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Abstract: The aim of this study was to systematically review the performance of deep learning
technology in detecting and classifying pulmonary nodules on computed tomography (CT)
scans that were not from the Lung Image Database Consortium and Image Database Resource
Initiative (LIDC-IDRI) database. Furthermore, we explored the difference in performance when
the deep learning technology was applied to test datasets different from the training datasets.
Only peer-reviewed, original research articles utilizing deep learning technology were included
in this study, and only results from testing on datasets other than the LIDC-IDRI were included.
We searched a total of six databases: EMBASE, PubMed, Cochrane Library, the Institute of Electrical
and Electronics Engineers, Inc. (IEEE), Scopus, and Web of Science. This resulted in 1782 studies
after duplicates were removed, and a total of 26 studies were included in this systematic review.
Three studies explored the performance of pulmonary nodule detection only, 16 studies explored the
performance of pulmonary nodule classification only, and 7 studies had reports of both pulmonary
nodule detection and classification. Three different deep learning architectures were mentioned
amongst the included studies: convolutional neural network (CNN), massive training artificial neural
network (MTANN), and deep stacked denoising autoencoder extreme learning machine (SDAE-ELM).
The studies reached a classification accuracy between 68–99.6% and a detection accuracy between
80.6–94%. Performance of deep learning technology in studies using different test and training
datasets was comparable to studies using same type of test and training datasets. In conclusion, deep
learning was able to achieve high levels of accuracy, sensitivity, and/or specificity in detecting and/or
classifying nodules when applied to pulmonary CT scans not from the LIDC-IDRI database.
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1. Introduction

Lung cancer is still the leading cause of cancer-related deaths in both the United States [1] and
Europe, where it accounts for 20.9% of all cancer-related deaths [2]. Because of this, efforts have been
made to reduce the incidence of lung cancer, primarily through the promotion of smoking cessation
and lung cancer screening of high-risk individuals. Although much has been done with prevention,
there are still around 370,000 new cases of lung cancer each year [2]. It is therefore crucial to diagnose
lung cancer at an early stage to increase patients’ chance of survival.

Early efforts to detect lung cancer through imaging were widely investigated, and no significant
reduction in mortality by screening with traditional chest radiography was reported [3,4]. Since then,
computed tomography (CT) has emerged as an imaging method with superior sensitivity in detecting
lung nodules, and screening with CT has been shown to be superior to traditional chest radiography
in reducing mortality from lung cancer [5]. When chest radiographs are replaced by CT scans for
pulmonary cancer assessment, there will inevitably be an increase in workload for the radiologists,
which results in missed cases and errors in diagnostics [6,7].

To aid radiologists in more accurate and time-efficient detection and diagnosis of pulmonary
nodules, several computer-aided diagnosis and detection schemes have been developed [8–10]; the
best known computer-aided diagnosis schemes to distinguish between benign and malignant nodules
are based on volume doubling time [11]. Recently, deep learning has emerged as a more intelligent
and accurate image classification technology [12] and has been adapted to classify medical images
including chest CTs [13,14]. To the best of our knowledge, deep learning technology has yet to be
successfully implemented in an everyday clinical workflow when diagnosing pulmonary nodules.
A reason for this may be that deep learning algorithms need to be trained on data that are similar to
the final task data [15]. Most studies have trained and tested their algorithms on the large and publicly
available Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI)
dataset, which makes the studies homogenous [16]. Few studies have tested their algorithms on
datasets not from LIDC-IDRI, and only a subgroup of those have trained their algorithms on datasets
that were not obtained the same way as the final test data [17,18].

The study aim of this systematic review was to investigate how deep learning performs for
pulmonary nodule detection and/or classification of CT scans when the method is tested on datasets
that are not from LIDC-IDRI. Furthermore, the study aim was to investigate whether the performance
of deep learning is reduced when the algorithm is tested on a dataset that is different from the
training dataset.

2. Materials and Methods

Literature Search Strategy

The literature search was completed on 27 May 2019 from six databases: EMBASE, PubMed,
Cochrane Library, the Institute of Electrical and Electronics Engineers, Inc. (IEEE), Scopus, and Web of
Science. The search was restricted to peer-reviewed publications of original research written in the
English language and published in the 10 years preceding the search completion date.

The following specific MESH terms in PubMed were used: “lung”, “respiratory system”,
“classification”, “artificial intelligence”, “tomography, emission-computed”, “tomography”, “X-ray”,
and “tomography scanners, X-ray computed”.

The terms were then combined with following text words in the title and/or abstract: “lung”,
“pulmonary”, “respiratory”, “classification”, “characterization”, “detection”, “artificial intelligence”,
“machine learning”, “deep learning”, “neural network”, “computer-assisted”, “computer-aided”,
“CT”, and “computed tomography”. To perform the search in EMBASE, the following combinations
of EMTREE terms and text words were used: (Classification (EMTREE term) OR sensitivity and
specificity (EMTREE term) OR accuracy (EMTREE term) OR diagnostic accuracy (EMTREE term)
OR diagnostic test accuracy study (EMTREE term) OR diagnostic reasoning (EMTREE term) OR
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“detection” OR “classification” OR “diagnosis”) AND (artificial intelligence (EMTREE term) OR
artificial neural network (EMTREE term) OR machine learning (EMTREE term) OR computer assisted
diagnosis (EMTREE term) OR “neural network” OR “deep learning”) AND (lung (EMTREE term) OR
“pulmonary”) AND (whole body CT (EMTREE term) OR computer assisted tomography (EMTREE
term) OR “CT” OR “computed tomography” OR “computer tomography”).

After removal of duplicates, all titles and abstracts retrieved from the searches were independently
screened by two authors (DL and BMV). If the two authors could not reach an agreement on a study,
a third author (JFC) assessed and resolved the disagreement. Data were extracted by DL and BMV
via of pre-piloted forms. To describe the performance of the proposed deep learning algorithms on
detection and/or classification of pulmonary nodules, we used a combination of narrative synthesis
and compared measures of sensitivity, specificity, area under the curve (AUC), and accuracy if these
were available. If information from a confusion matrix was available, sensitivity and specificity were
independently calculated by DL and double-checked by BMV.

3. Study Inclusion Criteria

Peer-reviewed original research articles published after 2009 were reviewed for inclusion in this
systematic review. Studies that examined the use of machine learning in detection and/or classification
of pulmonary nodules were selected

1 If the technology was based on deep learning or had primary components of deep learning
algorithms used to either detect pulmonary nodules and/or classify these nodules into
different categories,

and

2 if the deep learning algorithm was tested on CT scans that were not part of or derived from the
LIDC-IDRI database,

and
3 if any performance measures were reported, preferably in the form of, but not limited to sensitivity,

specificity, accuracy, and/or AUC.

If more than one algorithm based on the same type of deep learning architecture was tested in
the same study, the best performing algorithm was chosen for the results. Datasets were defined as
different if the included CT images were obtained from different hospitals/locations/types of databases.
Unless otherwise stated, the CT images used in the training dataset were not a part of the test dataset.
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Figure 1. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart of 
the literature search and study selection.

Figure 1. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart of
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Table 1. Performance of the studies exploring detection of pulmonary nodules.

Detection

Author Year Deep Learning
Architecture Dataset for Training Dataset for Testing Sensitivity Specificity AUC Accuracy

Suzuki, Kenji * [19] 2009 MTANN Independent dataset A Independent dataset B 97 N/A N/A N/A
Tajbakhsh, Nima et al. [20] 2017 CNN Independent dataset Independent dataset 100 N/A N/A N/A

MTANN Independent dataset Independent dataset 100 N/A N/A N/A

Masood, Anum et al. [21] 2018 FCNN

LIDC-IDRI, RIDER,
LungCT-diagnosis, LUNA16,
LISS, SPIE challenge dataset

and independent dataset

RIDER 74.6 86.5 N/A 80.6

SPIE challenge dataset 81.2 83 N/A 84.9
LungCT-diagnosis 82.5 93.6 N/A 89.5

Independent dataset 83.7 96.2 N/A 86.3
Chen, Sihang et al. [22] 2019 CNN Independent dataset Independent dataset 97 N/A N/A N/A

Liao, Fangzhou et al. [23] 2019 CNN LUNA16 and DSB17 DSB17 85.6 N/A N/A N/A
Liu, Mingzhe et al. [24] 2018 CNN LUNA16 and DSB17 DSB17 85.6 N/A N/A N/A

Li, Li et al. * [17] 2018 CNN LIDC-IDRI and NLST Independent dataset 86.2 N/A N/A N/A
Wang, Yang et al. [25] 2019 RCNN Independent dataset Independent dataset N/A N/A N/A N/A

Setio, A.A.A et al. * [18] 2016 CNN LIDC-IDRI and ANODE09 DLCST 76.5 N/A N/A 94
ANODE09 N/A N/A N/A N/A

Wang, Jun et al. [26] 2019 CNN Tianchi AI challenge dataset
and independent dataset Independent dataset 75.6 N/A N/A N/A

Studies marked with * are studies where test dataset was different from training dataset. AUC: area under the curve. Abbreviations: massive training artificial neural network (MTANN),
convolutional neural network (CNN), lung image database consortium and image database resource initiative (LIDC-IDRI), reference image database to evaluate therapy response
(RIDER), Society of Photo-Optical Instrumentation Engineers (SPIE), lung nodule analysis 2016 (LUNA16), lung CT imaging signs (LISS), Kaggle data science bowl 2017 (DSB17), Danish
lung cancer screening trial (DLCST), automatic nodule detection 2009 (ANODE09).
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Table 2. Performance of studies exploring classification of pulmonary nodules.

Classification

Author Year
Deep

Learning
Architecture

Dataset for Training Dataset for Testing Categories for Testing Sensitivity Specificity AUC Accuracy

Alakwaa, Wafaa et al. [27] 2017 CNN LUNA16 and DSB17 DSB17 Cancer vs. no cancer N/A N/A N/A 86.6
Chen, Sihang et al. [22] 2019 CNN Independent dataset Independent dataset Adenocarcinoma vs. benign N/A N/A N/A 87.5

Ciompi, Francesco et al. [28] 2015 CNN ImageNet and
NELSON NELSON Peri-fissural nodules (PFN)

vs. non-PFN N/A N/A 84.7 N/A

Ciompi, Francesco et al. *[29] 2017 CNN MILD DLCST Multiple categories (overall) N/A N/A N/A 79.5
Jakimovski, Goran et al. [30] 2019 CDNN LONI database LONI database Cancer vs. no cancer 99.9 98.7 N/A 99.6

Lakshmanaprabu, S.K. et al. [31] 2018 ODNN ELCAP ELCAP Abnormal vs. normal 96.2 94.2 N/A 94.5
Li, Li et al. * [17] 2018 CNN LIDC-IDRI and NLST Independent dataset Multiple categories (overall) N/A N/A N/A N/A

Liao, Fangzhou et al. [23] 2019 CNN LUNA16 and DSB17 DSB17 Cancer vs. no-cancer (scale) N/A N/A 87 81.4
Liu, Shuang et al. [32] 2017 CNN NLST and ELCAP NLST and ELCAP Malign vs. benign N/A N/A 78 N/A

Liu, Xinglong et al. * [33] 2017 CNN LIDC-IDRI ELCAP Multiple categories (overall) N/A N/A N/A 90.3

Masood, Anum et al. [21] 2018 FCNN

LIDC-IDRI, RIDER,
LungCT-Diagnosis,

LUNA16, LISS, SPIE
challenge dataset and
Independent dataset

Independent dataset Four stage categories
(overall) 83.7 96.2 N/A 96.3

Nishio, Mizuho et al. [34] 2018 CNN Independent dataset Independent dataset Benign, primary and
metastic cancer (overall) N/A N/A N/A 68

Onishi, Yuya et al. [35] 2018 DCNN Independent dataset Independent dataset Malign vs. benign N/A N/A 84.1 81.7
Polat, Huseyin et al. [36] 2019 CNN DSB17 DSB17 Cancer vs. no cancer 88.5 94.2 N/A 91.8

Qiang, Yan et al. [37] 2017 Deep
SDAE-ELM Independent dataset Independent dataset Malign vs. benign 84.4 81.3 N/A 82.8

Rangaswamy et al. [38] 2019 CNN ILD ILD Malign vs. benign 98 94 N/A 96
Sori, Worku Jifara et al. [39] 2018 CNN LUNA16 and DSB17 DSB17 Cancer vs. no cancer 87.4 89.1 N/A 87.8

Suzuki, Kenji * [19] 2009 MTANN Independent dataset A Independent dataset
B Malign vs. benign 96 N/A N/A N/A

Tajbakhsh, Nima et al. [20] 2017 CNN Independent dataset Independent dataset Malign vs. benign N/A N/A 77.6 N/A
MTANN Independent dataset Independent dataset Malign vs. benign N/A N/A 88.1 N/A

Wang, Shengping et al. [40] 2018 CNN Independent dataset Independent dataset PIL vs. IAC 88.5 80.1 89.2 84
Wang, Yang et al. [25] 2019 RCNN Independent dataset Independent dataset Malign vs. benign 76.5 89.1 90.6 87.3

Yuan, Jingjing et al. * [41] 2017 CNN LIDC-IDRI ELCAP Multiple categories (overall) N/A N/A N/A 93.9

Zhang, Chao et al. * [42] 2019 CNN LUNA16, DSB17 and
Independent dataset(A)

Independent
dataset(B) Malign vs. benign 96 88 N/A 92

Studies marked with * are studies where test dataset was different from training dataset. Abbreviations: massive training artificial neural network (MTANN), convolutional neural
network (CNN), deep neural network (DNN), lung image database consortium and image database resource initiative (LIDC-IDRI), the Dutch–Belgian randomized lung cancer screening
trial (Dutch acronym; NELSON), multicentric Italian lung detection (MILD), laboratory of neuro imaging (LONI), early lung cancer action program (ELCAP), reference image database
to evaluate therapy response (RIDER), Society of Photo-Optical Instrumentation Engineers (SPIE), lung nodule analysis 2016 (LUNA16), lung CT imaging signs (LISS), Kaggle data
science bowl 2017 (DSB17), interstitial lung disease (ILD), Danish lung cancer screening trial (DLCST), automatic nodule detection 2009 (ANODE09), pre-invasive lesions (PIL), invasive
adenocarcinomas (IAC).
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Table 3. Studies that provided classification performance results in (a) sensitivity and specificity,
(b) AUC, and (c) accuracy.

Author Year Sensitivity Specificity

Jakimovski, Goran et al. [30] 2019 99.9 98.7
Lakshmanaprabu, S.K. et al. [31] 2018 96.2 94.2

Masood, Anum et al. [21] 2018 83.7 96.2
Polat, Huseyin et al. [36] 2019 88.5 94.2

Qiang, Yan et al. [37] 2017 84.4 81.3
Rangaswamy et al. [38] 2019 98 94

Sori, Worku Jifara et al. [39] 2018 87.4 89.1
Suzuki, Kenji et al. [19] 2009 96 * N/A

Wang, Shengping et al. [40] 2018 88.5 80.1
Wang, Yang et al. [25] 2019 76.5 89.1
Zhang, Chao et al. [42] 2019 96 * 88 *

(a)

Author Year AUC

Ciompi, Francesco et al. [28] 2015 84.7
Liao, Fangzhou et al. [23] 2019 87

Liu, Shuang et al. [32] 2017 78
Onishi, Yuya et al. [35] 2018 84.1

Tajbakhsh, Nima et al.(CNN) [20] 2017 77.6
Tajbakhsh, Nima et al.(MTANN) [20] 88.1

Wang, Shengping et al. [40] 2018 89.2
Wang, Yang et al. [25] 2019 90.6

(b)

Author Year Accuracy

Alakwaa, Wafaa et al. [27] 2017 86.6
Chen, Sihang et al. [22] 2019 87.5

Ciompi, Francesco et al. [29] 2017 79.5 *
Jakimovski, Goran et al. [30] 2019 99.6

Lakshmanaprabu, S.K. et al. [31] 2018 94.5
Liao, Fangzhou et al. [23] 2019 81.4
Liu, Xinglong et al. [33] 2017 90.3 *

Masood, Anum et al. [21] 2018 96.3
Nishio, Mizuho et al. [34] 2018 68

Onishi, Yuya et al. [35] 2018 81.7
Polat, Huseyin et al. [36] 2019 91.8

Qiang, Yan et al. [37] 2017 82.8
Rangaswamy et al. [38] 2019 96

Sori, Worku Jifara et al. [39] 2018 87.8
Wang, Shengping et al. [40] 2018 84

Wang, Yang et al. [25] 2019 87.3
Yuan, Jingjing et al. [41] 2017 93.9 *
Zhang, Chao et al. [42] 2019 92 *

(c)
Results marked with * are from studies where test dataset was different from training dataset.

4. Literature Search Results

A total of 26 studies were included in this review. Due to the heterogeneity of the results from
the different studies, it was not possible to perform a meta-analysis. Figure 1 summarizes the study
selection as a PRISMA flowchart. Ten studies investigated the use of deep learning for nodule detection
(Table 1), i.e., nodule or non-nodule, and 23 studies examined classification performance of nodules
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(Table 2). Seven studies reported results on both detection and classification performance. Table 3
shows the performance of the different algorithms for nodule classification when arranged after specific
types of performance measurements.

Three different deep learning algorithms were mentioned in the studies: convolutional neural
network (CNN), massive training artificial neural network (MTANN), and deep supervised denoising
autoencoder architecture based on extreme learning machine (SDAE-ELM). CNN and MTANN are both
end-to-end machine-learning algorithms, meaning that inputs are complete pixelated images and are
processed without known components of specific feature detection and trained using backpropagation.
MTANN outputs an image with the likelihood of it being a certain class, while CNN usually outputs
results in class categories instead of images [43]. The advantage of MTANN is fewer training cases
compared to CNN without compromising classification performance [20]. SDAE-ELM is a feature
vector deep learning algorithm combined with ELM, which is a feed-forward neural network [37]. The
advantages of stacked autoencoders include fewer training cases compared to, for example, CNN,
since stacked autoencoders are able to generate new images from the image characteristic feature
vectors [44].

5. Detection Only (3 Studies)

Setio et al. [18] and Liu et al. [24] both proposed CNN-based algorithms for pulmonary nodule
detection. Setio et al. [18] tested their CNN-based program (ConvNets) on cases from the Danish Lung
Cancer Screening Trial (DLCST), while Liu et al. [24] tested their algorithm on the Kaggle Data Science
Bowl 2017 (DSB17) [45]. A third study by Wang et al. [26] tested their faster region-CNN (RCNN)
based program on cases from an independent database and achieved 75.6% sensitivity on nodule
detection. All studies reached a sensitivity between 75.6–85.6%. Only Setio et al. [18] published an
accuracy rate, which was 94% (Table 1).

Setio et al. [18] trained and tested their algorithm on different types of datasets and achieved a
sensitivity of 76.5%, while Liu et al. [24] and Wang et al. [26] both tested and trained their algorithm on
the same type of dataset and achieved a sensitivity of 75.6% and 85.6%, respectively (Tables 1 and 3).

6. Classification Only (16 Studies)

For studies that only reported results on classification performance, five studies [34,35,37,40,42]
tested on local, independently obtained datasets. All studies provided reports of accuracy, which
ranged between 68–92%. Four of these studies [34,35,40,42] had deep learning architectures based on
CNN, while only Qiang et al. [37] used SDAE-ELM. For Nishio et al. [34], sensitivity and specificity
were calculated from values given in a confusion matrix for benign, primary cancer, and metastatic
cancer as 50.1% and 84.4%, 77.6% and 77.4%, and 74% and 88.2%, respectively. Onishi et al. [35] had an
overall classification accuracy of 81.7%. The rest of the studies [37,40,42] categorized their nodules into
malign or benign types and reached a sensitivity between 84.4–96% (Table 2).

Four studies [31–33,41] tested their CNN-based algorithm on the Early Lung Cancer Action
Program (ELCAP) public lung database [46]. Besides Liu et al. [32], who did not provide reports
on accuracy, the other studies [31,33,41] reached classification accuracies between 90.3–94.5%.
Both Liu et al. [33] and Yuan et al. [41] classified nodules into multiple categories and calculated the
proportion of a specific nodule type, e.g., the proportion of classified well-circumscribed nodules actually
well circumscribed, which was 95.0% for Liu et al. and 96.1% for Yuan et al. Lakshmanaprabu et al. [31]
tested whether different CT images were categorized correctly as to whether an image was normal or
contained malign or benign nodules; results are displayed in Table 2.

Three studies [27,36,39] reported classification results tested on the DSB17 dataset [45]. They
were all CNN-based algorithms testing whether a patient had cancer or no cancer without testing the
individual nodule. They reached accuracy levels between 86.6–91.8%. Other studies that reported
results on classification only tested on a variety of dataset types. All had algorithms based on CNN
architecture. Ciompi et al. (2015) [28] tested on CT scans from the Dutch–Belgian Randomized Lung
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Cancer Screening Trial (Dutch acronym; NELSON [47] and, in a later study [29], they tested for solid
(recall; 82.2%), non-solid (recall; 87.4%), part-solid (recall; 64.9%), calcified (recall; 82.8%), peri-fissural
(recall; 60.4%), and spiculated nodules (recall; 64.3%) on patients from the DLCST.

Jakimovski and Davcev [30] used an algorithm that was both trained and tested on the Image
and Data Archive of the University of South Carolina and Laboratory of Neuro Imaging (LONI
database) [48] and achieved an accuracy of 99.6%, a sensitivity of 99.9%, and specificity of 98.6% for
their best-performing algorithm. The algorithm from Jakimovski et al. [30] outputted a single decimal
value between 0.0 and 1.0, where 0.0 was not cancer and 1.0 was cancer. They converted the value to
a percentage and set a minimal threshold value at 73% before the image was categorized as cancer.
The output was matched to the original database results classified by medical personnel as cancerous
or not based on lung tissue biopsy [48]. Rangaswamy et al. [38] trained and tested three different
classifiers on the publicly available database of interstitial lung disease (ILD) [49] and categorized
the CT images into whether or not they contained malign or benign nodules. They found that CNN
achieved the best classification result compared to the other classifiers used and achieved an accuracy
of 96% (Table 2).

For the above-mentioned studies, which only investigated classification performance, four
studies [29,33,41,42] trained and tested on different types of datasets and achieved accuracies between
79.5–93.6%. The rest of the studies [27,28,30–32,34–40] trained and tested on the same types of datasets
and achieved accuracies between 68–99.6% (Tables 2 and 3).

7. Both Detection and Classification (7 Studies)

Five studies [17,19,20,22,25] had results on both classification and detection and tested on local,
independently obtained datasets. While all the studies tested a CNN architecture, Tajbakhsh and
Suzuki [20] tested both CNN- and MTANN-based algorithms. Three of the studies [17,19,22] measured
detection performance using sensitivity and they reached levels between 86.2–97% (Table 1). Tajbakhsh
and Suzuki [20] collected information of false positives when 100% sensitivity was achieved with
MTANN and CNN, which resulted in 2.7 and 22.7 false positives per patient, respectively. Detection
performance was measured by Wang et al. [25] using the kappa consistency coefficient and reached 0.94
when compared to human experts. On classification, four of the above-mentioned studies [19,20,22,25]
tested on dichotomous categories. Two of the studies [20,25] reported AUC values of 77.6% and 90.6%.
Chen et al. [22] achieved an overall classification accuracy of 87.5% when classifying adenocarcinomas
and benign nodules, and Suzuki [19] achieved 96% sensitivity when classifying malign nodules
(Table 2). Li et al. [17] tested the performance of characterizing nodules into three pulmonary nodule
categories: solid (sensitivity: 90.3%; specificity: 100%), part-solid (sensitivity: 55.5%; specificity: 93%),
and ground glass types (sensitivity: 100%; specificity: 96.1%).

The rest of the studies [21,23] tested on different types of datasets. Liao et al. [23] tested on data
from DSB17 [45], while Masood et al. [21] tested on four different types of datasets for pulmonary
nodule detection and on independently obtained data for classification performance. On detection,
they reached a sensitivity of 85.6% and 74.6% (Table 1). Liao et al. [23] classified data into dichotomous
categories, while Masood et al. [21] classified pulmonary nodules into four nodule stages. They reached
classification accuracies of 81.4% and 96.3%, respectively (Table 2).

On detection, two studies [17,19] tested and trained on different types of datasets and achieved
sensitivities of 86.2% and 97.0%, while the studies that trained and tested on the same types of
dataset [20–23,25] had sensitivities between 74.6–97% (Table 1). On classification, the two studies [17,19]
that trained and tested on different types of dataset achieved sensitivities of 96% and 100%, and the
studies that trained and tested on the same types of dataset [20–23,25] achieved sensitivities between
76.5–83.7% and accuracies between 81.4–96.3% (Tables 2 and 3).
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8. Discussion

We found a total of 26 studies that tested deep learning algorithms on datasets that were not
from the LIDC-IDRI database. Of these studies, 27% (n = 7) tested their algorithms on datasets that
were different from training datasets. We found that for testing diagnostic accuracy of pulmonary
nodules on CT scans, CNN was the preferred deep learning architecture, followed by MTANN and
deep SDAE-ELM.

Several other studies have trained and tested deep learning algorithms on the large, publicly
accessible LIDC-IDRI database [16] and, recently, a systematic review was published overviewing the
different studies that have tested on this database [50]. However, to review deep learning performance
it is also necessary to review studies that did not use the LIDC-IDRI, as CT scans may vary from region
to region. Hence, in this paper, only studies not using the LIDC-IDRI were included.

Algorithms with CNN architecture reached accuracies between 68–99.6% (Table 2) on classification
and 80.6–94% (Table 1) on detection. Compared to a previous study using CNN-based algorithms
on CT scans from the LIDC-IDRI [50], there was no observed difference in classification accuracy.
Sensitivity and specificity for classification found in this review were between 76.5–99.9% and 80.1–98.7%
(Table 2), respectively, which are also comparable to results of the CNN-based algorithms tested on
the LIDC-IDRI [50]. Only Li et al. [17], who trained their algorithm on the LIDC-IDRI but tested on
an independent dataset, had a noticeably low sensitivity result when classifying part-solid nodules
(55.5%), and their algorithm was generally outperformed by double reading by radiologists on all
categories (solid, part-solid, and ground glass).

MTANN reached a sensitivity of 97–100% on nodule detection (Table 1) and an AUC of 77.6–88.1%
on classification (Table 2). This was generally higher than the sensitivity results reached by CNN
for detection (74.6–97%) and classification AUC (78–90.6%). Some studies explored the difference in
detection and classification performance between MTANN and CNN, and generally found MTANN to
perform better than CNN [20,51]. One study [52] found that MTANN required much fewer training
data compared to CNN, which could lead to a faster implementation of deep learning technology in
a clinical setting, since fewer resources have to be allocated for training. Further investigations of
MTANN as a pulmonary nodule diagnosis system are required, since CNN is still the most frequently
used deep learning architecture for pulmonary nodule diagnosis [50].

We only found one study [37] that used an architecture other than MTANN or CNN. Qiang et al. [37]
proposed a lung nodule classification system based on deep SDAE-ELM. The results were comparable
to results obtained by CNN- and MTANN-based algorithms. To the best of our knowledge, no other
study has yet investigated the deep SDAE-ELM architecture for pulmonary nodule diagnostics in
CT images.

The two main issues with deep learning in imaging diagnostics are small training datasets
and overfitting. To prevent the algorithm from overfitting, e.g., diagnosing background noise to be
something of importance, more training data are required, which can be cumbersome in a clinical
setting [53]. Studies have therefore examined transferability in deep learning, and some studies suggest
that test data should be similar to training data for improved recognition results [15].

In our study, no tendency of reduced performance was observed for the algorithms trained and
tested on different datasets compared to the algorithms tested and trained on the same type of dataset.
When classification performance was measured using sensitivity (Table 3a), studies that used same
type of dataset for test and training ranged between 76.5–99.9%, while the two studies [19,42] that
tested and trained on different types of datasets had a sensitivity of 96%. We found no studies that
trained and tested on different types of datasets measuring performance in AUC (Table 3b). Accuracy
results for studies that tested and trained on same type of dataset were between 68–96.3%, while
accuracy results from studies that tested and trained on different types of datasets were between
79.5–93.9% (Table 3c). All studies reported sensitivity of detection. Sensitivity ranged from 74.697% for
studies tested and trained on same type of dataset, and from 76.6–97% for studies tested and trained
on different types of dataset (Table 1). Our findings were in accordance with previous studies and
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suggests that comparable results can be reached despite datasets being of different patient composition
and scan parameters, as long as they are similar in the underlying category and source type, e.g.,
lung nodule detection and CT [54]. Because of this tendency, studies have had success with training
their algorithms through pre-training [55], transfer learning [56], and/or fine-tuning [57] to bypass the
problem of a small training dataset, in addition to developing variations of algorithms that are based
on other deep learning technologies besides the popular CNN, e.g., MTANN and deep SDAE-ELM.

The heterogeneity of the included studies was a limitation of this review, since this prevented us
from performing a meta-analysis to statistically compare the performance of deep learning algorithms.
Thus, our study could not conclude whether there was a statistically significant difference in the
performance of detection and/or classification by deep learning when trained and tested on the same or
on different types of datasets. There may also be a risk of publication bias in these types of studies, since
it may not seem relevant for the authors to submit research for publication with low or negative results
of their algorithm. However, our study strengths include many studies from a variety of literature
search engines and a systematic literature search ensuring that no relevant studies were missed.

Several large companies have invested in researching deep learning in general image recognition
of day-to-day objects [58,59] and, recently, some vendors have moved towards automatic recognition
in clinical radiology [60]. With the increasing popularity of artificial intelligence emerging in healthcare
and the increasing workload for radiologists, it would be wise to implement deep learning in clinical
practice, but, to the best of our knowledge, there has not been any consistent, standardized incorporation
of deep learning into the workflow of clinical radiology for pulmonary nodules. The next step should
be to move forward with research on the clinical applications and use of deep learning in medical
imaging and day-to-day workflow.

9. Conclusions

Studies on deep learning found high levels of accuracy, sensitivity, and/or specificity in detecting
and/or classifying pulmonary nodules on CT scans that were not from the LIDC-IDRI database.
A tendency of comparable performance levels was observed regardless of whether the deep learning
algorithms were trained and tested on the same type of dataset or on different types of dataset. To aid
radiologists in their diagnostic work, artificial intelligence will become a valuable tool in the future,
providing more accurate and time-efficient detection and diagnosis of pulmonary nodules; however,
more studies and development are warranted.
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