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Abstract: With the development of novel targeted therapies, including exon skipping/inclusion
and gene replacement therapy, the field of neuromuscular diseases has drastically changed in the
last several years. Until 2016, there had been no FDA-approved drugs to treat Duchenne muscular
dystrophy (DMD), the most common muscular dystrophy. However, several new personalized
therapies, including antisense oligonucleotides eteplirsen for DMD exon 51 skipping and golodirsen
and viltolarsen for DMD exon 53 skipping, have been approved in the last 4 years. We are witnessing
the start of a therapeutic revolution in neuromuscular diseases. However, the studies also made
clear that these therapies are still far from a cure. Personalized genetic medicine for neuromuscular
diseases faces several key challenges, including the difficulty of obtaining appropriate cell and animal
models and limited its applicability. This Special Issue “Molecular Diagnosis and Novel Therapies for
Neuromuscular/Musculoskeletal Diseases” highlights key areas of research progress that improve
our understanding and the therapeutic outcomes of neuromuscular diseases in the personalized
medicine era.
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Neuromuscular diseases include a large number of different medical conditions that affect
the peripheral nervous system and muscle [1,2]. Many of them are incurable genetic diseases [3,4].
In the last few decades, numerous genes have been identified that directly or indirectly affect
neuromuscular function [5]. Subsequently, studies on various cell and animal models have substantially
contributed to our knowledge of the molecular mechanisms underlying neuromuscular diseases and
therapeutics [6–10]. These studies directly led to the development of the currently available personalized
genetic medicine, including antisense oligonucleotide-mediated exon skipping therapies [11–14].

A key challenge in genetic diseases, however, is the difficulty of obtaining cell and animal
models that faithfully recapitulate the disease phenotype [15]. In addition, many animal models are
often not very useful in testing mutation-specific therapies including exon skipping and genome
editing because of the differences in the mutation patterns and gene sequences between humans and
animal models [16]. Newly developed models, including humanized models and clustered regularly
interspaced short palindromic repeat (CRISPR)-generated animal models, effectively addressed these
challenges. A couple of review articles written by Lim et al., one of which is included in this Special
Issue, discuss this challenge and future perspectives [15,17].
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Another key area in the personalized medicine era is an accurate and cost-effective genetic
diagnosis [18]. In this Special Issue, Nakamura reviews the recent progress of accurate diagnosis
methods and therapeutic strategies for Duchenne muscular dystrophy (DMD), the most common lethal
muscle disease [19]. Recent advances in genetic diagnosis, such as multiplex ligation amplification
(MLPA) and next-generation sequencing (NGS), have greatly enhanced our ability to pinpoint
mutations. In addition to the accurate genetic diagnosis, the characterization of mutations including
genotype-phenotype correlation studies of exon skip-equivalent in-frame mutations is becoming
increasingly important in order to optimize the effects of exon skipping therapies. For example,
as Echigoya et al. pointed out in their article, exons 45–55 skipping and exons 3–9 skipping may lead
to a milder phenotype, as seen in milder Becker muscular dystrophy (BMD) patients, compared to
smaller in-frame deletions, which are more often associated with DMD [20].

There are several approaches to mutation-specific personalized genetic therapy for DMD.
These approaches aim to restore dystrophin expression using different techniques, including stop-codon
read-through, antisense oligonucleotide-mediated exon skipping, and genome editing. In this
Special Issue, the former two approaches are discussed in detail by Shimizu-Motohashi et al. [21].
Genome-editing therapy is still in its infancy, facing many challenges, but it has already demonstrated
promising effects in cell and animal models [22]. In this Special Issue, Lim et al. discuss the promises
and challenges of this approach [17].

Although significant progress has been made in DMD and spinal muscular atrophy (SMA)
therapeutics, patients with most neuromuscular diseases, such as amyotrophic lateral sclerosis (ALS),
still have no effective targeted treatment option available [23]. Since many genes and mechanisms are
involved in ALS, it is clearly a more challenging therapeutic target of personalized medicine. In this
Special Issue, Morgan et al. discuss the recent developments of personalized medicine and molecular
interaction networks in ALS [24].

In conclusion, we welcome a new era of personalized genetic medicine as we move forward
enthusiastically towards the next generation of therapeutic technologies. We hope this collection of
articles can provide readers with a useful introduction to molecular diagnosis and novel therapies for
neuromuscular diseases in the personalized medicine era.
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