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Abstract: High prevalence of left ventricular hypertrophy (LVH) and elevated oxidative stress are
associated with poor outcomes in chronic hemodialysis patients. Abnormal left ventricular geomеtry
and different geometric patterns play an important role as well. Our study analyzed the role of
oxidative stress on myocardial remodeling in these patients. Plasma malondialdehyde (MDA), protein
carbonyl (PC) content, and total antioxidative capacity (TAC) were investigated in 104 hemodialysis
patients together with transthoracic echocardiography. Compared to patients with normal ventricular
geometry, patients with LVH had increased MDA and PC plasma concentration. Multivariate analysis
demonstrated that protein carbonyls, as biomarkers of oxidative protein modification, were an
independent predictor of eccentric hypertrophy (eLVH), including higher LV end-diastolic diameter
and LV end-diastolic volume, (β = 0.32 and β = 0.28, p < 0.001 for both). The incidence of eLVH
increased progressively from the lowest to the highest baseline PC tertile (p < 0.001 for the trend)
and the subjects in the former group showed a 76% greater risk of developing eLVH compared
to their counterparts. After further adjustment for the potential mediators, PCs carried eLVH
odds (95% confidence interval (CI)) of 1.256 (0.998–1.514), per standard deviation increase. High
plasma protein carbonyls levels are a significant independent predictor of eccentric LVH in chronic
hemodialysis patients.
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1. Introduction

Left ventricular hypertrophy (LVH) is a common structural change in chronic kidney disease
patients with an estimated prevalence between 40% and 75%, dependent upon the chronic kidney
disease (CKD) stage [1,2] and represents a strong predictor of cardiovascular (CV) morbidity and
mortality. Next to the myocardial mass gain, abnormal left ventricular geomеtry is also linked to
poor outcome in chronic dialysis patients [3], and different geometric patterns (concentric or eccentric
hypertrophy and concentric remodeling) play an important role as well [4–7]. LVH in еnd-stagеrеnal
disеasеpatiеnts is mainly associated with hypеrtеnsiоn and anеmia [2,8]. Nevertheless, the presence of
an arteriovenous fistula, volume overload, high parathormone, and oxidative stress are also involved
in the pathogenesis of LVH in dialysis patients [9–12]. The occurrence of eccentric or concentric left

Diagnostics 2019, 9, 202; doi:10.3390/diagnostics9040202 www.mdpi.com/journal/diagnostics

http://www.mdpi.com/journal/diagnostics
http://www.mdpi.com
https://orcid.org/0000-0002-4944-1822
http://dx.doi.org/10.3390/diagnostics9040202
http://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/2075-4418/9/4/202?type=check_update&version=2


Diagnostics 2019, 9, 202 2 of 13

ventricular hypertrophy is influenced by differences in the ventricular wall strain and the type of
wall stress. In addition, variations between the two types of hypertrophic phenotype in relation to
gene and protein expression, signaling transduction pathways, and the release of the local hormones
was observed.

Oxidative stress, an imbalance between increased production and reduced clearance of
oxidants, has been associated with a number of chronic kidney disease and end-stage renal disease
complications [13–15]. Highly reactive oxygen species (ROS) oxidize lipids, proteins, carbohydrates,
and nucleic acids, leading to tissue damage and cell death.

Accumulation of ROS promotes vascular oxidative stress and progressive coronary atherosclerosis
in hemodialysis (HD) patients [16]. Moreover, free oxygen radicals may induce cardiomyocyte
hypertrophy, apoptosis, and cardiac remodeling [17,18] and are one of the key contributing determinants
of left ventricular mass in end-stage renal disease patients [19,20]. Therefore, oxidative stress is proposed
as a potential nontraditional cardiovascular risk factor in HD patients [21]. However, data regarding
the oxidative stress-related left ventricular remodeling pattern are still lacking.

Many of the previous studies concerning systemic oxidative stress in HD patients are based
on the measurement of plasma malondialdehyde (MDA) levels, which is the biomarker of lipid
peroxidation [22–24]. Still, under oxidative stress, proteins are also altered by ROS with the generation
of oxidized amino acids and protein carbonyl groups. Protein carbonyls are formed on protein side
chains when they are oxidized. Some data suggest that the rearrangement of cellular organelles from
oxidative protein modification might be responsible for the transformation from compensatory left
ventricular hypertrophy to ventricular dilation [25,26].

Finally, various antioxidant defense systems, both non-enzymatic and enzymatic are expected
to limit the damage caused by ROS production. However, these intrinsic antioxidant capacities
may become overwhelmed due to persistently high levels of ROS. Unfortunately, the vast majority
of published studies did not investigate the possible role of the antioxidative defense system in
cardiac hypertrophy.

Considering the high prevalence of LVH among chrоnic HD patiеnts, paralleled by elevated
oxidative stress linked to poor outcomes, our aim was to evaluate different left ventricular (LV)
geometric patterns in HD patiеnts and tоinvestigate thеrоlе оf оxidativеstrеss as a pоssiblеrisk factоr
for myоcardial rеmоdеling in these patiеnts.

2. Materials and Methods

Inclusion criteria were clinically stable patients aged 18 years or older on chronic maintenance
HD for more than 12 months who were able to give their written informed consent. Exclusion criteria
were any concomitant myocardial pathology that may confound hypertrophy (e.g., moderate–severe
cardiac valvular disease, acquired/inherited cardiomyopathy), history of myocardial infarction and
congestive heart failure in addition to a multisystemic disease, active infection, hepatitis of any form,
and a poor acoustic window with poor image quality for optimal visualization and assessment of
cardiac structures and function. We initially evaluated 145 patients, but after considering the exclusion
criteria, only 104 patients were included in the final analysis. The study was carried out in accordance
with the Declaration of Helsinki and approved by the local Ethics Committee.

Patients were receiving routine HD treatment using synthetic high-flux filters >1.6 m2. Duration
of dialysis (4–4.5 h) and blood and dialysate flow (500 mL/min) was prescribed to a Kt/V >1.3.
Blood samples were collected from all patients from the arteriovenous fistula before the start of
hemodialysis on the mid-dialysis day. Patients data (demography, anthropometrics, laboratory values,
and hemodynamics), and treatment-related characteristics (vascular access, dialysis duration, “dry”
weight) were collected. Interdialytic weight gain (IDWG) was calculated as the mean net ultrafiltration
(UF) of three consecutive dialysis sessions. The mean of three consecutive post-dialysis weights was
used to calculate “dry” weight.
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2.1. Echocardiogram

Echocardiographic measurements were conducted based on the criteria suggested by the American
Society of Cardiovascular Imaging and the European Echocardiography Association [27]. Transthoracic
echocardiography imaging was performed by an experienced cardiologist within 18–24 h after
conventional dialysis, using a General Electric Vivid 4 ultrasound machine with a broadband M5S-D
1.5–4.5 MHz transducer allowing M-mode and two-dimensional measurements. Left ventricular
end-diastole dimensions (LVEDD), end-systole dimensions (LVESD), the interventricular septum
thickness (IVST), and the posterior wall thickness (PWT) during diastole were measured at the level of
the mitral valve leaflet tips in the parasternal long-axis view by M-mode. From these measurements,
the left ventricular mass (LVM) was calculated according to the Devereux formula [28]. The LVM
index (LVMI) was calculated by dividing the LVM by body surface area (BSA) (normal values 95 g/m2

for women and 115 g/m2 for men) [27]. The sum of IVST and PWT was used as an estimate of left
ventricular wall thickness (LVWT). The left ventricular relative wall thickness (RWT) was calculated
by multiplying two times PWT divided by LVEDD. Using the parameters LVMI and RWT, four
classes of LV geometry were identified: normal geometry (normal LVMI and normal RWT), concentric
remodeling (normal LVMI and increased RWT), eccentric LVH (increased LVMI and normal RWT),
and concentric LVH (increased LVMI and increased RWT). In patients with LVH, the cutoff of RWT
was set at 0.42, whereby equal or <0.42 was defined as eLVH and >0.42 as concentric LVH (cLVH) [27].
Patterns of remodeling are shown in Figure 1.
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Figure 1. Patterns of cardiac remodeling according to relative wall thickness (RWT) and left ventricular
mass index (LVMI).

LV ejection fraction (LVEF) was computed by [LV end-diastolic volume (LVEDV) − LV end-systolic
volume (LVESV)]/LV end-diastolic volume (LVEDV) × 100%.

To clarify the role of oxidative stress on cardiac hypertrophy in HD patients, we investigated the
two markers of oxidative damage concurrently with antioxidative defense system and compared them
with echocardiographic indices of ventricular remodeling.

2.2. Measurement of Oxidative Stress Biomarkers

Plasma MDA was determined as a biomarker of oxidative stress-induced lipid peroxidation,
and protein carbonyls (PCs) as a marker of oxidative modification of proteins. The antioxidative
defense system was estimated by total antioxidative capacity (TAC). The MDA concentration was
determined according to Andreeva et al. [29] by the thiobarbituric acid reaction. Carbonyl content in
oxidatively modified proteins was measured by the Levine at al. method [30], and determination of
total antioxidant capacity was performed by the Koracevic et al. method [31].
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2.3. Statistical Analysis

Since there was no other similar study regarding the effects of protein carbonyls on myocardial
remodeling pattern, which could provide data to calculate sample size, we had to estimate the
minimal sample size per group (n = 12) based on medium standardized effect sizes (0.5) for a main
trial designed [32]. Descriptive statistics are summed as mean ± standard deviation or median
(interquartile range) and as frequencies or percentages with four types of LV geometric patterns.
Baseline demographic, clinical, biochemical, and echocardiogram parameters were compared across
four categories of LV geometry using one-way analysis of variance (ANOVA) test for continuous
variables and χ2 test for categorical data. When results suggested differences, pairwise differences
were assessed by Bonferroni’s post hoc test. Correlation analyses were performed using a Pearson
correlation test.

A multivariable logistic regression model was applied to examine the independent relationship
between demographic and clinical data and the type of LVH. Variables were selected for the
multivariable model if they were related to the type of LVH in the univariable regression model, using
a cut-off value of p < 0.2. Finally, patients were stratified into tertiles following the distribution of MDA
and PCs to estimate unadjusted and multivariable-adjusted odds ratios (ORs) of LV geometric patterns.
The area under the curve (AUC) was calculated by the receiver operating characteristic (ROC) analysis
to estimate the diagnostic ability of MDA and PCs to identify abnormal LV geometry. All statistical
analysis was performed using the statistical package for social sciences (SPSS) software version 20.0
(SPSS, Chicago, IL, USA).

3. Results

One hundred and four patients (64 males and 40 females, 63.1 ± 13.3 years old with dialysis
vintage of 72.7 ± 52.4 months) were included in the final analysis.

Left ventricular hypertrophy was present in 78/104 (75%) patients. The most common type of
LV geometry was eccentric LVH (eLVH) (32.14%), followed by concentric LVH (cLVH) (31.7%), and
concentric remodeling (CR) (13.5%). Normal LV geometry (NG) was found in only twelve patients
(11.5%). Counting only patients with LVH, 57% had eLVH, and 43% had cLVH. Clinical and laboratory
characteristics of patients with four different LV geometric patterns are presented in Table 1.

Differences between the patients’ groups were found for systolic (sBP) and diastolic (dBP) blood
pressure, hemoglobin, IDWG, and LDL cholesterol. Age, gender, body mass index (BMI), HD vintage,
serum albumin level, C-reactive protein (CRP), Kt/V were similar between the groups.

Patients with left ventricular hypertrophy had elevated oxidative stress measured by MDA, PCs,
and TAC, regardless of LVH type. As shown in Figure 2a, mean serum MDA levels in patients with
concentric and eccentric hypertrophy were higher than in those with normal geometry (13.64 ± 3.93
and 11.01 ± 3.56 vs. 6.46 ± 2.01 µmol/L respectively, p < 0.001). Additionally, we noted a statistically
significant difference between MDA levels in cLVH, and eLVH patients (p < 0.05).

Similarly, as shown in Figure 2b, serum protein carbonyls levels were significantly higher in
patients with cLVH and eLVH compared to patients with the NG (3.18 ± 1.16 and 4.26 ± 1.17 vs. 1.8 ±
0.67 mmol/g of protein, p < 0.001, respectively). A significant difference in PC concentration between
cLVH and eLVH (p = 0.005) was also observed.

As eccentric hypertrophy is largely due to volume overload, we further examined the correlation
between the protein carbonyl level and IDWG and found a significant positive correlation (r = 0.234,
r = 0.017).

Additionally, TAC was significantly related to abnormal left ventricular geometry (Figure 2c).
In all abnormal LV groups, TAC was a significantly lower (2.23 ± 0.42, 2.38 ± 0.28, and 2.38 ± 0.2 for
eLVH, cLVH, and CR group compared to 2.90 ± 0.32 for NG patients, p < 0.001).
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Table 1. Demographic, clinical, and echocardiographic characteristics of the study population according
to the left ventricular geometry.

Parameters NG
n = 12

CR
n = 14

cLVH
n = 33

eLVH
n = 45

Age (years) 51.3 ± 7.4 56.7 ± 24.2 61.1 ± 15.3 60.0 ± 12.7
Gender (f/m) 4/8 4/10 15/18 17/28

HD vintage (months) 52.7 ± 47.3 56.7 ± 55.2 53.5 ± 45.6 57.1 ± 43.8
Body mass index (kg/m2) 22.7 ± 1.6 22.1 ± 3.1 23.5 ± 3.6 23.7 ± 3.5

Kt/V 1.35 ± 0.6 1.39 ± 0.8 1.33 ± 0.7 1.36 ± 0.7
Vascular access (AV fistula) 10 (83%) 12 (75%) 25 (78%) 38 (84%)

IDWG (kg) 2.3 ± 1.1 2.8 ± 1.0 2.6 ± 0.9 3.1 ± 0.8 a

sBP (mmHg) 126.7 ± 21.5 135.0 ± 14.0 150.5 ± 15.6 a,c 141.8 ± 20.0 d

dBP (mmHg) 63.6 ± 13.2 65.6 ± 10.0 73.2 ± 7.8 d 72.0 ± 9.5 d

Hemoglobin (g/dL) 11.7 ± 2.0 11.0 ± 1.4 10.3 ± 1.5 a,e 11.2 ± 1.0
Serum albumin (g/dL) 37.3 ± 0.6 34.7 ± 5.1 31.8 ± 5.5 31.7 ± 6.0

CRP (mg/L) 3.3 ± 2.4 3.9 ± 0.7 4.9 ± 0.5 4.1 ± 1.3
Cholesterol (mmol/L) 4.4 ± 0.9 4.16 ± 0.9 4.6 ± 1.3 4.8 ± 1.2

LDL–cholesterol (mmol/L) 1.7 ± 0.2 2.4 ± 0.8 2.7 ± 1.1 a 3.3 ± 0.9 a

HDL–cholesterol (mmol/L) 1.1 ± 0.4 1.2 ± 0.6 1.1 ± 0.1 1.1 ± 0.4
Triglycerides (mmol/L) 2.6 ± 0.9 2.1 ± 1.7 2.0 ± 1.2 2.1 ± 1.3

LVEDD (cm) 4.54 ± 0.36 4.24 ± 0.40 4.86 ± 0.41 b,c 5.17 ± 0.49 c,e

IVST (cm) 0.85 ± 0.17 0.96 ± 0.11 1.34 ± 0.14 b,c,e 1.25 ± 0.13 b,c

PWT (cm) 0.80 ± 0.11 0.92 ± 0.09 1.41 ± 0.16 b,c,f 1.15 ± 0.24.c

LVWT (cm) 1.75 ± 0.39 2.12 ± 0.27 b 2.83 ± 0.22 b,c,f 2.46 ± 0.41 b,c

RWT (cm) 0.30 (0.25–0.37) 0.44 (0.43–0.46) b 0.44 (0.43–0.52) b,c,f 0.36 (0.28–0.41) b,c

LVM (g) 121.62 (75.84–188.02) 129.38 (85.96–200.78) b 276.74 (204.79–373.13) b,c,f 249.96 (153.27–340.78) b,c

LVMI (g/m2) 67.73 (44.17–101.74) 72.70 (49.60–104.46) b 167.47 (138.50–238.37) b,c 154.07 (130.24–200.07) b,c

LVEDV (mL) 99.42 ± 8.16 92.86 ± 8.85 106.34 ± 8.99 f 113.04 ± 10.84 b,c

LVESV (mL) 37.33 ± 11.06 26.34 ± 5.02 a 43.26 ± 11.01 a,b 37.32 ± 10.84 a,b,c

LVEF (%) 63 (57–70) 57 (51–60) b 60 (55–68) b 61 (57–69)b

Data are expressed as mean ± standard deviation or median (interquartile range) and numbers (proportion) as
appropriate. CRP: C-reactive protein; IDWG: interdialytic weight gain; NG: normal left ventricle geometry;
CR: concentric remodeling; cLVH: concentric left ventricular hypertrophy; eLVH: eccentric left ventricular
hypertrophy; HD: hemodialysis; AV fistula: arteriovenous fistula; sBP: systolic blood pressure; dBP: diastolic blood
pressure; LVEDD: left ventricular end-diastolic diameter; IVST: interventricular septal thickness; PWT: posterior wall
thickness; LVWT: LV wall thickness; RWT: relative wall thickness; LVM: left ventricular mass; LVMI: left ventricular
mass index; LVEDV: left ventricular end-diastolic volume; LVESV: left ventricular end-systolic volume; LVEF: left
ventricular ejection fraction; LVH: left ventricular hypertrophy. a Statistically significant difference compared to
NG group of patients (p < 0.05); b Statistically significant difference compared to NG group of patients (p < 0.001);
c Statistically significant difference compared to CR group of patients (p < 0.001); d Statistically significant difference
compared to CR group of patients (p < 0.05); e Statistically significant difference compared to group eLVH group of
patients (p < 0.05); f Statistically significant difference compared to eLVH group of patients (p < 0.001).
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Figure 2. (a) Differences in malondialdehyde levels over four groups of patients according to the left
ventricular geometry pattern. * p < 0.001 compared to NG, # p < 0.05 compared to cLVH; (b) Differences
in protein carbonyl levels over four groups according to the left ventricular geometry pattern. * p < 0.001
compared to NG, ‡ p = 0.005 compared to cLVH; (c) Differences in total antioxidative capacity levels
over four groups according to the left ventricular geometry pattern. * p < 0.001 compared to CR, cLVH,
and eLVH. Abbreviations: NG: normal geometry; CR: concentric remodeling; cLVH: concentric left
ventricular hypertrophy; eLVH: eccentric left ventricular hypertrophy.

When indices of cardiac remodeling were correlated with the markers of lipid peroxidation,
no relations were found between MDA levels and the indices of concentric (LVWT, RWT, and LVMI)
nor eccentric hypertrophy (LVEDD and LVEDV). However, protein carbonyls showed a significant
positive correlation to LVMI, LVEDD, and LVEDV (p < 0.001), as shown in Figure 3A–C, and, to a lesser
extent, to LVWT (p < 0.05).

Finally, TAC showed a significant, negative correlation with LVMI (r = −0.300, p = 0.002), LVEDD
(r = −0.271, p = 0.005), LVEDV (r = −0.270, p = 0.006), in addition to LVWT (r = −0.226, p = 0.022).
TAC did not correlate to RWT.
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Figure 3. (A–C) Correlation between PC plasma levels and the indices of eccentric hypertrophy (LVMI,
LVEDD, and LVEDV). Abbreviations: PC: protein carbonyl; LVMI: left ventricular mass index; LVEDD:
left ventricular end-diastolic diameter; LVEDV: left ventricular end-diastolic volume.

In unadjusted linear regression analyses, PC significantly correlates with LVEDD and LVEDV (p < 0.001)
while MDA correlation with these parameters was modest (p < 0.05). After multivariable adjustments for
covariates, serum protein carbonyls remained statistically significant as a prognostic factor for eccentric
LVH type, including greater LVEDD and LVEDV (β = 0.32 and β = 0.28, p < 0.001 for both) (Table 2).
TAC negatively correlated with both concentric and eccentric LVH phenotypes (p < 0.05 in both cases).

As shown in Table 3, the incidence of eccentric LVH increased progressively from the lowest
(≤3.49 mmol/g of protein) to intermediate (3.50–5.85 mmol/g of protein) and highest baseline PC tertile
(>5.85 mmol/g of protein, p < 0.001 for the trend). The predictive role of PCs was anything but marginal,
as 2.35 mmol/g of protein of PC increase was associated with a 45% increased risk of eLVH. This negative
trend was even more clear when eLVH incidence in the highest PC tertile was compared to that in the
lowest tertile, as subjects in the former group exhibited a 76% greater risk of developing eLVH compared
to their counterparts. After further adjustment for the potential mediators (Model 2), PCs carried eccentric
LVH odds (95% CI) of 1.256 (0.998–1.514), per standard deviation increase. Tertile analysis of the PCs and
eccentric LVH showed excess risk with the highest tertile (fully adjusted OR: 1.517, 95% CI: 1.287–1.747).

Table 2. Multiple regression models of LVMI, LVWT, RWT, LVEDD, and LVEDV.

β p

Dependent variable: LVMI a R2 = 0.57; p < 0.001

Independent variable

MDA 0.266 0.011
PC 0.328 <0.001

TAC −0.177 0.043
HD vintage 0.231 0.010
Hemoglobin −0.337 <0.001

Dependent variable: LVWT b R2 = 0.61; p < 0.001

Independent variable

PC 0.288 0.013
TAC 0.266 0.011
MDA 0.038 0.22

Hemoglobin −0.31 0.002

Dependent variable: RWT c R2 = 0.53; p < 0.001

Independent variable

IDWG −0.22 0.002

MDA 0.04 0.072

PC 0.19 0.003

Hgb −0.33 0.002

sBP 0.27 0.001
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Table 2. Cont.

β p

Dependent variable: LVEDV e R2 = 0.48; p < 0.001

Independent variable

PC 0.28 <0.001
TAC 0.12 0.04

IDWG −0.10 0.02

Data are expressed as standardized regression coefficients (b) and p values. a Out of the model: IDWG, LDL—cholesterol,
gender, sBP, dPB, age, albumin, calcium; b Out of the model: LDL—cholesterol, gender, IDWG, HD vintage, sBP, dPB,
age, albumin, calcium; c Out of the model: LDL—cholesterol, TAC, gender, HD vintage, dPB, age, albumin, calcium,
kt/V; d Out of the model: LDL—cholesterol, gender, HD vintage, sBP, dPB, age, albumin, calcium, Hgb; e Out of the
model: LDL—cholesterol, MDA, gender, HD vintage, sBP, dPB, age, albumins, calcium, Hgb.

Table 3. Odds ratio of two different LVH patterns according to continuous or tertiles of PCs.

Variables
Eccentric LVH Concentric LVH

Model 1 Model 2 Model 1 Model 2

PC (Per 1 SD increase) 1.344 (1.203–1.503 a 1.256 (0.998–1.514) a 1.321(1.285–1.408) a 1.094 (0.875–2.181) c

Tertile of PC

T1 (≤3.49) 1.000 (reference) 1.000 (reference) 1.000 (reference) 1.000 (reference)
T2 (3.50–5.85) 1.446 (1.277–1.615) a 1.366 (1.218–1.533) a 1.421 (1.277–1603) a 1.248 (1.180–1.390) c

T3 (>5.85) 1.766 (1.510–2.029) a 1.517 (1.287–1.747) a 1688 (1.492–1884) a 1.344 (1.211–1.507) c

p for trend <0.001 <0.001 <0.05 0.04

Abbreviations: OR: odds ratio; MDA: malondialdehyde; PC: protein carbonyl; SD: standard deviation. Model 1:
unadjusted; Model 2: adjusted for LDL—cholesterol, gender, HD vintage, sBP, dPB, age, albumins, calcium, Hgb,
IDWG, TAC. a p < 0.001, c p < 0.05.

Analysis of the usefulness of plasma PC concentration in the prediction of eccentric LVH yielded
an area under the ROC curve of 0.84 (95% confidence interval (CI) 0.77–0.92; p < 0.001) (Figure 4).
A cutoff of 3.35 mmol/g of protein had a sensitivity of 77.8% and specificity of 81.4%.
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4. Discussion

We found that end stage renal disease (ESRD) was associated with an alarmingly high prevalence of
cardiac remodeling and LVH. In our study, 88.6% of the patients had an abnormal left ventricular chamber,
and 75% of them had LVH. These data correlate with the data publicized by several authors [33–35].
Most studies [36–38], but not all [39], reported that cLVH predominates in non-dialysis-dependent CKD,
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while the eccentric pattern is the most common in HD patients [40,41]. These abnormal left ventricular
geometric patterns have notable prognostic significance and may predict the occurrence of cardiac failure
and other cardiovascular diseases.

Emerging data suggest that chronic hemodialysis patients experience heightened oxidative
and “carbonyl” stress, which have been proposed as the critical proof linking uremia to cardiovascular
complications [42–45]. Some authors identified redox-dependent changes in cellular proteins and signaling
pathways as one of the critical factors involved in left ventricular remodeling and hypertrophy [46–49].

As the intensification of oxidative stress poses a risk of myocardial mass gain, echocardiographic
indices of cardiac remodeling were correlated with biomarkers of oxidative stress.

We showed that oxidative damage of proteins has a significant role in the pathogenesis of eccentric
left ventricular hypertrophy. As all four groups of patients had comparable CRP, iron, albumin, and
uric acid and all were on bicarbonate dialysis, observed differences between them in terms of oxidative
stress and protein carbonyl content could not be linked to varying degrees of inflammation.

Exposure of proteins to ROS leads to alteration of amino acid residues, protein damage, and an
increase in protein carbonyl groups. Massive carbonyl stress affects circulating, cellular, and tissue
proteins [13], resulting in their dysfunction. Most protein modifications are irreversible, and oxidative
modification in protein structure can generate a broad range of downstream functional consequences as they
may cause inhibition of both enzymatic and binding activities and increased susceptibility to aggregation
and proteolysis. Association between ROS and indices of ventricular remodeling proves that oxidative
damage of proteins plays an influential role in structural changes of the myocardium in hemodialysis
patients. Several studies showed that remodeling of cellular organelles from oxidative protein modification
might be responsible for the shift from compensatory hypertrophy to ventricular dilation [26,50].

Most of our patients have eccentric hypertrophy, which may indicate poor volume control.
As expected, interdialytic weight gain, one of the putative determinants of fluid balance, showed a
positive relationship with eLVH. However, the probability of eccentric LVH only modestly increased in
the presence of high interdialytic weight gain. After taking into account a number of confounders,
protein carbonyls emerged as the most powerful predictor of eccentric LVH.

As previously stated, the presence of protein carbonyl content in patients with eLVH is undoubtedly
the consequence of oxidative modifications of proteins. However, based on literature data, it is difficult
to conclude which oxidative pathway is responsible for triggering eccentric geometric remodeling of
the left ventricle. In many cases, oxidatively modified proteins and advanced glycation end products
(AGE) share structural homology; thus, oxidatively modified proteins may serve as candidate ligands
for AGE receptors (RAGE) [51].

Conditions with elevated carbonyl stress increase the concentration of RAGE ligand. RAGE
signaling activates pathways related to cardiac remodeling [52,53] by activating the TGF-βpathway [54–56].
TGF-β induces fibroblast activation and differentiation into myofibroblasts that secrete extracellular matrix
proteins and collagen type I, which, in turn, cause eccentric hypertrophy and fibrosis [57].

Finally, the failure to boost the endogenous antioxidant system additionally generated oxidative
stress in our study group. Endogenous antioxidants serve as “sacrificial” substances in plasma and
extravascular spaces by blocking chain reactions of free radical production. Our study demonstrated
that antioxidant defense systems, measured by TAC, were severely affected in patients with abnormal
LV geometry probably due to the fact that these systems were overburdened under the state of
persistently high levels of ROS in HD patients.

Protein carbonyls have been studied in pediatric patients [58] and for predicting cardiac events
in type 2 diabetic patients [59]. In a recent study, carbonyl residues in poorly controlled type 2 diabetes
mellitus were positively associated with the cardiovascular risk score [60]. However, to date, only a few
published studies evaluated oxidative protein modification products in the light of LVH. Radovanovic et al.
found some predictive potentials of protein carbonyls on cardiac remodeling in heart failure patients [61].
To our best knowledge, protein carbonyls had never been studied for the prediction of LVH or cardiac
remodeling patterns in end-stage renal disease patients. As we found positive results concerning the
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role of protein carbonyls in predicting eccentric LVH in HD patients, future studies and clinical trials are
needed to confirm the potential clinical importance of these findings.

Our study has certain limitations. First, this is a single-center study with a relatively small sample
size; second, we did not compare MDA and PC levels to a non-dialysis population with cLVH and
eLVH. We also lack data on diastolic function as we did not perform mitral inflow E- and A-wave
velocities. Finally, our findings should be interpreted in light of the cross-sectional design, which limits
our ability to assume causation.

5. Conclusions

Data on the prognostic potential of biomarkers of oxidative stress on cardiac remodeling are still
lacking. The results obtained in this investigation confirmed that oxidative stress parameters might be
related to the prognosis of the morphological alterations of LV geometry. High plasma protein carbonyls
were associated with increased risk of eccentric LVH in a dose–response fashion. The recognition of the
pathophysiological mechanisms which are associated with the cardiac hypertrophy and remodeling
process is fundamental for the development of new treatment strategies, primarily because the mortality
rates related to cardiac remodeling prevail.
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