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Abstract: Like several neurodegenerative disorders, such as Prion and Parkinson diseases, 
Alzheimer’s disease (AD) is characterized by spreading mechanism of aggregated proteins in the 
brain in a typical “prion-like” manner. Recent genetic studies have identified in four genes 
associated with inherited AD (amyloid precursor protein-APP, Presenilin-1, Presenilin-2 and 
Apolipoprotein E), rare mutations which cause dysregulation of APP processing and alterations of 
folding of the derived amyloid beta peptide (Aβ). Accumulation and aggregation of Aβ in the brain 
can trigger a series of intracellular events, including hyperphosphorylation of tau protein, leading 
to the pathological features of AD. However, mutations in these four genes account for a small of 
the total genetic risk for familial AD (FAD). Genome-wide association studies have recently led to 
the identification of additional AD candidate genes. Here, we review an update of well-established, 
highly penetrant FAD-causing genes with correlation to the protein misfolding pathway, and novel 
emerging candidate FAD genes, as well as inherited risk factors. Knowledge of these genes and of 
their correlated biochemical cascade will provide several potential targets for treatment of AD and 
aging-related disorders. 

Keywords: Alzheimer’s disease; APP mutations; APOE alleles; PSEN1; PSEN2; germline mutations; 
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1. Introduction 

Alzheimer’s disease (AD) is responsible for about 60%–70% of cases of dementia, equivalent to 
an estimated population of 40−50 million persons worldwide. This more than doubled from 1990 to 
2016 [1]. Typically, AD is featured by a progressive neurodegeneration that lead to a gradual loss of 
memory and alterations affecting other cognitive functions, such as spatial cognition, reasoning, 
word-finding, judgment and problem-solving [2]. Aging is the most important AD risk factor and, 
even if it may occur at any age, more often AD appears in older individuals (later than 65 years of 
age) [3,4]. However, early onset AD cases, characterized by the occurrence of clinical signs between 
30 and 65 years old, have been also reported [3,4]. Even if atypical phenotypes have been described, 
clinical and pathological features seem to be the same between early and late onset AD, so that it may 
be difficult to distinguish these 2 groups [4]. Interestingly, while late onset AD is usually sporadic 
and doesn’t show any segregation within the families, it has been highlighted that early onset AD is 
featured by a high recurrence rate within the affected families, thus suggesting the presence of 
inherited forms of AD [3]. 
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In particular, it has been estimated that 15%–25% of total AD accounts for familial Alzheimer’s 
disease (FAD) (Figure 1) [5]. 

 
Figure 1. Prevalence and genetic causes of familial Alzheimer’s disease (FAD). FAD represents only 
a small fraction (about 20%) of all Alzheimer’s disease (AD) cases (A). In addition, within FAD, 
mutations the amyloid precursor protein (APP), presenilin 1 (PSEN1) or presenilin 2 (PSEN2) genes 
account for a small proportion of cases, underlying that the molecular bases of the larger fraction still 
remain to be unveiled (B). 
 
In this category, it is included the autosomal dominant Alzheimer’s disease (ADAD), associated 

to the presence of known causative gene mutations, mainly in the amyloid precursor protein (APP), 
presenilin 1 (PSEN1) or presenilin 2 (PSEN2) genes, that have been described as highly penetrant, 
disease-causing FAD genes [3−5]. However, mutations in these genes are able to explain just a small 
percentage of all FAD cases, suggesting the existence of other, inherited, disease-predisposing genes 
[4]. Since FAD typically shows a sequential, clinical progression from pre-dementia to dementia 
stage, thus it is crucial to recognize and diagnose it before symptoms onset in order to begin 
treatments as soon as possible [6,7]. As a consequence, a better understanding of FAD molecular 
bases, i.e., the identification of the causative genes, may ameliorate the management and the clinical 
outcome of these patients and of their families. 

Recent advances in genomics, i.e., the availability of highly performing next generation 
sequencing (NGS)-based methods to accurately analyze single genes [8,9] or a subset of genes of 
interest [10–12], up to the whole exome [13,14] or the whole genome [13,14], has prompted the study 
of the molecular bases of human diseases and is a promising tool to discover novel FAD-related genes 
[4]. 

Here, we will review the current knowledge regarding the genetic etiology of FAD. In particular, 
we will focus first on well-established, highly penetrant, FAD-causing genes. In this context, the 
relationship between mutations affecting AD-related genes and proteins’ trafficking, folding and 
aggregation properties will be highlighted, with special attention to APP. Next, novel, emerging and 
candidate FAD genes, as well as inherited risk factors will be also discussed, suggesting that enlarged 
genetic testing may be useful in FAD families in order to improve the identification and management 
of the at-risk subjects. 

2. Methods 

Indexed articles in English were searched in PubMed using the following keywords: 
“Alzheimer’s disease molecular bases”, “Alzheimer’s disease mutations”, “Alzheimer’s disease 
germline mutations”, “Alzheimer’s disease genes”, “inherited Alzheimer’s disease”, “familial 
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Alzheimer’s disease”, “APP mutations”, “PSEN1 mutations”, “PSEN2 mutations” and “novel 
Alzheimer’s disease genes”. In the attempt to focus on the most recent and updated papers on these 
topics, we fixed the time within 2010 and 2020 as temporal window; however, a manual search for 
oldest references mentioned in the found articles was also carried out. Papers in the search results 
reporting somatic mutations or describing genetic risk factors related to sporadic, late onset AD were 
not included since are out of the topic of the present review (Figure 2). 

 
Figure 2. Flow-diagram summarizing the steps for the selection of the articles reviewed herein. 

3. Highly Penetrant Familial Alzheimer Disease-causing Genes 

Genetic analysis of large FAD families allowed the discovery of the three well established and 
high-penetrant genes related to this disease, namely, APP, PSEN1 and PSEN2 (Figure 3). 

 
Figure 3. Amyloid precursor protein (APP) structure and amyloid beta (Aβ) peptide production. The 
cleavage of APP by specific secretases is required to produce the Aβ peptide. One of these secretases, 
namely the γ secretase, is a multimeric complex involving also presenilin 1 (PSEN1) and presenilin 2 
(PSEN2). Mutations affecting APP, as well as PSEN1 or PSEN2 genes, have been associated to familial 
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Alzheimer’s disease (FAD) because of their ability to increase Aβ peptides production and, 
consequently, their aggregation up to amyloid plaques formation. 
 
The amyloid precursor protein gene (APP, OMIM #104760, chromosome 21q21.3) encodes for an 

integral type 1 membrane glycoprotein that is almost ubiquitously expressed. APP is sequentially 
processed for proteolytic cleavage to produce amyloid β (Aβ), by β- and γ-secretases (the latter 
composed by PSEN1, PSEN2, Nicastrin and Aph-1). Because APP processing by  γ-secretase is not 
restricted to a single site, it gives rise to different Aβ species, Aβ42 being more prone to aggregate [15]. 

Recently it has become evident that the AD-typical Aβ assemblies are able to adopt alternative 
conformations and become self-propagating, like prions [16–19]. 

To date, 32 pathogenic mutations in APP were reported within or flanking the Aβ sequence 
(https://www.alzforum.org/mutations/app), being located mostly near the β- and  γ-secretase sites 
[20]. As a consequence, APP mutations seem to be able to increase Aβ aggregation rate, thus causing 
FAD (Figure 3) [21]. 

The p.K670N and p.M671L Swedish AD-related pathogenic mutations are localized near to the 
 γ-secretase site and lead to increased absolute levels of Aβ42 (without changing Aβ42 to Aβ40 ratio) [22]. 
Interestingly, Del Prete et al., found that in a Swedish cell culture model of AD, APP and its 
catabolites are present in mitochondrial-ER associated membranes (MAMs) and β- and  γ-secretases 
harbor APP processing activities in MAMs [23]. This finding is extremely interesting, considering the 
fact that the localization of APP and its enzymes plays a critical role in the Aβ generation and its 
signaling inside the cell [24]. The p.T714I, p.V715M, p.V715A, p.I716V, p.V717I and p.V717L APP 
mutations are all located in proximity of the γ-secretase site, affect the cleavage and, contrary to the 
double Swedish mutations, cause an increase of the Aβ42 to Aβ40 ratio and are able to influence the 
stability of APP C-terminal fragments [20,25]. Very recently, the p.I716T APP mutation [25], as well 
as the p.L723P featured by the local unfolding of the C-terminal turn [26], was described to affect the 
efficiency of the  γ-secretase  ε-cleavage and to induce a major Aβ42 to Aβ40 ratio. This effect is due to 
the additional H-bond between the T716 side chain and the transmembrane backbone, which can 
affect the cleavage domain dynamic [25]. 

Mutations within the Aβ sequence have been predicted not only to affect APP processing, thus 
regulating the amount of total Aβ production, but were also thought to affect the aggregation 
properties of the resulting Aβ peptide [25]. Indeed, the APP p.A692G, p.E693Q and p.D694N 
mutations, all located inside the Aβ sequence, have been described to have an increased aggregative 
ability and neurotoxicity respect to the wild type Aβ [21]. 

Although a common effect of these mutations is the dysregulation of the production of different 
Aβ forms of APP, a recent paper form Lumsden et al. proposed also a dysregulation of iron 
homeostasis as a common effect of mutations related to early onset AD [27]. 

Table 1 summarizes APP mutations, affecting protein stability, folding, processing, from the N- 
to the C-terminal. 

Despite the above, it has been reported that APP dominant mutations account for about 16% of 
all ADAD [3]. Some years ago, 2 APP mutations, namely p.A673V and p.E693del, have been found to 
be able to cause FAD only in the homozygous status supporting the existence also of a recessive 
pattern of inheritance [28,29]. More recently, Conidi et al., described an Italian family carrying the 
APP p.A713T in homozygous status; surprisingly the clinical phenotype was not more severe respect 
to the heterozygous carriers [30]. This finding not only highlighted that the homozygosity for APP 
dominant mutations is not lethal, but also suggested that other, independently inherited genetic 
factors, may exert a protective effect and modify the clinical presentation of the disease. 

Finally, in addition to single nucleotide variants and small insertion/deletions, dominantly 
inherited duplications of the APP locus have been also described and associated to AD [31−35]. In 
particular, small chromosomal duplications with different genomic coordinates, but all including the 
APP locus, have been described in some French FAD families [31,32]. Next, APP duplications were 
reported also in Finnish and Dutch FAD cases [33–35]. The clinical consequences of these duplications 
are not yet clearly defined and also their frequency as FAD cause is variable in the different studies 
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[31–35]. Totally, 25 duplications have been identified so far and, respect to missense mutations, these 
duplications seem to have a reduced penetrance and a variable age of onset [36]. 

Table 1. Amyloid precursor protein (APP) pathogenic mutations and their effects at protein level. 

Mutation and 
Protein Region 

Protein 
Stability/Folding/Processing 

Reference 

N-terminal   

p.K670N/p.M671L 

Leads to increased absolute 
levels of Aβ42, doesn’t alter 
Aβ42/Aβ40 ratio 
Present in MAMs 

Kumar-Singh_2009 [22] 
 
 
Del Prete_2017 [23] 

Amyloid-beta domain   

p.A692G  Murakami_2002 [21] 
p.E693Q 
p.E693K 
p.E693G 

Potent aggregative  

p.D694N   
 
p.A713T 
p.T714I 

 
Increase Aβ42/Aβ40 ratio, 
affect stability of APP CTFs 

Kumar-Singh_2009 [22] 

Transmembrane/C-
terminal   

p.V715M 
p.I716V 
p.V717L 

Increase Aβ42/Aβ40 ratio, affect 
stability of APP CTFs De Jonghe_2001 [20] 

Pp.I716T 
Increases Aβ42/Aβ40 ratio 
reducing the efficiency of the  γ-
secretase ε-cleavage 

Götz_2019 [25] 

p.L723P 
Causes unfolding of C-terminal 
turn of APP TM domain helix Bocharov_2019 [26] 

 
Interestingly, Jonsson et al., identified a rare APP variant in the Icelandic population showing a 

protective effect [37]. Finally, a number of variants of unknown clinical significance have been also 
detected and further functional tests are required to establish their pathogenicity. 

The presenilin 1 (PSEN1, OMIM #104311, chromosome 14q24.3) encodes for a protein that is a 
subunit of γ-secretase, i.e., one of the 2 enzymes responsible for APP proteolytic cleavage. As a 
consequence, mutations in PSEN1, impairing the activity of γ-secretase complex, may lead to the 
production of more aggregation-prone forms of the Aβ peptide, that is a typical hallmark of AD, thus 
inducing the disease development (Figure 3) [3,4]. 

PSEN1 is the most common gene related to FAD. To date, 221 PSEN1 pathogenic mutations have 
been described, accounting for up to 70% of ADAD cases (http://www.alzforum.org/mutations). 
These mutations can be both single nucleotide variants and small insertions/deletions; in addition, a 
deletion able to cause PSEN1 exon 9 skipping, has been also described [38]. Typically, FAD onset in 
PSEN1 mutations carriers ranges from 30 to 50 years, the mutations showing an autosomal dominant 
inheritance and almost always a complete penetrance [39]. Interestingly, de novo mutations, featured 
by a very early age of onset (before 30 years) have been also described [40–42]. 

As in the case of APP, Kosik et al., described a Colombian family carrying the PSEN1 mutation 
p.E280A in homozygous status; also, in this case, the severity of the disease was not influenced by 
the homozygosity of the mutation [43]. 
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The presenilin 2 (PSEN2, OMIM #600759, chromosome 1q31-q42) gene has a genetic structure 
very similar to PSEN1, sharing a sequence homology of 67% [3]. It encodes for another component of 
the γ-secretase complex; thus, its impairment, due to pathogenic mutations, is able to increase the 
Aβ42/Aβ40 ratio too (Figure 3). 

To date, 19 different PSEN2 pathogenic mutations have been reported 
(http://www.alzforum.org/mutations). As for PSEN1, these pathogenic mutations are scattered along 
the entire gene sequence with a higher frequency in the transmembrane domains [44,45]. The ADAD 
age of onset ranges from 40 to 70 years in PSEN2 mutations carriers, the penetrance of these mutations 
being still controversial to assess, due to the few numbers of families reported to date and showing 
also a so wide age-range of onset [39]. 

It has been estimated that totally, APP, PSEN1 and PSEN2 mutations account only for about 5%–
10% of all FAD (Figure 1) [46,47]. Within the FAD, considering only the ADAD forms the contribution 
of these genes is highly heterogeneous based on the population studied, 23% up to 88% of patients 
remaining without a genetic diagnosis [47,48]. Since the clinical features of FAD can be variable, the 
diagnosis is often difficult and delayed, underlying the importance of identifying other molecular 
alterations responsible for the currently unexplained FAD cases. 

4. Apolipoprotein E ε4 Risk Allele and Familial Alzheimer Disease 

The apolipoprotein E gene (APOE, OMIM #107741, chromosome 19q13.2) encodes a 
glycoprotein involved in the mobilization of peripheral cholesterol, also during neuronal growth and 
regeneration [49,50]. Three APOE isoforms are known, namely ApoE2, ApoE3 and ApoE4, differing 
at level of 2 aminoacidic residues (the 112 and 158) and coded by 3 alleles, i.e., ε2, ε3 and ε4, whose 
frequency varies among different populations [3]. 

To date, an association between the ε4 allele and the sporadic, late-onset AD has been reported 
[3,4]. In particular, it has been assessed an increased risk up to 3-fold in the heterozygous carriers and 
up to 15-fold in the homozygous [51]. Interestingly, the ε2 allele has been reported as a protective 
factor, reducing the AD risk and also positively impacting longevity [52]. These different features 
have been related to ta different binding affinity of the encoded proteins for the Aβ peptide; in 
particular, ApoE4 shows the highest affinity leading to the creation of monofibrils that are able to 
produce dense precipitates [3]. However, it is important to underline that the ε4 allele is not a cause 
but an AD risk factor; thus, other genetic or environmental factors are required for disease 
development. A working model, attempting to explain the relationship between ApoE and 
Alzheimer’s disease, has been proposed (Figure 4) [53]. 

In particular, ApoE4, unlike ApoE3, contributes to AD by interacting with different factors 
through various pathways. In response to oxidative stress, aging, brain damage or Aβ deposition, 
neurons synthesize increasing amount of ApoE, that in turn undergoes proteolytic processing 
generating fragments which cause mitochondrial dysfunction, cytoskeletal changes, NFT 
(neurofibrillary tangles) formation, leading to neurodegeneration. 

Interestingly, it has been shown that the APOE ε4 allele is able to increase also the risk for early 
onset AD in presence of familiarity for the disease [54]. In particular, in the ε4 homozygous carriers 
the risk was independent from other genetic factors, while in the heterozygous no, suggesting that it 
may act as disease phenotype-modifier in presence of other genetic mutations [4]. However, Genin 
et al., reported for APOE ε4 allele an AD risk comparable to that of other genetic factors [55]. Some 
studies, evaluating the effects of the APOE genotype on AD clinical features in families carrying 
pathogenic mutations in APP, PSEN1 or PSEN2 genes, showed that the ε4 allele is associated to an 
earlier age of onset in the mutations’ carriers, while the carriers of the ε2 allele had a later onset [56–
58]. Nevertheless, it is important to underline that the significance of APOE testing in clinical practice 
is still under debate and it has been recently reviewed to not significantly impact diagnostic and 
prognostic evaluations [59]. Indeed, being a risk factor, the APOE ε4 allele is common in the general 
population, i.e., also in healthy individual without a positive family history of AD. Further large 
longitudinal studies are required to assess the contribution of APOE to AD risk and its possible use 
in clinical routine settings. 
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Figure 4. Working model for Apolipoprotein E4 (ApoE4) contribution to Alzheimer’s disease (AD) 
development. Different stimuli can induce ApoE4 and ApoE3 overexpression, with E4 contribution 
to neurodegeneration in AD. ApoE4, undergoing to proteolytic cleavage, can generate different 
fragments which can contribute to mitochondrial dysfunction, cytoskeletal disorganization, 
neurofibrillary tangles and, consequently to neurodegeneration. 
 

5. Novel, Emerging and Candidate Genes Associated to Familial Alzheimer Disease 

Mutations in APP, PSEN1 and PSEN2 genes, as well as the APOE ε4 risk allele, explain only a 
small percentage of all FAD cases, suggesting that other genes may play a role. In the last years, NGS 
based studies, through the analysis of large pedigrees, are allowing the detection of novel genes 
potentially related to FAD. 

Guerreiro et al., analyzing a Turkish FAD family, identified a pathogenic mutation in the 
NOTCH3 gene [60]. Interestingly, the same mutation was previously associated with a dementia 
disorder similar to AD and the proband belongs to a consanguineous family with a complex history 
of neurological disorders [60]. NOTCH3 (OMIM# 600276, chromosome 19p13.12) encodes a 
transmembrane receptor involved in cellular signaling and embryonic development. More than 130 
mutations have been reported in this gene and related to the rare syndrome cerebral arteriopathy 
autosomal dominant with subcortical infarcts and leukoencephalopathy; a role also in FAD has been 
recently proposed [61]. 

The finding of a shared gene between degenerative and vascular dementias suggests the 
presence of a similar neurovascular unit dysfunction. Accordingly, a consensus paper by Bordet et 
al., based on the observation that most of patients currently seem to be affected by mixed forms, 
proposed that also therapeutic strategies should be common [62]. Indeed, therapeutic approaches 
should be oriented towards an integrated strategy, including antioxidants, anti-inflammatory, 
modulation of proteins aggregation and neuronal plasticity. Since in older patients, vascular 
cognitive impairment (VCI) leading to vascular dementia is often mixed to AD and VCI is rarely 
“pure”, a disease modifying strategy seems to be justified [62]. It is noteworthy that a mitochondrial 
dysfunction may play a role in this context as an additional cause of cognitive impairment, either of 
vascular, degenerative or both natures [63]. In particular, a reduction of respiratory chain complex I 
activity, related to mitochondrial dysfunction, has been reported in a group of patients with vascular 
dementia and several mitochondrial mechanisms have been invoked in Aβ-related cerebrovascular 
degeneration [63]. 
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Pottier et al., carried out the WES of 29 probands from FAD families resulted negative for 
mutations in the 3 main FAD genes and found 7 mutations in the SORL1 gene [64]. In particular, one 
of these mutations, i.e., the p.G511R, has been shown to be able to reduce the ability of the protein to 
bind the Aβ peptide, thus inducing its accumulation [65]. The sortilin-related receptor (SORL1, 
OMIM# 602005, chromosome 11q24.1) encodes for a mosaic protein that is the receptor of neuronal 
ApoE. Accordingly, SORL-1 mutations have been described in 2 families with early onset AD. In 
particular, the SORL-1 variants where shown to be able to weaken the interaction with APP, 
interfering with APP trafficking and altering the Aβ levels [66]. Other studies have confirmed the role 
of SORL1 mutations in FAD and also in late onset AD [67,68]. Li et al., have recently reported the case 
of a patient with early onset AD and cognitive impairment, carrying a heterozygous mutation in the 
SORL1 gene [69]. Taken together, these items of evidence suggest that SORL1 mutations may be 
involved in FAD, its contribution being probably underestimated, and that this gene should be tested 
in the affected families in addition to APP, PSEN1 and PSEN2 genes. Indeed, the analysis of SORL1 
in larger cohorts of patients may allow to better clarify its contribution to FAD. 

Interestingly, genome-wide association studies identified about 30 additional risk factors/alleles 
for late onset AD [70,71]. Among these, variants affecting CLU (APOJ) or CR1 (complement 
component 3b/4b receptor 1), being involved in the clearance of Aβ have been associated to AD [72] 
and heterozygous missense mutations in TREM2 (triggering receptor myeloid 2 cells) have been 
described to increase by 3-fold the risk of AD [73]. It has been proposed that these genes may be 
responsible also for FAD cases. 

In particular, an increased frequency of CLU gene rare coding mutations has been highlighted 
in AD patients, predominantly affecting the β chain of the protein [74]. Clusterin (CLU, OMIM# 
185430, chromosome 8p21.1) encodes a protein involved in synapsis turnover. Most of the CLU 
variants described so far are able to promote CLU degradation, thus reducing its activity [75]. 

Two NGS-based studies identified a rare variant (p.Arg47His) in TREM2 gene [73,76] TREM2 
(OMIM# 605086, chromosome 6p21.1) encodes a type I transmembrane protein belonging to the 
immunoglobulin receptor superfamily and involved in immune responses activation. Interestingly, 
TREM2 has been found to be able to bind ApoE, thus increasing the phagocytosis of ApoE-bound 
apoptotic neurons [77]. Some TREM2 variants may increase AD risk by reducing the affinity for 
ApoE, and thus decreasing Aβ peptide clearance. Additionally, it has been showed that TREM2 
mutations in its extracellular domain impair protein maturation and its phagocytic activity [78,79]. 
The TREM2 p.Arg47His variant has been reported in different population as associated to AD, 
including some cases of FAD [73,76,80–82]. The role of other TREM2 variants is still poorly 
understood.  

Three independent studies identified loss-of-function mutations in the ABCA7 gene in AD 
patients [83–85]. The ATP-binding cassette, subfamily A, member 7 (ABCA7, OMIM# 605414, 
chromosome 19p13.3) encodes a transporter protein able to move lipids across the membranes. It has 
been reported that the inhibition of ABCA7 expression is able to increase β secretase cleavage of APP, 
thus increasing the production of Aβ peptide [86]. In particular, Cuyvers et al., identified an ABCA7 
frameshift mutation as a founder mutation in a Belgian population, since it was detected in several 
FAD families showing a dominant pattern of inheritance [83]. 

Vardarajan et al., by sequencing 76 AD-related loci, identified a rare missense mutation in the 
EPHA1 gene (p.P460L) segregating within a large Caribbean FAD family [85]. The Ephrin receptor 
(EPHA1, OMIM # 179610, chromosome 7q34-q35) encodes a tyrosine kinase receptor implicated in 
neuronal development. 

The main features of novel FAD candidate genes are summarized in Table 2. 
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Table 2. Novel candidate genes and inherited risk factors associated to familial 
Alzheimer’s disease (FAD). 

Gene Name (Acronym) Proposed Function in FAD References 

Apolipoprotein E (APOE) Contribution of ApoE4 to 

mitochondrial dysfunction, 

cytoskeletal disorganization and 

neurofibrillary tangles 

Huang_2006 [53] 

Neurogenic Locus Notch Homolog 

Protein 3 (NOTCH3) 

Cellular signaling impairment Patel_2019 [61] 

Sortilin-related receptor (SORL1) Interference with APP trafficking 

and alteration of the Aβ levels 

Cuccaro_2016 [66] 

Complement component 3b/4b 

receptor 1 (CR1) 

Aβ peptide clearance reduction Shen 2016 [72] 

Clusterin (CLU) Synapsis turnover reduction Bettens_2015 [75] 

Triggering Receptor Expressed on 

Myeloid Cells 2 (TREM2) 

Aβ peptide clearance reduction Bailey_2015 [77] 

Lue_2015 [78] 

Kleinberger_2014 [79] 

The ATP-binding cassette, subfamily 

a, member 7 (ABCA7) 

Aβ peptide production increase Satoh_2015 [86] 

Ephrin receptor (EPHA1) Alteration of neuronal development Vardarajan_2016[85] 
 
It is noticeable that the same genes identified as risk factors for sporadic and late onset AD, 

harbor also rare variants segregating with FAD. Even if data in this field are still inconclusive since 
they are often based on isolated findings, however they suggest that some familial cases may be due 
the combination of rare variants and other risk factors. Recent NGS-based screening including FAD 
cases, identified established risk alleles with moderate penetrance and one or more variants of 
uncertain significance, thus suggesting the hypothesis, in presence of no mutations in the 3 main FAD 
genes, of a polygenic inheritance [87,88]. The use of NGS-based methods for the analysis of large 
genomic regions in several patients simultaneously may provide further insights to improve the 
diagnosis of disorders featured by high genetic and phenotypic variability, such as AD. However, 
the interpretation of NGS data, due to the large number of variants of unknown significance, is often 
challenging and inconclusive in clinical settings [14,89]. 

6. Conclusions 

AD incidence is showing an increasing trend worldwide, so its early and accurate diagnosis has 
become mandatory. Indeed, the earlier the diagnosis is made, the sooner the treatments may begin, 
the latter being an important prognostic factor to ameliorate patients’ clinical outcome. It is becoming 
evident that within the “AD” definition are included different entities, whose correct identification 
may be important to drive treatments choices. While most of AD cases are sporadic, featured by late 
onset and by the presence of polygenic risk factors, a small percentage of AD is familial, often 
featured by early age of onset and related to the presence of rare, pathogenic mutations segregating 
within the affected families. To date, 3 main genes (APP, PSEN1 and PSEN2) have been related to 
autosomal dominant FAD, accounting just for a small percentage of cases. Novel candidate genes are 
being identified. Larger studies on large group of patients are required to better address their 
contribution to the disease and discover other potential candidates. This will allow a better prognostic 
classification of the patients and a better management of the probands and of their families, by the 
identification of the -at risk individuals. These genetic data, together with novel clues coming from 
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other “omics” [90–92], will allow also the development of novel and even more personalized 
therapies for AD and FAD treatment. 
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