softmax loss) function to output a probability prediction for each
character between 0 and 1. The model was trained in mini-batches of 64 over 30 epochs.

After training was finished, we restored the weights of the model and used it to generate new
utterances. We fed a character into the RNN and obtained the most probable next-sequence character
from a categorical distribution. We set the probability of the softmax as equal to 1.0, which means the
probability for the character to be drawn was similar to the probability for the character to be next in
the sequence. We sampled the character from this distribution and fed it right back to get the next
character and more contexts from the previously predicted characters. Section 6 shows the results
obtained from the model.

4. Dialogue Labeling

The semantic similarity measure is the ability to determine how close two pieces of text are, both
in surface closeness and meaning. The key idea is to represent documents as fixed-length vectors
of features (embeddings), and compare documents for their similarity by calculating the distance
between these features.

Our approach leverages semantic embeddings as input features to build the clustering model. We
experimented with both word-level and sentence-level embedding models. In the rest of this section,
we give an overview of selected word-level and sentence-level embedding models. Next, we explain
the process of converting the text into respective vectors and computing the clustering similarities.

4.1. Embedding Models

In this study, we selected current strong baselines that have been shown as better word
embeddings for most general NLP tasks and several state-of-the-art models that have been recently
published in the past few years to create our embedding features. The selected models are as follows:
word-level embeddings include skip-gram Word2Vec, fastText, and Elmo; sentence-level embeddings
include USE, InferSent, BERT, and Elmo fixed mean-pooling. Each model was trained on our generated
dataset and we tuned the model to suit our task except the experiment of InferSent, which was trained
on fastText pre-trained embeddings due to its characteristics. A brief introduction of these models has
already been discussed in Section 2.4. For a full theory behind these models, we recommend reading
from the original literature. We built the training data in a compatible form of input, depending on the
training model’s goal. Below is a brief description of the implementation of each model.

*  Word2Vec: We trained both CBOW and skip-gram models, while the results indicate that the
skip-gram model outperformed the CBOW model. We thus present only the results of the
skip-gram model. The model was implemented with Gensim. The parameters were tuned as
follows: The number of features was 32, the minimum word count was 3, the number of threads
was 4, the context window size was 6, and the downsampling for frequent words was 1 x 107>.
The model was run iteratively until the accuracy was saturated; the optimal number result was
50 epochs. We observed that the number of features could affect the accuracy performance, since
increasing more features led to worse results. In contrast, the size of the context windows between
4 and 6 gave similar results.

e fastText: As the model considered each word as a bag of character n-grams, the word was
represented by the sum of the vector representations of its n-grams (i.e., a subword model).
For implementation, we first reformatted our dataset to the format of the fastText model.
For example, consider the n-gram where n is 3 (trigrams), the character 3-grams of the word
“fever” would be ['<fe’, ‘fev’, ‘eve’, “ver’, ‘er>’]. The special symbols < and > at the beginning and
end of words are used to distinguish prefixes and suffixes from other character sequences. Then
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we learned word vectors with the fastText original package [27] on this data. We also used the
skip-gram model and tuned the other parameters with the same values in the Word2Vec model.

e Elmo: Generally, the input to the model is a sequence of words, and the output is a sequence
of vectors that allows us to perform different tasks based on output. Thus, we exploited the
model to build both word and sentence embeddings. We used TensorFlow Hub (TF-Hub)
(https:/ /www.tensorflow.org/hub) to load the Elmo pre-trained model to then pass a bunch of
text inputs to the model. The model outputs fixed embeddings at each LSTM layer. We used
the weighted sum of the three layers with word embeddings for word-level features, and a fixed
mean-pooling of all contextualized word representations for sentence-level features. Each word
and sentence was a vector size of 1024.

¢  USE: We used TF-Hub to load the pre-trained USE model that was trained with a Transformer.
We then used this model to create embeddings for our sentences. The models were trained on a
variety of sources, such as Wikipedia, web news, discussion forums, and supervised data from
the Stanford Natural Language Inference (SNLI) corpus. The model returned vectors of 512
dimensions as output, irrespective of the length of the input. Each sentence had a vector size of
512 with normalized values.

¢ InferSent: InferSent used a supervised learning approach to generate sentence embeddings,
which need to have labeled data in advance of running the algorithm. We used the InferSent,
which trained with the pre-trained fastText model instead and updated only the vocabulary
of word vectors with our dataset. The model was adopted by a bi-directional LSTM with a
max-pooling operator as a sentence encoder and trained on the SNLI corpus. The output of the
model encoded sentences in fixed-length vectors of dimension 4096.

¢  BERT: We used TF-Hub to load a pre-trained bert-base-uncased to build sentence embeddings.
The model was trained on lower-cased English, which has 12 layers and 768 hidden states. Unlike
USE and InferSent, which can directly consume a list of sentences, BERT requires the inputs to be
pre-processed. Thus, we used the BERT tokenizer to tokenize sentences into smaller subwords
and characters. This kind of tokenization will help to deal with OOV words and complicated
words. We also added a special [CLS] token at the first position, and [SEP] at the end of the
sentence for separating sentences for the next sentence prediction task. For example, the output
of a pre-processed sequence is ['[CLS]’, ‘add’, ‘pressure’, ‘with’, “103’, ’s’, ‘#Htys’, ‘##to’, ‘#i#lic’,
‘blood’, ‘pressure’, ‘[SEP]’]. Each sequence is truncated down to 20 as the maximum sequence
length. Then, we took the tokens input and passed it to the BERT model. Each sentence was a
vector size of 768.

4.2. Word-Level Features

In this section, we create word features following these methods. In order to facilitate our
experiments, a few normalization steps had to be performed on our dataset to reduce the feature space.
We first expanded word contractions (e.g., “I'm” is replaced with “I am”) and produced as lower
case. We then tokenized text into a list of tokens using spaCy (https://spacy.io). For example, the
output of tokenization is ['add’, ‘pressure’, “with’, “103’, ‘systolic’, ‘blood’, “pressure’]. For efficiency, we
limited retrieved results to tokens with a minimum length of four characters and ignored stopwords
(e.g., a, an, the). We then normalized the word with lemmatization that gets synsets from WordNet
(e.g., closest replaced with close) and removed non-ASCII letters, including punctuation, spaces, and
special characters. Its implementation relies on regular expressions.

We created sentence embedding (except for Elmo) by using the averaging approach for
aggregating the word embeddings since it consistently gives reliable results. Given an utterance
U = {wy,wy,..., wy}, we transformed each word into a vector representation v,,,. Subsequently,
we averaged out all the word vectors of the utterance as the word-level feature:

Ly
Fy = — Ow,
N n=1


https://www.tensorflow.org/hub
https://spacy.io

J. Pers. Med. 2020, 10, 62 13 of 24

4.3. Sentence-Level Features

At the sentence-level, we only removed non-ASCII characters. Since lemmatization aims to
reduce inflectional forms of a word to a common base form, which may cut off some semantic contexts,
for example, “close”, “closer”, and “closest” have the same root word (in an adjective form), but
their semantic meaning is different from each other. Each sentence is represented as a fixed-length
vector representation. Given an utterance U = {wl, wy, ..., wN}, the utterance is represented with

embeddings using each pre-trained model:

FS - {S]/SZI . -/Sn}
4.4. Intent and Entity Labeling

Since entities are smaller parts (words) of the intent (sentence), we used only word-level
embeddings for entity clustering, while we used both word-level and sentence-level embeddings for
intent clustering.

As most of the entities were composed of noun phrases (i.e., a noun plus the modifiers which
distinguish it), we split the utterance into noun phrases using dependency parsing in spaCy, then
mapped them with their corresponding ground truth. Dependency parsing facilitates this process by
identifying the relationships between noun phrases in the utterance. It transforms a sentence into a
dependency tree, a structure that can be defined as a directed graph, with vertices corresponding to
the words and arcs corresponding to the syntactic dependencies between them. These relations give
details about the dependency tag (e.g., nsubj: nominal subject, det: determiner, nummod: numeric
modifier, obj: object).

For example, regarding the utterance in Figure 4, “add pressure with 114 mmhg”, it consists
of two nouns: “pressure” that describes the vital, while “mmHg” describes the unit of pressure.
The dependency tag under the arcs denotes a prepositional modifier, which modifies the meaning of
the noun. For instance, “pressure” is linked to the root “add” as the object of the verb (dobj); “mmHg”
is linked to the root “114” as a numeric modifier of a noun (nummod) to modify the meaning of the
noun with a quantity, and “114 mmHg” is linked to the root “with” as the object of a preposition (pobyj).

prep pobj

dobj pummag

add pressure with 114 mmhg

VERB NOUN ADP NUM NOUN

Figure 4. An example of a dependency parse of a sentence that represents its grammatical structure
and dependencies.

4.5. Clustering Model

The task here is given a list of utterances. We clustered them so that semantically similar utterances
were in the same cluster. According to this procedure, we utilized k-means clustering [66], one of the
most widely used clustering algorithms. The algorithm iteratively moves the k-centers and selects
the data points closest to that centroid in the cluster. This method is defined by the objective function,
which tries to minimize the sum of all squared distances within a cluster for all clusters. The objective
function is defined as:

1 +¢)1%,

J=)

n
j:] =

1
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where k is the number of clusters, n is the number of cases, x; is a case i, and ¢ is a centroid for cluster
j. Since the k-means algorithm needs a random initialization, we used k-means++ to choose initial
cluster centroids. The number of clusters k is set to be equal to the number of classes the dataset
generated (i.e., the gold standard k). We trained clustering for each feature embedding. Each cluster
was assigned to the class, which was the most frequent output label among the members in this cluster,
and computed the average accuracy of such assignments’ overall clusters.

5. Experimental Setup

In this section, we described the experimental setup and evaluation metrics used for the generation
and the labeling evaluations.

5.1. Dialogue Generation Evaluation

We evaluated both the dataset was generated from the augmentation technique, and the dataset
was generated from the LSTM model.

5.1.1. Augmentation evaluation

The augmented dataset was evaluated using human judgment, which focused on two hypotheses:

¢ Fluency: How well does the utterance perform in both being more natural to read and comprehend?
e Accuracy: How well does the utterance perform in both its grammatical correctness and adequacy?

To explore these, we experimented with two different participant groups to perform a questionnaire.
First, we employed domain expertise related to the nursing care domain. We requested three people
working at Chulabhorn hospital (https://www.chulabhornhospital.com) as a nurse and nursing
assistant to rate 100 random utterances from the dataset. Second, we crowdsourced 300 diverse workers
on an Amazon Mechanical Turk (MTurk) (https://www.mturk.com) to perform. We narrowed down
the workers using MTurk qualifications to help us target suitable workers for our tasks. Workers were
filtered based on their literacy level of English language (native speakers or non-native speakers
who can speak English fluently) and their prior experience with the voice assistant technology.
We randomized 50 utterance samples for each intent from our dataset and accumulated human
ratings from independent workers for each output. In total, we gathered 300 responses from them.

The questionnaire was designed to request each participant to specify his/her level of satisfaction
to the utterance on a 5-point Likert scale: (5) strongly agree, (4) agree, (3) neutral, (2) disagree, and (1)
strongly disagree.

5.1.2. Generation Evaluation

We generated 1000 samples from our LSTM trained model and examined all utterances that
were generated manually. We inferred each generated utterance from its ground-truth label, and if it
consisted of multiple intents, we would leave them out. In total, we agreed on 86.4% of meaningful
utterances.

We then evaluated the similarity between the generated utterance and its reference utterance
using the Bilingual Evaluation Understudy (BLEU) [67] and averaged all the results. BLEU is a metric
for evaluating a generated sentence to a reference sentence using the concept of modified n-gram
precision and brevity penalty. The author in [68] showed that these metrics could show a comparatively
stronger correlation with a human assessment on task-oriented datasets. A perfect match results in a
rating of 1.0, whereas an absolute mismatch results in a score of 0.0.

5.2. Dialogue Labeling Evaluation

To evaluate intent and entity labeling, we used two different metrics for automatically measuring
the quality of the produced clusters, f1-score, and silhouette coefficient, defined as follows:


https://www.chulabhornhospital.com
https://www.mturk.com
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5.2.1. F1-Score

Fl-score used to compare the results of each algorithm against its ground truth for quantifying
the quality of predictions. It presents the balance between precision (P) and recall (R) and reaches its
best value at 1 and the worst score at 0. To apply the f1-score to the precision and recall of pairs, we
defined pairs of items in each cluster:

®  True positive (TP): the number of item pairs in the same cluster and which belong to the same
class;

¢  False positive (FP): the number of item pairs in the same cluster but which belong to different
classes;

e True negative (TN): the number of item pairs in different clusters and which belong to different
classes;

e  False negative (FN): the number of item pairs in different clusters but which belong to the same
class.

Then, we computed P, R, and the F1-score as follows:

TP TP 2PR

P=——  R=-——— Fl=——
TP + FP TP + FN P+R

5.2.2. The Silhouette Coefficient

The silhouette was used to evaluate clustering results. Intuitively, it computes how similar a
point is to its cluster (cohesion) compared to other clusters (separation). The silhouette coefficient is
calculated as follows: ' »

b(i) —ali)

max(a(i),b(i))’

whereby i represents the data point, a(i) is the mean intra-cluster distance, and b(i) is the mean
nearest-cluster distance for a data point. From this definition, we can see that the silhouette width s(i)
is always between [—1,1]. A high value indicates that points are well-matched within clusters and
poorly between clusters, whereas a low value corresponds to the opposite. Therefore, we assumed that
we could achieve the highest values s(i) at the goal standard k.

5(i) =

6. Results

In this section, we present our empirical results. We start by describing the dialogue generation
experiments and then detailing different models applied for dialogue labeling, along with their results.

6.1. Dialogue Generation Results

We named the dataset was generated from the augmentation method as ‘augmented dataset’,
and the dataset was generated from deep-learning models as ‘generated dataset’. Utterance samples
in the dataset are shown in Table 3.

Table 3. An example of augmented and generated datasets.

Augmented Dataset Generated Dataset

Add pressure with 103 systolic blood pressure I help to presture with 88 diastolic pressure

Clean dentures with dishwashing liquid Please add heartbeat lastorats

Help to use portable toilets at bathroom Clean porcelain crowns with dish detergent

Help to change soiled diaper at toilet Help to toliet on foldout couch

Prepare noodles for breakfasts I have helped to change feeding burping on couch

Help to baths with bar stool I'have helped to change soiled diaperoon slppers




J. Pers. Med. 2020, 10, 62 16 of 24

6.1.1. Augmented Data Quality

Table 4 shows crowdsourcing evaluation results. Overall, we found the dataset to be generally
acceptable by participants in both groups (4.71 £ 0.58 ratings for fluency scores and 4.66 + 0.57
accuracy scores). The scores from participants with high levels of domain expertise performed a little
better than crowd workers (+0.4 for fluency scores and +0.6 accuracy scores). We directly asked the
participants in the first group to give opinions on low score utterances. They provided a similar main
reason, that is, that some words were difficult to understand because they had never seen them before.
We found that these words were synonym words generated by the pre-trained Word2Vec model.
Thus, the similar words should be carefully developed and reviewed by subject experts. Conversely,
we found that utterances of #add-vital intent were most often given low ratings in the second group;
this might have been because the hard medical definition of vital signs was not clear to them.

Table 4. Crowdsourcing evaluation results. Note: years experience of group 1 is the work experience in
hospital, and group 2 is the experience in the use of virtual assistants; M = male; F = female; m = mean;
std = standard deviation.

Group 1 Group 2 Overall

Gender (M,F) 03 173,127 173,130
Age (m + std) 25.6 £ 047 36.88+798 36.76 £ 8.01
Years experience (m = std) 1.33+047 151+112 151+111
Fluency (m =+ std) 483+045 4594072 4.71+ 0.58
Accuracy (m = std) 4794+ 046 4.53 +0.68 4.66 + 0.57

6.1.2. Generated Data Quality

We also performed experiments to see how the performance of generation models was trained
in our data schema. Here, we conducted experiments on the following two models. The first model
is LSTM, as described in Section 3, and another is a Gated recurrent unit (GRU) [69] as its related
LSTM. (LSTM has three gates, namely, input, output, and forget gates, whereas GRU has just two gates,
namely, reset and update gates). All parameters were set to the same value in both models. Figure 5
shows the performance of both models. We can see that accuracy and loss have not converged. LSTM
achieved 90.28% accuracy and GRU 89.61% accuracy. Since LSTM was slightly better than GRU by
0.67%, we will only discuss the results obtained from the LSTM model.

—— LSTM-Loss
= = LSTM-Accuracy
——— GRU-Loss
= = GRU-Accuracy

Accuracy

Epoch

Figure 5. The performance of generation models.
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The results of our generated utterances closely resembled the original dataset (0.76 BLEU scores).
In general, generated utterances began with the word or phrase related to the original dataset. Although
some utterances were grammatically incorrect but semantically acceptable, this was probably due to
how they were trained on the character-based model. As we can see in Table 3, most spelling mistakes
are just one or two characters wrong. However, the output, in this case, has less diversity. As we
tried to increase the probability of sampling a class (sampled softmax) for more random predictions,
the entire new text could give more spelling mistakes and almost complete nonsense. We believe that
increasing training samples may help in producing more surprising utterances.

6.2. Dialogue Labeling Results

We performed experiments on the embedding models, as mentioned in Section 4. We also reported
the results obtained from these models in this subsection.

6.2.1. Comparison Embedding Models

The experimental results are shown in Table 5. For sentence-level representation, USE outperforms
all other embedding approaches. USE results in an accuracy of 0.775 f1-scores for intent clustering
and 0.585 silhouette scores for entity clustering. For word-level representation, there might be no
significant difference between the accuracies of fastText and Word2Vec for both intent and entities
as both were trained using the skip-gram model. However, fastText performed slightly better than
Word2Vec. fastText improved the fl-scores for intent clustering from 0.795 to 0.798 (£0.003) and for
entity clustering from 0.741 to 0.787 (£0.046). Thus, fastText improved the silhouette scores for intent
clustering from 0.648 to 0.674 (£0.026) for entity clustering from 0.603 to 0.614 (£0.0.011).

Table 5. Clustering performance on embedding models. Comparison of word-level representations
with sentence-level representations.

Model Intent Entity
F1-Score Silhouette F1-Score Silhouette

Word2Vec 0.795 0.648 0.741 0.603
fastText 0.798 0.674 0.787 0.614
Elmo 0.712 0.405 0.723 0.538
USE 0.775 0.585 - -
InferSent 0.715 0.421 - -
BERT 0.667 0.452 - -

Comparing between word-level and sentence-level, we can see that the overall performance of
the vectors generated from word-level embeddings performed better than sentence-level embeddings
even when applied for intent clustering. The average of the word embeddings of content words in
the utterance of the fastText model shows fl-scores, and the silhouette scores increased on the intent
clustering by £0.023 and +0.063, respectively. We reasoned that the representations learned from the
fastText model included character-based and subword information, which can play an essential role in
improving the representations for uncommon words and even OOV words.

Another interesting observation is that all models which show accuracy in entity clustering are
worse than intent clustering. In contrast, Elmo performance in entity clustering was better than intent
clustering. We suggest that although technically, Elmo is considered a state-of-the-art model and
usually yields satisfactory results, they tend to perform poorly on training new embeddings from
specialized domains, which may probably be too small. Additionally, its embeddings are contextually
dependent, meaning that the word vector changes depending on the sentence it appears in, which
sometimes makes them unable to capture semantic meaning in the utterances.
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6.2.2. Further Discussion

We visualized sentence embeddings in a two-dimensional plot using t-SNE [70] (t-Distributed
Stochastic Neighbor Embedding). It is an algorithm for visualizing high-dimensional data, which
uses local relationships between points to create a low-dimensional mapping that captures non-linear
structures. Example clusters of intents are shown in Figure 6. Each spatial spot in the scatter plot
represents the sentence inside a single intent, and similar sentence vectors would be placed in spatial
proximity. The color of each spot represents the cluster to which it belongs (e.g., all sentences in cluster
#add-vital are represented in yellow, in cluster #assist-toilet are represented in green and so on).

On close observation, it is seen that similar documents (either word vectors or sentence vectors)
are occupying adjacent spaces, while different document vectors are scattered in the plot. The model
can quickly identify intents and assign them to the cluster if they show apparent dissimilarity between
other documents in embedding space, such as #add-vital and #assist-toilet. However, with #assist-toilet
and #assist-bath, these items can be difficult to distinguish correctly, as they more closely embed words
that occur in the same context. For example, looking at the fastText model in Figure 6. we can see that
there are two clusters (yellow and purple), in the general vicinity of each other and almost overlapping,
these are clusters of #assist-toilet and #assist-bath.

fastText Word2Vec Elmo

USE InferSent Bert

Figure 6. The visualization of sentence clusters trained from six embedding models using t-SNE. Each
subplot shows the distribution of sentences within each cluster.

Figure 7 illustrates clusters of entities from the fastText, Word2Vec, and Elmo embeddings,
respectively. Some words can be one or more entities. For example, the toilet can interpret both places
and types in the #assist-toilet intent. One of the most challenging aspects of it is how when the sentence
is divided into smaller parts (e.g., word, chunk), it cannot learn the context of relationships within
the sentence like we can do in intent clustering. Thus, it is clearly shown that without context rules,
it would be challenging to use these words as representations.
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Figure 7. The visualization of word clusters using t-SNE.

Furthermore, as in the generating process, we replaced these target words with their relevant
semantic representations using the pre-trained Word2Vec model, where words with a higher probability
than 0.5 were used. Although clustering models can easily find similarities and cluster together, some
utterances do not make sense, as mentioned in the crowdsourcing evaluation. This problem mainly
arises because of words that are synonyms, but they may provide different perspectives in the context
of statements. Moreover, since no pre-trained models trained on nursing care records or any EHR data
were provided, we used the pre-trained Word2Vec model trained on Google news data, which might
have introduced error to obtain word embeddings in the nursing domain.

7. Conclusions and Future Work

One of the first steps to automate the construction of task-oriented dialogue systems is automating
dialogue labeling to identify the user intent and its adjunct entities in NLU tasks. However, no open
data are available, and getting full access to EHR or nursing records is very challenging (e.g., privacy
problems). In this paper, we proposed smart ways to produce trained labeled utterances that encompass
the functionality required to record information about nursing activities, and also introduced semantic
similarity-based clustering using feature embeddings for automatic dialogue labeling. We desired
to improve and expand this dataset to make the availability of data that enables better systems to be
developed and to share the data with other researchers within the field of training dialogue models to
do meaningful research.

We started with creating initial sample utterances using text augmentation techniques. The results
show our utterances have a powerfully good impression in terms of both fluency and accuracy
scores. We also built a character-based LSTM model to evaluate and understand the opportunities
and challenges of using the text generation model trained with our data schema. Although our initial
model does not have complex structures and was trained on quite a small dataset, the generated
utterances still seem reasonable. In future work, we will look to other recent text generation models
that are worth mentioning beyond simple character-based models, such as a bi-directional RNN and
generative adversarial network (GAN). Furthermore, we want to increase the number of training data
and make utterances to have lots of complexity and multiple variations to ensure that those models do
not propagate possible biases present in the dataset.

We experimented with different types of word and sentence embeddings for the labeling problem,
intending to gain insights on the embeddings that are most suitable to use with our dataset. We initially
began to experiment with six widely used embedding models, including Word2Vec, fastText, USE,
BERT, InferSent, and Elmo. Here are a few more variants that we have been trying, with no great success
yet. We want to learn other embedding models for further improvement. We observed that fastText
outperformed other embeddings on our dataset, while ElImo showed impressive performance for entity
clustering. The result shows a type of transfer learning where these pre-trained models can be taken
as a base and some modification can work well. We are currently exploring the use of context-based
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representation techniques for obtaining word embeddings and proposing several modifications to the
model. Thus, we will find a possibility of retraining pre-trained word embedding features with our
data to increase training data and enhance representation capability.
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Appendix A

Table A1. List of records.

Activity Record Type  Possible Values

Measuring ~ Maximum blood pressure Input greater than or equal to 0
vital signs ~ Minimum blood pressure Input greater than or equal to 0

Pulse beat (bpm) Input  greater than or equal to 0
Body temperature (c) Input  greater than or equal to 0
Weight (kg) Input greater than or equal to 0
Height (cm) Input  greater than or equal to 0
Note Text e.g., being sick, skin colors, have a fever, pain complaint
Meal and Meal assistance Select  self-reliance, setting only, partial care, full care
medication Dietary volume Select 0to 10
Meal size Select 0to 10
Amount of water Select 0 to 500
Medication Select  self-reliance, assistance, no medication
Note Text e.g., dysphagia, appetite loss, using ThickenUp clear
Oral care Oral cleaning Select  self-reliance, setting only, partial care, full care, no cleaning
Denture cleaning Select use of detergent, wash in water, no cleaning
Note Text e.g., using sponge brush, using interdental brush,
using dental floss, oral wound
Excretion Method of excretion Select  toilet, portable toilet, urinal, on the bed
Excretion assistance Select  self-reliance, setting only, partial care, full care
Mode of Excretion Select defecation, urination, fecal incontinence,
urinary incontinence, no excretion
Urine volume Select small, medium, large, no choice
Defecation volume Select small, medium, large, no choice
Type of Waste Select watery mail, muddy stool, ordinary,
hard stool, colo flight, no choice
Diapering Select putt exchange, rehapan replacement,
diaper change, wipe, vulva cleaning, change assistance
Note Text e.g., hematuria, bloody stools, a tight stomach
Bathing Bathing method Select  general bath, shower bath, machine bath, wipe,
it was planned to bathe but there was no conduct
Bathing assistance Select  self-reliance, setting only, partial care, full care
Use of bath aids Text e.g. shower carry use
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