
Journal of

Personalized 

Medicine

Review

Implementation of MALDI Mass Spectrometry
Imaging in Cancer Proteomics Research: Applications
and Challenges

Eline Berghmans 1,2 , Kurt Boonen 1,2 , Evelyne Maes 3 , Inge Mertens 1,2 ,
Patrick Pauwels 4,5 and Geert Baggerman 1,2,*

1 Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium;
eline.berghmans@vito.be (E.B.); kurt.boonen@vito.be (K.B.); inge.mertens@vito.be (I.M.)

2 Health Unit, VITO, Boeretang 200, 2400 Mol, Belgium
3 Food & Bio-Based Products, AgResearch Ltd., Lincoln 7674, New Zealand; evelyne.maes@agresearch.co.nz
4 Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium;

patrick.pauwels@uza.be
5 Center for Oncological Research, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
* Correspondence: Geert.Baggerman@vito.be; Tel.: +32-476472918

Received: 7 May 2020; Accepted: 19 June 2020; Published: 22 June 2020
����������
�������

Abstract: Studying the proteome–the entire set of proteins in cells, tissues, organs and body fluids—is
of great relevance in cancer research, as differential forms of proteins are expressed in response
to specific intrinsic and extrinsic signals. Discovering protein signatures/pathways responsible for
cancer transformation may lead to a better understanding of tumor biology and to a more effective
diagnosis, prognosis, recurrence and response to therapy. Moreover, proteins can act as a biomarker
or potential drug targets. Hence, it is of major importance to implement proteomic, particularly
mass spectrometric, approaches in cancer research, to provide new crucial insights into tumor
biology. Recently, mass spectrometry imaging (MSI) approaches were implemented in cancer research,
to provide individual molecular characteristics of each individual tumor while retaining molecular
spatial distribution, essential in the context of personalized disease management and medicine.

Keywords: MALDI mass spectrometry imaging; proteomics; proteomic profiling; cancer research;
personalized medicine

1. Proteins, the Core Elements of Our Cells

Through the mapping of all the human genes in the Human Genome Project (HGP), important
insights into the genomics of cancers were made, as many mutated genes are responsible for tumor
development/growth. These genetic insights have helped to develop new diagnostic and targeted
therapeutic tools [1]; as an example, mutation(s) in the epidermal growth factor receptor (EGFR)
is frequently observed in non-small cell lung cancer (NSCLC) patients. When mutated, EGFR is
continuously activated, which leads to uncontrolled lung tumor growth. Specific targeted therapies
(e.g., erlotinib and afatinib) have been developed to block the activity of EGFR, but resistance to these
therapies nearly always occurs in these patients [2]. This indicates that ‘post-genomic’ research is
essential to fully understand cancer mechanisms for development and progression.

J. Pers. Med. 2020, 10, 54; doi:10.3390/jpm10020054 www.mdpi.com/journal/jpm

http://www.mdpi.com/journal/jpm
http://www.mdpi.com
https://orcid.org/0000-0002-7312-937X
https://orcid.org/0000-0002-6252-7065
https://orcid.org/0000-0002-1461-6039
https://orcid.org/0000-0002-4888-3485
https://orcid.org/0000-0002-0661-931X
http://www.mdpi.com/2075-4426/10/2/54?type=check_update&version=1
http://dx.doi.org/10.3390/jpm10020054
http://www.mdpi.com/journal/jpm


J. Pers. Med. 2020, 10, 54 2 of 12

The balanced conversion of DNA to RNA to proteins is crucial for a normal physiological state;
the genes are the so called controllers of the cell, however, these controllers do not accurately predict
the expression level of the protein or whether the protein will be stable and functional. Thereby,
a single gene can give rise to many proteoforms, due to single amino acid polymorphisms, alternative
splicing (isoforms) and post-translational modifications (PTMs). These proteoforms are molecularly
distinct proteins and can modulate different cellular functions. Proteins are therefore the effectors
involved in cellular processes and signaling and malfunctioning or misfolding of proteins have been
associated with various diseases, for example cancer and Alzheimer’s disease [3]. Studying proteins in
the context of cancer is of major relevance to understand the underlying biology at the molecular level;
implementing proteomic approaches in cancer research can provide new crucial insights into tumor
biology by analyzing protein expression levels and modifications resulting in different functioning.
Moreover, proteomics can reveal new pathways involved in cancer progression and may lead to new
therapeutic approaches [4].

Proteins can be analyzed by mass spectrometry (MS); ionization of the proteins leads to
measurement of the mass-to-charge (m/z) ratio, with the great benefit that the analysis is unbiased
and a priori knowledge of the proteins is thus not necessary. Using mass spectrometry, not only the
protein content in different types of samples such as blood, serum, urine and tissues can be identified,
but even the different proteoforms within each sample can be detected with top-down proteomics.
In addition, mass spectrometry is a (semi-)quantitative technique, which allows comparison of protein
abundances between different conditions [4,5]. Furthermore, protein interactions can be studied using
mass spectrometric approaches and even PTMs can be identified and mapped [3]. This is of great
interest as PTMs such as phosphorylation, glycosylation, acetylation and proteolytic processing are
common events and can have tremendous functional consequences, resulting in modification of the
characteristics of cells [6]. In conclusion, proteins are the effectors of the cell and have a greater
information load than the gene. As a consequence, proteomic profiling of cancers, called cancer
proteomics or oncoproteomics, can provide crucial insights into tumor biology beyond what can be
learned from genetic analysis [5]. Therefore, mapping the human cancer proteome to unravel and
better understand tumor biology is of high importance, as is illustrated by the human cancer proteome
project (cancer-HPP) from the Human Proteome Organization (HUPO). The aim of which is to help
develop improved diagnostics and new leads for treatment of cancer [7].

2. Proteomic Profiling of Cancer

When comparing samples of different biological conditions, e.g., tumor versus healthy state,
quantitative proteomics generates lists of hundreds to thousands of proteins that are differentially
expressed, indicating abnormal presence, absence or changes in expression of certain proteins, change
in PTMs, as a consequence of ongoing physiological or pathological events [8]. These important
biological indicators, so-called biomarkers, represent powerful tools for monitoring cancer progression
and in general for the understanding of cancer biology, a highly dynamic process, which may improve
healthcare [3]. Such measurable analytes are important as they can be used to differentiate biological
conditions that are benign or malignant [9]. For protein biomarker(s), either a single entity or a panel
of protein markers (protein signatures or proteomic profiles), the presence or change in abundance of
specific analytes indicates certain features of a normal physiological or disease state [9]. Detection
and identification of protein biomarkers can aid clinicians and scientists in cancer diagnosis, status,
progression and assessment of efficacy and toxicity of therapeutic agents (i.e., pharmacological response)
in the context of personalized medicine, for which a schematic overview is represented in Figure 1.
Due to their high specificity and sensitivity, mass spectrometry is a powerful tool to obtain such protein
signatures or proteomic profiles [8,9].
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Figure 1. A schematic overview of the implementation of proteomics in cancer screening and 
personalized medicine. Samples can be biological fluids (f.e. blood and urine) or tissue biopsies from 
which proteins are extracted to perform proteomic profiling, in this example with mass spectrometry. 
Different mass spectra can enable diagnosis and grading for cancer screening or assess efficacy and 
toxicity of therapeutic agents. 

Biological fluids, f.e. urine, blood, serum and plasma, are the most commonly used specimens 
for protein biomarker research, as sufficient amounts of these types of specimens can be easily 
obtained without invasive collection, although blood collection can be considered as mildly invasive 
sample collection. Thereby, they frequently contain proteins secreted from the tumor. As the tumor 
surrounding stroma also secretes proteins into the circulation as a response to nearby tumor growth, 
protein profiling can be a reflection of the body’s immune response activated by cancer [5]. As an 
example, MS-based protein patterns in serum from colorectal cancer (CRC) patients and healthy 
individuals were compared to classify differentiating proteins. Coupled with sophisticated 
bioinformatics tools, Yu et al. [10] found four potential protein biomarkers that were highly expressed 
in CRC patients and low in healthy individuals. The resulting protein fingerprint has the potential to 
diagnose cancer in a patient. The aim is to allow earlier detection of this type of cancer, which can 
result in a better prognosis: higher chances of recovery by conventional therapies and thus decreased 
disease-related mortality [10]. In another study, quantitative proteomics was used to analyze blood 
samples from pancreatic ductal adenocarcinoma (PDAC) patients in search of prospective biomarker 
discovery for chemotherapy outcome and PDAC patient survival time [11]. Peng et al. [11] identified 
a composite biomarker panel of four specific proteins differentially expressed in plasma from PDAC 
patients. This panel can discern positive responding patients with longer overall survival from those 
who do not respond well to the administered chemotherapy, resulting in shorter survival time. 
Identification of such therapy predictive biomarkers is important to administer therapy only to those 
patients responding to the therapy to minimize harm and cost, while maximizing patient benefit. 
Additionally, the dual value of proteomics can also facilitate future drug development; Zhang et al. 
[12] reported 82 differentially expressed proteins in the context of renal cell carcinoma (RCC). 
Overexpression of one of the upregulated proteins, progesterone receptor membrane component 1 
(PGRMC1), was significantly associated with renal cancer cell proliferation, while silencing of 
PGRMC1 resulted in the opposite phenomenon, demonstrating PGRMC1 as a novel potential 
therapeutic target for RCC. 

As described above, although liquid biopsies are easily obtained, protein secretion into the 
circulation may be influenced by many factors, including biological heterogeneity or other 
complications due to malignancies or inflammatory responses [11]. As a consequence, due to dilution 
of the potential specific protein markers in the circulation, most of the identified markers in these 
types of samples are limited to the highly abundant proteins. Evidently, lower abundant proteins 
have high potential interest and may be more specific than the highly abundant proteins for certain 
conditions. Investigating low abundant proteins is often not possible from liquid biopsies as, in 
contrast to RNA or DNA, no amplification reaction can be performed on proteins. Therefore, to study 
low abundant proteins, one has to resort to studying the tumor tissue itself and use it to unravel 

Figure 1. A schematic overview of the implementation of proteomics in cancer screening and
personalized medicine. Samples can be biological fluids (f.e. blood and urine) or tissue biopsies from
which proteins are extracted to perform proteomic profiling, in this example with mass spectrometry.
Different mass spectra can enable diagnosis and grading for cancer screening or assess efficacy and
toxicity of therapeutic agents.

Biological fluids, f.e. urine, blood, serum and plasma, are the most commonly used specimens for
protein biomarker research, as sufficient amounts of these types of specimens can be easily obtained
without invasive collection, although blood collection can be considered as mildly invasive sample
collection. Thereby, they frequently contain proteins secreted from the tumor. As the tumor surrounding
stroma also secretes proteins into the circulation as a response to nearby tumor growth, protein profiling
can be a reflection of the body’s immune response activated by cancer [5]. As an example, MS-based
protein patterns in serum from colorectal cancer (CRC) patients and healthy individuals were compared
to classify differentiating proteins. Coupled with sophisticated bioinformatics tools, Yu et al. [10]
found four potential protein biomarkers that were highly expressed in CRC patients and low in
healthy individuals. The resulting protein fingerprint has the potential to diagnose cancer in a patient.
The aim is to allow earlier detection of this type of cancer, which can result in a better prognosis:
higher chances of recovery by conventional therapies and thus decreased disease-related mortality [10].
In another study, quantitative proteomics was used to analyze blood samples from pancreatic ductal
adenocarcinoma (PDAC) patients in search of prospective biomarker discovery for chemotherapy
outcome and PDAC patient survival time [11]. Peng et al. [11] identified a composite biomarker panel
of four specific proteins differentially expressed in plasma from PDAC patients. This panel can discern
positive responding patients with longer overall survival from those who do not respond well to the
administered chemotherapy, resulting in shorter survival time. Identification of such therapy predictive
biomarkers is important to administer therapy only to those patients responding to the therapy to
minimize harm and cost, while maximizing patient benefit. Additionally, the dual value of proteomics
can also facilitate future drug development; Zhang et al. [12] reported 82 differentially expressed
proteins in the context of renal cell carcinoma (RCC). Overexpression of one of the upregulated
proteins, progesterone receptor membrane component 1 (PGRMC1), was significantly associated with
renal cancer cell proliferation, while silencing of PGRMC1 resulted in the opposite phenomenon,
demonstrating PGRMC1 as a novel potential therapeutic target for RCC.

As described above, although liquid biopsies are easily obtained, protein secretion into the
circulation may be influenced by many factors, including biological heterogeneity or other complications
due to malignancies or inflammatory responses [11]. As a consequence, due to dilution of the potential
specific protein markers in the circulation, most of the identified markers in these types of samples are
limited to the highly abundant proteins. Evidently, lower abundant proteins have high potential interest
and may be more specific than the highly abundant proteins for certain conditions. Investigating
low abundant proteins is often not possible from liquid biopsies as, in contrast to RNA or DNA,
no amplification reaction can be performed on proteins. Therefore, to study low abundant proteins,
one has to resort to studying the tumor tissue itself and use it to unravel cancer proteomic signatures [9].
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Using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS)
in homogenized lung tumor tissues mixed with a suitable matrix for ionization and thus detection
of proteomic content, Yanagisawa et al. [13] were the first to detect proteomic patterns to classify
lung tumor versus normal lung tissue with a combined use of class-prediction models. Furthermore,
the model can also distinguish primary non-small cell lung cancer from cancer metastasis to the
lung and additionally, histologic classification of the three different NSCLC types adenocarcinoma,
squamous cell carcinoma and large-cell carcinoma can be made [13]. The right diagnosis and site
of origin of tumors is crucial for selecting the right treatment. In 2007, the same researchers also
constructed a signature for prognosis of NSCLC patients using MALDI-TOF MS [14]. In this study,
proteomic patterns from resected NSCLC tissues were compared between patients at high and low
risks of relapse. Sophisticated bioinformatic analyses revealed 25 m/z signals that were associated with
a high risk of NSCLC recurrence (within 5 years after resection). These models can be used to avoid
overtreatment of patients who are not likely to relapse [14]. Determination of different profiles specific
for different stages of lung cancer development, was performed by Rahman et al. [15] with MALDI MS
on lung epithelium tissues. Statistical analysis of these proteomic patterns revealed m/z signals that
could discriminate for normal epithelium (differentiation between alveolar and bronchial), low-grade
preinvasive lesions, high-grade preinvasive lesions and invasive lung tumors. Further, a subset of
this proteomic signature (9 m/z signals) may facilitate the diagnosis of lung cancer and monitoring
high risk individuals for lung cancer, as only a subset (30–50%) of preinvasive lesions progresses to
invasive lung tumors, which cannot be predicted by histologic interpretation alone [15]. Another
example of proteome analysis was performed on normal and ovarian tissue specimens, where a new
predictor of prognosis was established for serous ovarian carcinoma (SOC), the most aggressive form
of ovarian cancer [16]. In this study, six proteins were identified that may be involved in development
or progression of SOC. For one protein in particular, glia maturation factor β (GMFB), high expression
was correlated with lower disease-free and overall survival rates, which makes GMFB suitable as
a predictor for SOC patient prognosis and survival [16]. A last example of successful tissue-based
proteomic profiling is the discovery of predictive biomarkers to predict the patient’s response to a
certain therapy, important for effective cancer treatment. Yang et al. [17] discovered two predictive
markers (i.e., FKBP4 and S100A9) to neoadjuvant chemotherapy in breast cancer patients by proteomic
and bioinformatic approaches. Pre-treatment needle-biopsy breast cancerous tissues were obtained and
patients were divided in drug resistant and drug sensitive (i.e., more than 30% reduction in tumor size
after chemotherapy) groups. Quantitative proteomic analysis, validated with immunohistochemical
analyses, revealed that overexpression of FKBP4 and low expression of S100A9 were associated with
chemotherapy resistance [17]. From all these examples, the benefit of using proteomics as a discovery
tool in cancer research has been demonstrated to provide new understandings in pathological states and
has led to the identification of protein biomarkers for diagnosis, prediction of both disease progression
and a response to certain treatments.

3. MALDI Mass Spectrometry Imaging in Cancer Research

Ideally for clinical analyses, specimens requiring minimal invasive techniques (f.e. blood and
urine) will be of first choice for analysis. However, tissues are the most relevant biological material for
providing new insights into disease mechanisms, as protein concentration can diminish with increased
distance from the tumor due to dilution effects [5]. Tissues have the additional advantage that the
tumor microenvironment can also be taken into account, containing a high amount of proteins for
discovery of new potential biomarkers. Solid tissues are spatially complex samples, and therefore,
linking the molecular information to tissue morphology is often crucial for the correct biological
interpretation. This can lead to a better understanding of the intra- and intertumoral heterogeneity [18].
Diversity occurs between and within tumors, as the same tumor type can show a patient-specific
unique combination of genomic alterations, i.e., intertumoral heterogeneity. Additionally, within a
tumor, cells can have different molecular characteristics as a simple consequence of the deficiency
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of DNA replication, called intratumoral heterogeneity. Both heterogeneities introduce important
challenges for cancer treatment and stratification of patient populations who are likely to benefit from
specific treatments. However, tumor heterogeneity is an important factor to investigate and better
understand cancer development and progression [18].

To this end, MALDI mass spectrometry imaging (MSI) can be a powerful tool to provide molecular
information while retaining the spatial distribution of the molecules throughout the tissue. With MALDI
MSI, a mass spectrum of each spot of a tissue slice is generated. This forms a map of the biomolecules
present in that spot of the tissue. Subsequently, all of the individual recorded mass spectra are merged
in one resulting overall average mass spectrum. The measurements are taken in a predefined order
on a raster, and this allows to analyze both the distribution and the relative abundances of each
biomolecule over the entire tissue section [19]. While this review is limited to proteomic studies, it is
worthwhile to note that MALDI MSI can produce reliable images of the spatial distribution from a
broad variety of biomolecules, ranging from peptides, to glycans, lipids and even metabolites, known to
play important roles in cancer [20–23]. One such example is a MALDI MSI lipidomic profiling study
which revealed 10 lipids, differentially expressed in a metastasizing medulloblastoma compared to
a non-metastasizing one. This finding could provide a better understanding of medulloblastoma
progression and to the discovery of novel biomarkers for the prevention of metastasis [23]. Metabolite
biomarkers have also been identified using MALDI MSI on tumor tissues: an example is given by
Lou et al. [22] who discovered that high concentrations of the metabolite inositol cyclic phosphate was
associated with poor overall survival in soft tissue sarcomas, while carnitine has been identified as a
poor metastasis-free survival metabolic biomarker in soft tissue sarcoma patients [22]. Finally, N-glycan
imaging on pancreatic tissues was performed by Powers et al. [21] and revealed four different glycans
that could distinguish between normal and tumor pancreatic tissue, in addition to differentiating
regions of desmoplasia from the necrotic region [21]. The same study also showed similar N-glycan
patterns that could distinguish between prostate stroma and gland.

Recent technical developments have evolved MALDI MSI into a high speed analysis approach
with increased resolution, mass resolving power and mass accuracy, enabling high-throughput analyses
at a speed that is comparable to routine clinical analysis such as immunohistochemical (IHC) analysis.
This makes MALDI MSI an interesting biomedical tool in cancer research, but possibly also for clinical
assays, especially since MSI is not restricted to the study of a single protein (like IHC), so with one
analysis a systemic overview can be generated allowing a better understanding of heterogenous
diseases at the cellular and molecular level [6]. For every m/z value in the resulting MALDI MSI
spectrum, the distribution of this molecule of interest can be visualized within the tissue. With recent
software developments, visualization is possible of both individual molecules and groups of molecules.
The latter is of interest to perform proteomic profiling on regions of interest on the tissue section itself.
In this way, regions-of-interest (ROIs), determined with subsequent histological (f.e. H&E) staining on
the same tissue section, can be extracted virtually to generate mass spectrometric profiles according
to the specific ROI [24]. An overview is illustrated in Figure 2, where MSI profiles of normal gastric
mucosa and gastric carcinoma are shown [25].

Every individual MALDI MSI experiment generates a large amount of mass spectra. Clinical
MSI high-throughput experiments can involve analysis of hundreds of tissue samples, making the
processing and handling of clinical MSI data rely heavily on computational methods. Available software
packages, f.e. SCiLS lab (SCiLS, Bremen, Germany), Cardinal [26] or msIQuant [27], can provide many
statistical analyses on terabyte-sized multiple samples for recognition of different patterns, classification
of different biological regions, biomarker discovery, etc. [18]. Also important for implementation of
MALDI MSI in clinical research is the possibility to combine MSI and classical microscopy images into
a single image from both sources to provide more accurate information about the tissue sample [28].
In this way, the coarse spatial resolution images obtained with MSI describe important chemical
information and need to be combined with high spatial microscopy images to sharpen the resulting
fused image. The non-destruction capability of MALDI MSI makes a co-registration with histological
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data possible and this allows MSI-microscopy fusion on a single tissue specimen. This fusion process
requires extensive modeling as a massive multivariate regression task involving variables derived
from both modalities to combine in a single predicted modality, presented in Figure 3. This remarkable
combination can reveal insights that are otherwise not easily obtained by either microscopy or
MSI alone [28].J. Pers. Med. 2020, 10, x FOR PEER REVIEW 6 of 12 
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specificity and high spatial resolution in one integrated modality. Adapted with permission from
Van de Plas et al. 2015 (Nat Methods).
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A disadvantage of MALDI MSI is the fact that identification of interesting MSI targets straight
from the tissue itself is still cumbersome, which hampers the validation of candidate biomarkers
(f.e. by immunohistochemical analyses that require the identity of the putative biomarker) and
the discovery of biological processes that might underlie the observed disease [29]. Nonetheless,
implementation of MSI in clinical research has been aided by the initiation of openly available databases
of identifications. Within the MSiMass list database [30], information is provided to assign protein
identities to the observed MSI peaks, accompanied with the used method to confirm identification of
the observed peaks. MSiMass list is an open community and every MSI researcher can further complete
the MSiMass list with recent developments and identifications, to facilitate the integration of MSI in
clinical research [30]. Another method to achieve the identification of MSI targets is the implementation
of Liquid Extraction Surface Analysis (LESA) procedure. For this methodology, on-tissue trypsin
digestion is first performed followed by micro-extraction of the tryptic peptides on a well-controlled
area. Micro-extraction includes contact of an organic solvent with the sample surface in terms of
discrete droplets to extract molecules in a very small and specific area. The extracted molecules can then
undergo additional sample preparation steps before analysis on higher-resolution mass spectrometry
instruments for identification. Quanico et al. were able to identify in this way about 1500 proteins
in a small area of 670 µm in diameter in a bottom-up proteomics approach [31]. They incorporated
this methodology in the MALDI MSI workflow, where they used first classification methods on MSI
images to determine regions-of-interest and these ROIs were then subjected to on-tissue digestion
and micro-extraction for identification of the observed proteins [31]. More recently, the same research
group was able to identify more than 500 proteins in a region as small as 250 µm in diameter [32].

Another solution for identification of MSI targets consists of isolation of regions of interest
within the tissue by using laser capture microdissection (LCM). In this set-up, a laser is coupled
into a microscope under which the tissue sample can be placed on a normal microscope slide:
ROIs can be captured by localized laser ablation after which the tissue parts, that were cut out,
are harvested into LCM collection tubes. The obtained tissue samples can then be subjected to full
lysis for protein extraction, followed by mass spectrometric analysis to enable identification of MSI
targets [33]. Additionally, our research group reported earlier a method to link MALDI MSI with
top-down proteomics for a reliable identification of interesting MSI targets with higher-resolution mass
spectrometric approaches [20].

With MALDI MSI, molecular characterization of tumors for each patient individually can be
achieved, allowing personalized cancer treatment for better clinical outcomes, reduced toxicity and
avoiding unnecessary therapy costs. As an example of this, with MALDI MSI on small FFPE tissue
biopsies (1 mm diameter), Kriegsmann et al. [34] were able to categorize NSCLC patients into
adenocarcinoma and squamous cell carcinoma with high sensitivity and specificity, a classification
which is crucial for selection of the type of chemotherapy. A total list of 339 molecular signals
were used to create a classification model for adeno- and squamous cell carcinoma and this MALDI
classifier could obtain almost 100% diagnostic accuracy. Four peptides were identified by MALDI
imaging as strongly differentially expressed between the two diagnoses, one of the peptides was
highly expressed in adenocarcinoma biopsies, while a high expression of the three other peptides
were seen in squamous cell carcinoma. These four candidate protein biomarkers were validated with
immunohistochemical analysis, from which two markers were already well-known discriminative IHC
markers for routine NSCLC diagnosis. This confirms the validity of MALDI MSI with the classification
model approach for the discovery of new candidate biomarkers [34]. Another example is given by
Pallua and co-workers who performed MALDI MSI on prostate cancer tissues and non-malignant
benign tissues, resulting in the identification of biliverdin reductase B as a possible biomarker for
diagnosis. Overexpression of this biomarker is associated with the diagnosis of malignant prostate
cancer [35]. Extensive proteomic research with MALDI MSI was performed by Casadonte et al. [36]
on pancreatic ductal adenocarcinoma and pancreatic neuroendocrine tumor tissues, leading to the
development of a class prediction model to differentiate between both entities with high accuracy,
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essential for the appropriate treatment modality. MALDI MSI proteomic analyses has also proven their
relevance in triple-negative breast cancer in the search for putative markers for recurrence-free survival:
Phillips et al. [37] identified nine proteins, not previously associated with breast cancer, that were
significantly associated with worse recurrence-free survival when these proteins were highly expressed.
Meding et al. [38] demonstrated that MALDI MSI can be used to classify six different tumor entities in
different organ sites with high confidence, based on 117 m/z species in the average imaging spectra.
Furthermore, they could show that MALDI MSI can successfully classify primary (colon and liver)
tumors from liver metastatic tumors, which is an important challenge in diagnostics as metastasis has to
be correctly assigned even if the primary tumor cannot be found. The correct identification of the tumor
origin is an important aspect in the personalized medicine field [38]. Recently, our research group
reported the use of MALDI mass spectrometry imaging to measure therapeutic response in NSCLC
patients who received immunotherapy [39]. MSI analysis was performed on pre-treatment FFPE
biopsies and differential analysis revealed neutrophil defensin 1, neutrophil defensin 2 and neutrophil
defensin 3 as predictive biomarkers for the response to immune-checkpoint-based immunotherapy in
NSCLC patients. These outcomes were verified with immunohistochemical analyses specific for these
neutrophil defensins and after pathological scoring of neutrophil defensin expression on different cell
types, statistical analysis exposed a significant association between neutrophil defensin expression
and a positive immunotherapy response. This is of major importance for immunotherapy decision,
for a better quality of life for the NSCLC patient, to avoid treatment of patients who are not likely to
respond and to reduce unnecessary treatment costs [39].

4. Limitations for the Full Integration of MALDI MSI in Cancer Research

To sum up, multiple diseased tissues have already been investigated with the use of mass
spectrometry (imaging), which allows for the use of multiple molecular markers (compared to only
one with immunohistochemical analysis) and thus results in accurate classification of biological
samples. Mass spectrometry (imaging) thus holds potential as a tool to improve screening programs.
A disadvantage of full integration of tissue proteomics in cancer research is the limit-of-detection;
low abundant proteins will not be detected preferentially, as no technique equivalent of polymerase
chain reaction for amplification of proteins exists to amplify the protein signal [3]. To detect low
abundant proteins, high abundant proteins need to be removed in sample treatment steps, but with
the risk of depleting also the low abundant proteins of interest, that may be bound to circulating
carrier proteins [8]. Another challenge to fully implement MALDI MSI in cancer research remains
the appropriate sample handling and avoiding biological degradation of a large amount of clinical
tissue samples. Fresh frozen tissues are better suited for MSI analysis, as less sample preparation
steps are required and analysis of intact proteins in their native state can be performed, as well as
peptides, lipids and metabolites. One of the disadvantages of fresh frozen tissue sections is that they
need to be snap-frozen as fast as possible in order to save sample’s morphology and to minimize
(protein) degradation. Repeated freeze-thaw cycles also need to be avoided for minimizing biological
degradation. Special attention needs to be given to avoid additional contamination of the sample that
may hamper mass spectrometric analysis. The use of optimal cutting temperature (OCT) compounds
for instance needs to be avoided, as they can interfere significantly with ionization of peptides and
proteins. A consideration is also that fresh frozen tissues are mostly not available in large amounts
in biobanks. Furthermore, they need long term storage at −80 ◦C in expensive freezers with the
risk of protein degradation for storage longer than a year [40]. On the other hand, formalin-fixed
and paraffin embedded tissues (FFPE) can be stored for decades at room temperature with minimal
degradation, leading to the availability of large archives of clinical FFPE biopsies from various diseases
in pathological labs and biobanks. The disadvantage is the fact that proteomic analysis of FFPE tissues
is hampered by crosslinking processes and intact molecules cannot be detected, with the additional
disadvantage that multiple steps of sample preparation (deparaffination and antigen retrieval) are
required and increased inter sample variability is usually observed [41,42]. For the full application of
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MSI in routine histopathology, both standard and more stringent quality control procedures for tissue
fixation and handling should be developed within histopathology labs, and standard procedures for
MSI sample preparation and processing by interlaboratory validation [43]. The methodology needs to
be standardized to allow comparison, reproducibility and reliability of the findings [9].

Another disadvantage of MSI analysis is that it requires invasive approaches for tissue sample
collection [6]. Although some challenges remain for the full potential use of MALDI MSI in clinical
routine, applications of MALDI MSI into clinical settings are growing, due to its feasibility and
molecular visualization on tissue samples of much more molecules in one single analysis, coupled
with biocomputational tools to evaluate biostatistical relevant molecular signals [43].

5. Future Outlooks

Mass spectrometry analysis enables rapid and sensitive profiling of a high number of molecules
simultaneously and in this way, cost-effective high-throughput screening of a high number of clinical
tissue samples can be performed, which can identify unique protein patterns. When combined with
biocomputational tools, biostatistical evaluation of molecular signals can be performed to discover
new protein signatures [43]. The generated proteomic data complements the -omics data produced
by other high-throughput technologies with the main purpose to gain crucial insights into tumor
biology/pathology. Although proteomics has already revealed new molecular mechanisms and new
putative markers in the context of cancer, a combination of different -omics studies in cancer research
may better represent the full complexity of cancer and help towards a better understanding of the
different molecular alterations that characterizes cancer. In this way, proteomics data can be integrated
with genomics, transcriptomics, lipidomics and metabolomics. However, integrating multi -omics data
is very challenging, but could lead to the development of more complete predictive models for a better
stratification of patients who are most likely to benefit from the administered therapy, contributing
further to the field of personalized medicine [44].

MALDI MSI has been used quite intensively in clinical research in the last few years,
with the advantage that results can be verified with LC-MS/MS approaches, western blot and/or
immunohistochemical studies [18]. With MSI, much more molecules can be detected in one single
analysis compared to IHC, which is an advantage as biopsy material can be scarce. Thereby,
as personalized medicine in cancer treatment is gathering momentum, MALDI MSI can provide
individual molecular characteristics of each individual tumor, necessary to prevent, diagnose, predict
therapy outcome or to make a prognosis. Additionally, protein profiles can help to identify new
molecular targets to provide a comprehensive understanding of every tumor individual biology,
necessary to better understand intratumoral heterogeneity, essential for designing effective therapeutic
strategies in the context of personalized medicine.

6. Conclusion

To conclude, proteomic profiling may lead to protein biomarker screening, important for cancer
diagnosis, cancer subtyping, better (personalized) treatment, but also to the development of novel
treatments. The future and ultimate goal of cancer proteomics is to move from bench to bedside
applications in cancer management to complement traditional visualization technologies used by
pathologists with the aim to guide them in diagnosis or therapy decision in the context of personalized
disease management and medicine.
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