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Abstract: An ascending thoracic aortic aneurysm (ATAA) is a heterogeneous disease showing 

different patterns of aortic dilatation and valve morphologies, each with distinct clinical course. This 

study aimed to explore the aortic morphology and the associations between shape and function in 

a population of ATAA, while further assessing novel risk models of aortic surgery not based on 

aortic size. Shape variability of n = 106 patients with ATAA and different valve morphologies (i.e., 

bicuspid versus tricuspid aortic valve) was estimated by statistical shape analysis (SSA) to compute 

a mean aortic shape and its deformation. Once the computational atlas was built, principal 

component analysis (PCA) allowed to reduce the complex ATAA anatomy to a few shape modes, 

which were correlated to shear stress and aortic strain, as determined by computational analysis. 

Findings demonstrated that shape modes are associated to specific morphological features of 

aneurysmal aorta as the vessel tortuosity and local bulging of the ATAA. A predictive model, built 

with principal shape modes of the ATAA wall, achieved better performance in stratifying surgically 

operated ATAAs versus monitored ATAAs, with respect to a baseline model using the maximum 

aortic diameter. Using current imaging resources, this study demonstrated the potential of SSA to 

investigate the association between shape and function in ATAAs, with the goal of developing a 

personalized approach for the treatment of the severity of aneurysmal aorta.  

Keywords: shape analysis; principal component analysis; shear stress: strain; computational 

modeling 

 

1. Introduction 

Diagnosis and risk stratification of ascending thoracic aortic aneurysms (ATAA) are primarily 

based on medical imaging analysis, predisposing factors and patient familiarities [1]. The assessment 

of the maximum aortic diameter of an ATAA by imaging is necessary to understand whether elective 

repair is needed to avoid fatal complications, such as rupture or dissection. If left untreated, the risk 
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of fatal complications can be as high as 50% in patients with a large ATAA wall (aortic diameter > 50 

mm) [2,3]. Although ATAA is a relatively rare disease with an estimated incidence of 5.0 per 100,000 

individuals per year [4], a dilated aorta is a common finding in patients with the congenital bicuspid 

aortic valve (BAV), as opposed to patients with the morphologically normal tricuspid aortic valve 

(TAV) [5]. Clinical evidence has shown that BAV ATAA is a markedly heterogeneous entity, with 

aortic dilatation occurring in the aortic root, the tubular ascending aorta, the proximal aortic arch or 

any combination of these types of dilatations [6,7]. These patterns of aortic dilatations are also 

associated to different BAV phenotype (i.e., the anterior-posterior cusp fusion or the right-left cusp 

fusion), each leading to ATAAs with distinct clinical outcome. The awareness of the heterogeneous 

nature of the aortopathy has led to the development of new classification schemes to interpret 

different BAV morphotypes and patterns of aortic dilatation, and to ultimately stratify the severity 

of ATAAs [8,9]. None of the proposed classification schemes has shown good prognostic significance, 

because they have failed to capture the full three-dimensional (3D) shape of an ATAA. Besides 

phenotypic criteria, novel principles for risk stratification are emerging to overcome the paradox of 

the current clinical criterion, based on the maximum aortic diameter of the ATAA. Patients undergo 

elective repair of the ATAA on the basis of the size and progression rate of the aortic diameter, but 

aortic size has a limited predictive value, as adverse events may occur when aortic diameters are <55 

mm, and even <45 mm [10]. Among novel approaches for risk stratification, computational modeling 

has shown promise in the estimation of ATAA by means of prediction of intramural stress [11] and 

shear stress [12–14].  

It is therefore necessary to explore the ATAA shape variability and go beyond risk assessment 

merely based on cross-sectional measurements of the dilated aorta. The abundance of 3D information 

provided by medical imaging can be fully exploited using a modern statistical shape analysis (SSA) 

methodology to quantitatively estimate the morphology of the aneurysmal ascending aorta. This 

approach makes it possible to visualize and quantify the variability of the aneurysm shape, including 

global and local geometrical patterns in a patient population of ATAAs [15–17]. The shape variability 

can be represented by a computational atlas, describing all anatomical shape information and its 

variations around a mean shape or template. Once the computational atlas is built, predictive 

statistical models can be developed to explore how changes in shape are associated to clinically-

measurable anatomic characteristics (i.e., ATAA diameter) or functional parameters of the 

aneurysmal aorta.  

This study aimed to explore nuances in 3D aortic morphology in a cohort of patients with ATAA 

and assess correlation with aneurysm function. The principal modes of aortic shape were 

extrapolated by principal component analysis (PCA) to retain the most important shape modes that 

are responsible for the ATAA-related geometrical variability. Then, the correlation of shape modes 

with clinically-measureable anatomic variables and biomechanical descriptors was explored. 

Assuming that wall shear stress (WSS) and aortic wall strain have an important implication for the 

development and progression of the ATAA, computational analyses were performed to estimate how 

such important biomechanical parameters can vary with changes in the aortic dilatation. Logistic 

regression was adopted to develop a predictive model of the risk of ATAA surgery based on main 

shape modes. This study proves the potential of SSA to assess the association between shape and 

function, as well as to develop new risk models considering the complex anatomy of ATAAs. 

2. Material and Methods 

2.1. Study Population 

After internal review board approval and informed consent, the ATAA shape variability of a 

total of n = 106 patients referred for aortic size measurement was evaluated by electrocardiogram-

gated computed tomography angiography (CTA). Patients were stratified in two groups, according 

to the aortic valve morphology. Specifically, n = 53 patients had an ATAA with TAV, while n = 53 

ATAAs had BAV with different phenotypes (i.e., anterior-posterior and right-left leaflet cusp fusion). 

As a control group, n = 19 individuals with non-aneurysmal aorta were included from organ donor 
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and heart transplant recipients. None of the patients had both severe aortic stenosis and 

regurgitation, left ventricular dilatation, or evidence of uncontrolled stage II hypertension, as these 

were considered confounding variables of the decision to carry out surgery, as previously found by 

our group [18]. The primary end point was surgical repair of aorta and/or valve for maximum aortic 

diameter, although the timing for surgery was also influenced by other determinants, such as clinical 

predisposing factors, comorbidities, and family history. Table 1 summarizes clinical and 

demographic data of the patient study group. 

Table 1. Clinical and demographic characteristics of study population. Mann-Whitney test with α = 

0.05. 

Patients Characteristics BAV ATAA TAV ATAA p-Value 

N. subjects 53 53  

Age (years) 58 ± 1 65 ± 1 0.390 

Male (%) 85.0 63.9 0.234 

Surgery (%) 28 13 0.049 

BSA (m2) 3.5 ± 6.2 2.4 ± 3.5 0.078 

HR (bpm) 72.9 ± 10.8 72.8 ± 13.0 0.769 

Psys (mmHg) 136.7 ± 12.5 135.3 ± 13.3 0.700 

Pdias (mmHg) 77.3 ± 9.3 75.9 ± 9.6 0.964 

MAP (mmHg) 93.4 ± 9.5 91.9 ± 8.1 0.107 

SV (mL) 77.7 ± 30.8 77.1 ± 26.9 0.455 

CO (L/min) 5.5 ± 2.2 5.5 ± 2.5 0.952 

Hyper (%) 51.5 60.2 0.987 

AI (%)    

None 7.1 9.2 0.721 

Mild 15.1 34.0 0.082 

Moderate 30.1 4.4 0.023 

Severe 18.9 47.2 0.043 

AS (%)    

None 21.1 0.0 1.000 

Mild 7.8 0.0 1.000 

Moderate 2.5 0.0 1.000 

Note: BSA = body surface area; HR = heart rate; Psys = systolic blood pressure; Pdias = diastolic blood 

pressure; MAP = mean arterial pressure; SV = stroke volume; CO = cardiac output; Hyper = 

hypertension; AI = aortic insufficiency; AS = aortic stenosis. 

2.2. Segmentation and Anatomical Measurements  

CTA images at both end-diastole and peak systole were segmented using semi-automatic 

thresholding and region growing techniques, combined with manual editing of masks in commercial 

software (Mimics v20, Materialize NV, Leuven, Belgium) as described previously [19–22]. The 3D 

ATAA models were cut near the brachiocephalic artery, to reduce irrelevant shape variability related 

to the aortic arch and descending aorta. Segmented models of ATAAs were stored as computational 

surface meshes for the SSA. 

For all patients, aortic diameters were measured at the Valsalsa sinuses, sino-tubular junction, 

and mid-ascending aorta, using standard imaging techniques (Figure 1). Aortic size was also used to 

group ATAAs in aortic dilatation at the aortic root (i.e., Type N), aortic dilatation of tubular portion 

of ascending aorta (i.e., Type A), and tubular involvement of ascending aorta (i.e., Type N), according 

to Schaefer’s classification scheme [23]. The aortic valve morphology was determined from CTA 

scans, reconstructed to obtain images at both diastole and systole. BAV ATAA were grouped 

according to the valve raphe in antero-posterior (AP) and right-left (RL) bicuspid patients. Ascending 

aortic curvature and tortuosity, orifice area at peak systole, and transaortic flow jet from 
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echocardiography were also evaluated for each patient. Table 2 summarizes morphological features 

of the patient population. 

 

Figure 1. Sketch of an ascending thoracic aortic aneurysm (ATAA) showing measurements of aortic 

morphology taken for each patient. 

Table 2. Morphological characteristics of patient population. Mann-Whitney test with  = 0.05. 

Size and Shape Parameters BAV ATAA TAV ATAA p-Value 

Aortic Diameters (mm)    

Sinus 41.4 ± 5.4 41.3 ± 5.5 0.999 

STJ 36.4 ± 4.9 35.98 ± 4.4 0.656 

Mid-Ascending Aorta 44.6 ± 5.5 44.3 ± 5.0 0.397 

Aortic Shape (%)    

Type N 32 38 0.887 

Type A 57 58 0.999 

Type E 11 4 0.034 

Aortic Curvature (L/mm) 0.03 ± 0.01 0.03 ± 0.01 0.743 

Aortic Tortuosity (/) 0.13 ± 0.04 0.12 ± 0.04 0.143 

BAV Aortopathy    

AP 38 /  

RL 12 /  

Orifice Area (mm2) 347.3 ± 88.5 318.6 ± 94.6 0.077 

Aortic Flow Jet (m/s) 1.9 ± 0.6 1.4 ± 0.3 0.006 

2.3. SSA Method 

SSA was performed using a custom algorithm developed in the mathematical language program 

MATLAB (R2018, MathWorks Inc., Natick, MA, USA). The mean aortic shape of patient population 

and variations around this mean were computed after (i) pre-processing of segmented ATAA surface 

meshes; (ii) automatic alignment based on several rigid registrations and transformations; (iii) PCA, 

followed by logistic regression and receiver operating characteristic (ROC) curves.  
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Prior to alignment, the ATAA mesh surfaces were evenly sampled at sufficient resolution to 

capture all the shape features available for the ascending aorta. The surface sampling process resulted 

in 15,000 Cartesian (xi, yi, zi) points for each ATAA, as obtained after a convergence analysis of the 

resulting PCA shape modes. Starting from the original ATAA mesh surface from the segmentation, 

random sampling was carried out from low (2000 points) to high (25,000 points) mesh resolution. For 

each resolution, the first shape mode was plotted against the mesh resolution to assess the 

convergence when the change of the shape mode was <5%.  

Each sampled point data was rigidly aligned, using translation and rotation to an initial 

reference shape, using the iterative closest point algorithm. The initial reference shape was 

determined as the closest shape to the mean aortic diameter of ATAA population. This can, however, 

lead to an initial template shape that is quite biased with respect to the initial reference shape. Thus, 

a new set of shape transformations were done from the initial template shape to each rigidly aligned 

shape. The rigid alignment was therefore repeated, using the mean mesh as the reference shape. To 

reduce bias, the previous steps of rigid alignment, followed by shape transformation and, again, rigid 

alignment, were repeated a number of times until the average mesh did not change. Finally, the 

aligned 3D ATAA surface models were used as input for the PCA.  

The PCA methodology was applied to reduce the complex ATAA shape to few components, 

using the build-in function implemented in MATLAB. Using orthogonal transformations, PCA 

project the data onto a linear space of maximum variation directions, known as “shape mode” or 

“mode”. Shape modes are specific aspects of the anatomical variation of ATAA, and help to 

understand the morphological features that cannot be described by the aortic diameter alone. After 

projection, the number of retained modes is usually well below the number of original variables, yet 

retains a high percentage of the overall variability in the original set. The first mode accounts for as 

much of the variability in the data as possible, and each succeeding mode in turn has the highest 

residual variance possible showing specific anatomical features of ATAA shape. The coordinate of 

the surface sampling points (xi, yi, zi) were concatenated into a shape vector and assembled into a 

matrix. The eigenvectors of the covariance matrix formed the principal component modes, and their 

corresponding eigenvalues indicate the proportion of the total variance explained by each mode. The 

contribution of each mode can be visualized deforming the template from low −2 standard deviation 

(SD) to high +2 SD values of each mode’s deformation vector. Shape vectors numerically represent 

the contribution that each shape mode has on each ATAA, and were used for statistical analyses, 

thereby supporting the identification of specific shape features.  

2.4. Strain and Flow Analysis 

Strain analysis of ATAA wall mechanics at peak systole was done using an algorithm previously 

developed by our group [20,24,25]. For each ATAA, the aortic surface mesh segmented at diastole 

was projected normally onto the aortic surface mesh at systole, and then the displacement field was 

achieved as the Euclidean distance between closest points. Thus, the relative displacement of the 

aortic wall characterizes the diastolic-to-systolic displacement field, assuming the diastole as the 

baseline configuration. For each point of ATAA wall, the systolic strain distribution can be calculated 

as the ratio of the relative displacement to the baseline configuration (i.e., the aortic surface at 

diastole).  

To study the correlation of shear stress with the morphological features, computational flow 

analyses were developed, according to our previously developed approach [21,26–34]. 

Hemodynamics were studied at the peak systole, with the aortic valve at the fully opened 

configuration. For each patient, the ATAA surface derived by CTA segmentation was meshed with 

unstructured tetrahedral elements at spatial resolution of 0.3 × 0.3 × 0.3 mm. The blood was assumed 

as an incompressible laminar-flow fluid with non-Newtonian viscosity described by the Carreau 

model. To include patient-specific hemodynamics, the transaortic jet velocity evaluated by Doppler 

echocardiography was set as the inflow velocity condition at aortic valve. For each outlet, the global 

vascular resistance and arterial compliance were estimated from echocardiographic and brachial 

pressure measurements. Then, these parameters were used to compute the outflow boundary 
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conditions of a three-element Windkessel model coupled to each outflow branch. The Navier–Stokes 

equations governing fluid motion were solved with an implicit algorithm in FLUENT v19 (ANSYS 

Inc., Canonsburg, PA, USA). 

2.5. Statistical Analysis 

Data are shown as mean ± SD or percentage (number), depending on the variable distribution. 

The Mann–Whitney test was used to compare variables among groups, while the X2 test was adopted 

to analyze frequencies. Pearson’s correlation was performed to identify linear relationships of shape 

modes with biomechanical descriptors. Two PCAs were carried out: (a) all ATAA patients, including 

both BAV ATAA and TAV ATAA (n = 106), to assess shape variability induced by the ascending 

aortic shape; (b) the group of BAV ATAA (n = 53) versus TAV ATAA (n = 53), to assess differences 

induced by the aortic valve morphology. 

After PCA, a logistic regression model was used to identify which modes were most associated 

with differences between surgically-operated and monitored patients. The weight of the shape modes 

(retained upon 90% of total variance) were used as a predictor for the classification of the patient 

class. ROC curves were plotted to compute the area under the ROC curve as an index of the predictive 

value of the regression model. Cluster analysis to assess whether shape modes leads subgroups with 

specific shape variations was also performed. Statistical analyses were performed using SPSS 

software (IBM SPSS Statistics v.17, New York, NY, USA), with all probability values considered 

significant at 0.05 threshold.  

3. Results 

Figure 2 shows the scree plot with cumulative variance, explained by each mode obtained for 

BAV & TAV ATAA together, and for separated groups of BAV ATAA and TAV ATAA. For all ATAA, 

the shape variation of aortic anatomy described by each mode is shown in Figure 3. The first six 

modes of shape variations represented 84% of the overall shape variability in the patient population, 

and hence the corresponding shape vectors were used for statistical analyses. Several shape modes 

were associated to different morphological features of ATAA, as that derived by visual assessment 

and correlation with morphological measurements. For the PCA with all ATAAs, we observed that 

the dominant shape feature of interest was Mode 1, which explained nearly 50% of the total variance, 

and was associated to the pattern of aortic dilatation (i.e., root phenotype, Type N, at −2 SD versus 

tubular ascending aortic dilatation, Type A, at +2 SD, see Figure 3). 

 

Figure 2. Scree plot of principal component analysis (PCA) analyses done for bicuspid aortic valve 

(BAV) & tricuspid aortic valve (TAV) ATAA together and for the separated groups of BAV ATAA 

and TAV ATAA. 
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Figure 3. Dominant shape modes shown by deformations of the computed template from low (−2 SD) 

to high (+2 SD) values for BAV & TAV ATAA together. 

When PCA was performed for groups stratified according to the aortic valve morphology, we 

observed that Mode 5 was associated to the overall size of BAV ATAAs. Mode 2 was negatively 

associated to the aortic valve orifice area of TAV ATAA (R = −0.6 and p < 0.001, Figure 4B), while 

Mode 3 was related to the vessel tortuosity of BAV ATAA (R = 0.4 and p = 0.009, see Figure 4A). Mode 

4 was related to specifics characteristics of the dilated aorta, such as a bulged aortic dilatation. 

A positive correlation was found between mode 4 and WSS at STJ of BAV ATAA (R = 0.35, p = 

0.028, Figure 5). While moving from low to higher WSS, the BAV ATAA is hence accompanied by 

larger aortic diameter with bulge dilatation in the anterior side of the ATAA wall just above STJ. 

Similarly, peak systolic strain at mid-ascending aorta of BAV ATAA was negatively correlated with 

changes in shape Mode 3 (R = −0.60, p < 0.001, Figure 6A) and thus to the vessel tortuosity. For TAV 

ATAA, Mode 1 had statistically significant correlation with peak systolic strain at mid-ascending 

aorta (R = 0.43, p = 0.006, Figure 6B).  

 

Figure 4. Correlations (A) between Mode 3 and vessel tortuosity for BAV ATAA and (B) between 

Mode 2 and orifice area for TAV ATAA. 
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Figure 5. Correlation of wall shear stress (WSS) computed at STJ of BAV ATAA with Mode 4, as 

associated to a bulged dilatation of the anterolateral side of ATAA wall; map of WSS of patients being 

at extremity are also shown. 

 

Figure 6. Correlation (A) between aortic strain computed at mid-ATAA of BAV patients with Mode 

3, as associated to vessel tortuosity and (B) between aortic strain and mode 1 for TAV ATAA; map of 

aortic strain of patients being at extremity are also shown. 

A logistic regression model was studied to determine the probability of aortic surgery, on the 

basis of shape modes retained upon 90% of shape variability. This model was then compared to a 

baseline model, using the aortic diameter as predictor of surgery. ROC curves demonstrated that the 

principal shape modes of ATAA-related geometric variation can predict with high sensitivity and 
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specificity the probability of aortic surgery (AUC = 0.914), as compared to the baseline model built 

only with the aortic diameter (AUC = 0.805, see Figure 7). Finally, the scatterplot of subject-specific 

shape Mode 1 versus Mode 2 highlighted a group stratification between non-aneurysmal aorta and 

ATAA, but no separation was observed for BAV ATAA versus TAV ATAA, as shown by Figure 8. 

 

Figure 7. ROC curves for predicting the risk of surgery using a model based on principal shape 

modes as compared to the baseline model based on maximum aortic diameter.   

 

Figure 8. (A) box plots of mean values of Mode 1 for all groups; * denotes statistically significant 

difference with non-aneurysmal aorta; (B) revealed grouping for all groups. 

4. Discussion 

In this study, we have presented an SSA of the ascending aneurysmal aorta built from a large 

dataset of CTA scans, including n = 106 patients with different valve morphologies. This framework 

allowed us to extract unique shape modes that visually and numerically characterize complex shape 

features that are otherwise impossible to capture using measurements of the aortic diameter. The 

extracted shape modes were related to biomechanical descriptors to shed light into shape and 

function, and to ultimately predict disease progression using a personalized approach, rather than a 

crude measurement of the patient’s aortic diameter.  
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Currently, shape analysis was mainly performed for cardiac disorders to describe morphological 

descriptors of the left and right ventricular chambers [35–37]. Machine learning of ATAA shape and 

biomechanical parameters was also proposed [38–40]. From a clinical perspective, SSA does not 

require any manual process that could interfere with the variability assessment, and can be easily 

interpreted by radiologists. These mathematical approaches were based on shape-related 

parametrization by landmarks, as well as non-parametric frameworks showing a mean template and 

its deformation [41]. We demonstrated that shape modes are not only able to represent the overall 

changes of aneurysm phenotype and dimension (Mode 1 and 5), but also the vessel tortuosity (Mode 

3) and local changes in the aortic wall geometry as a bulged aortic dilatation (Mode 4). The analysis 

of ATAA morphology exhibited a moderate dispersion that required upon six shape modes to 

achieve 84% of all geometric variability (and twelve modes for 90% of variability). This demonstrates 

that the ATAA is a quite heterogeneous disease and needs detailed 3D examination. Nearly 50% of 

total geometric variability in ATAAs can be attributed to a proportional size change (i.e., Mode 1), 

and this is in agreement with findings reported by Casciaro et al. [17] for the normal healthy aorta. 

They also documented that the second shape mode is related to aortic unfolding, as defined by an 

increased aortic arch tortuosity and height, and by a decreased aortic arch width. Aortic unfolding 

may determine the development of aortic dilatation and lengthening with ageing, accelerated by 

hypertension [42]. Ex vivo biomechanical testing has demonstrated no mechanical vulnerability of 

BAV ATAA, suggesting a conservative approach for the management of bicuspid aortopathy, such 

as that of TAV ATAA [43,44]. Using SSA, Sophocleous et al. [16] determined that morphological 

features of the aorta can be related to the hemodynamic impairment induced by aortic coarctation in 

patients with BAV. Later, Bruse et al. [15] highlighted that a high ejection fraction correlates with a 

more compacted, rounded aortic arch shape with a slim descending aorta, while a low ejection 

fraction is seen in patients with a more gothic arch shape and a slightly dilated descending aorta. 

These relationships between shape and function were assumed to be responsible for the adverse 

hemodynamic environment typically occurring in the descending aorta of patients with coarctation.  

Most interestingly, the association of Mode 3 and 4 with shear stress and strain in BAV and TAV 

ATAAs suggests that patients with bulged aortas have a high risk of developing high shear stress, 

while patients with a more tortuous ATAA have high aortic wall strain. It is recognized that increased 

tortuosity might be a marker for vascular fragility and a predictor of aortic dissection in patients with 

Marfan or BAV [45]; however, no relationship between strain and vessel tortuosity is known. The 

relationship here reported between shapes and biomechanical descriptors highlights that our 

methodology could be potentially used to detect outlying shapes in a complex and heterogeneous 

population, such as that of bicuspid aortopathy -which, in turn, might be associated to outlying 

functional behavior. Cardiac 4D flow MRI [46] and computational modelling [21,47] revealed the 

need for flow analysis of the aneurysmal aorta, with the potential to stratify patients at high risk of 

aortic complications. Shear stress was also found as an important regulator of extracellular matrix 

function by mechanotransduction [48,49]. Specific local changes of the ATAA wall, such as a bulged 

aorta, are commonly considered clinical evidence supporting the hemodynamic theory of aneurysm 

development, as opposed to the genetic theory. We speculate that the relationship between bulged 

ATAA shapes and high shear stress is the expression of the hemodynamic contribution of aneurysm 

development in our patient population, where the flow dictated by valve morphology locally 

impinges the anterolateral ATAA wall, and thus lead to the focal dilatation of ascending aorta.  

Clinical observations have also demonstrated varying degrees of patterns of aortic dilatation, 

each with distinct clinical course. The most common pattern of aortic dilatation involves the tubular 

portion of the ascending aorta, and is associated with an older age at diagnosis, while the aortic root 

phenotype occurs at a younger age, and is caused by a developmental defect [6]. This heterogeneity 

of ATAA disease renders the clinical decision-making process particularly challenging. For instance, 

the aortic root dilatation phenotype represents the more malignant and rapidly progressive disease 

that should be treated differently from the tubular aortic dilatation pattern. In this study, using 

logistic regression analysis and ROC curves, we demonstrated the value of a detailed 3D assessment 

of the complex shape of ATAAs to predict the likelihood of aortic surgery on a more personalized 
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fashion. A predictive model built with principal shape modes of the ATAA wall achieved the best 

performance to predict the risk of surgery with respect to the risk-model based on the maximum 

aortic diameter. In this way, we have proven how it is possible to maximize the potential of existing 

imaging resources for outcome prediction, by using shape analysis at minimal human intervention. 

This approach could be also integrated with machine learning algorithms for the purpose of 

developing robust risk models and redefining the subgroup of patients at increased risk of ATAA 

complications. The search for robust risk models using novel shape-based biomarkers is particularly 

lively and of critical importance, given the paradox of the aortic diameter to fail a prognosis of 

aneurysm disease progression.  

The study has the disadvantages of a retrospective design in a heterogeneous disease, with 

limited number of surgically-operated patients. Gender differences and the presence of hypertension 

could have influenced the resulting shape modes. Additional shape analyses for subgroups of 

patients stratified for gender or the presence of hypertension should be performed to assess the 

impact of other clinical and demographics variables on the aortic shape features. However, the 

findings evinced the potential of the proposed SSA to investigate the association between ATAA 

shape and function. The study could be extended to the investigation of other biomechanical 

descriptors of ATAA.  

5. Conclusions 

In this study, complex shape features of ATAAs were extracted by SSA and then correlated to 

clinical data and biomechanical descriptors to shed light on shape and function. Using a predictive 

model, we demonstrated the value of a detailed 3D assessment of the complex shape of the 

aneurysmal aorta to predict the risk of aortic surgery on a more personalized fashion. 
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