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Abstract: Breast cancer is one of the major health issues across the world. In this study, a new 
computer-aided detection (CAD) system is introduced. First, the mammogram images were 
enhanced to increase the contrast. Second, the pectoral muscle was eliminated and the breast was 
suppressed from the mammogram. Afterward, some statistical features were extracted. Next, k-
nearest neighbor (k-NN) and decision trees classifiers were used to classify the normal and 
abnormal lesions. Moreover, multiple classifier systems (MCS) was constructed as it usually 
improves the classification results. The MCS has two structures, cascaded and parallel structures. 
Finally, two wrapper feature selection (FS) approaches were applied to identify those features, 
which influence classification accuracy. The two data sets (1) the mammographic image analysis 
society digital mammogram database (MIAS) and (2) the digital mammography dream challenge 
were combined together to test the CAD system proposed. The highest accuracy achieved with the 
proposed CAD system before FS was 99.7% using the Adaboosting of the J48 decision tree classifiers. 
The highest accuracy after FS was 100 %, which was achieved with k-NN classifier. Moreover, the 
area under the curve (AUC) of the receiver operating characteristic (ROC) curve was equal to 1.0. 
The results showed that the proposed CAD system was able to accurately classify normal and 
abnormal lesions in mammogram samples.  

Keywords: the computer-aided detection; the pectoral muscle removal; the statistical features; the 
decision trees; the k-nearest neighbor; feature selection.  

 

1. Introduction 

Nowadays, breast cancer is one of the most common cancers in women. According to the World 
Health Organization (WHO), the number of cancer cases expected in 2025 will be 19.3 million. 
Although the rates of women with breast cancer are increasing tremendously, recently death rates 
from breast cancer have reduced. This is due to the advances made in medical imaging, image 
processing and machine learning techniques, which have enabled radiologists to identify cancer in 
the early stages. Therefore, the early detection of breast cancer is essential. The early detection of 
breast cancer can improve the quality of diagnosis and follow up planning. It also reduces the death 
rates among women, as according to statistics, 96% of cancers are curable in the initial stages.  

Mammography is a widely accepted method to diagnose breast cancer at its early stage [1]. 
Mammogram images have different views when scanned from different angles. Among these views 
are the mediolateral-oblique view (MLO) and the craniocaudal (CC) view. The MLO view of the 
breast projects more breast tissue than that of the CC view. This is because of the slope of the chest 
wall. Several signs are commonly used to detect breast cancer from mammograms. Among them are 
the masses, microcalcifications (MCs), and architectural distortions. The former two symptoms are 
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very important indicators of the tumor in the primary stage. The architectural distortion indicators 
of breast cancer have been found to be less significant than masses and MCs [2]. 

Computer-aided detection systems (CAD) using machine learning techniques can be used for 
mammogram images for the early detection of breast abnormalities, diagnosis and classification of 
tumors. The CAD may assist radiologists in medical diagnoses with great accuracy and reliability. 
Moreover, CAD may prevent human-based diagnostic errors that are caused by visual fatigue and 
the effort made during an examination.  

A CAD system consists of several modules which are image enhancement, image segmentation, 
feature extraction, feature selection (FS), and feature classification.  

Recently, several researchers studied and proposed methods for breast abnormality 
classification in mammography images.  

Image segmentation is an important step in the CAD system. The presence of the pectoral 
muscle, which is located at the upper right or left side of the breast, may disturb the detection of 
breast cancer. This is because it appears with a similar density as the dense tissues in the mammogram 
image. Therefore, several authors have tried to eliminate pectoral muscle and segment the breast 
from the mammogram with several segmentation techniques. Alam et al. [3] used the k-means 
clustering to eliminate the triangular area of the pectoral muscle. Abdellatif et al. [4] used the 
normalized graph cuts to delineate the pectoral muscle. Nagi et al. [5] used the morphological 
preprocessing and the seeded region growing (SRG) algorithm to remove the noise, suppress the 
artifacts and remove the pectoral muscle. Shah [6] used a triangular mask to the upper left corner of 
the mammogram for pectoral muscle detection and suppression. 

For the feature extraction and classification steps, the following authors used some popular 
techniques. Sharkas et al. [7] used the discrete wavelet transform (DWT), the contourlet transform 
and the principal component analysis (PCA) methods for the feature extraction. The system was able 
to detect and classify normal and abnormal tissues in addition to benign and malignant MC tumors 
of the digital database for screening mammography (DDSM) [8]. The achieved rate was almost 98 %. 
Ragab et al. [9] used the DWT as a feature extraction technique to detect mass abnormalities in the 
breast. In addition, a comparison between support vector machines (SVM) and artificial neural 
networks (ANN) for classifying normal, abnormal tissues, benign, and malignant MCs tumors was 
introduced. The authors achieved a classification accuracy of 96% and 98% for ANN and SVM, 
respectively. Gunawan [10] presented a new method, which depends on wavelet transform to 
calculate statistical features; the classification accuracy was 96%. Al Sharkawy, M. et al. [11] detected 
mass lesions using the DWT and SVM and the rate achieved was 92%. The authors in [12] extracted 
some statistical features such as the mean, variance, range, standard deviation, and entropy from the 
mammogram. They performed their experiments on 15 samples (5 normal, 5 benign, and 5 malignant 
cases) extracted from the mammographic image analysis society digital mammogram database 
(MIAS) [13]. They classified the samples according to the pixel intensity statistical feature [12]. Fu et 
al. [14] extracted 61 features from both the spatial domain and spectral domain. Beura et al. [15] used 
the gray level co-occurrence matrix (GLCM) and DWT to extract the texture features from the region 
of interest (ROI) image. Pawar and Talbar [16] used a wrapper method for feature selection. The 
features were extracted using the wavelet co-occurrence features from the four decomposition levels. 
Mohanty et al. [17] used the contourlet transform to extract the features from cropped mammogram 
ROI images. 

Furthermore, feature selection (FS) is an important process in machine learning. It is widely used 
in medical applications to reduce the dimensionality of the dataset and remove redundant and 
irrelevant features. Further, FS selects only the features, which can influence the classification results 
of a predictive model. Several FS techniques have been studied and proposed for breast cancer 
classification tasks. Fu et al. [14] used a sequential forward search (SFS) algorithm which was used 
followed by SVM and general regression neural network (GRNN) classifiers. After selecting the most 
relevant features, the reported technique achieved an area under the curve (AUC) of 0.9800 and 
0.9780 for SVM and GRNN, respectively. Beura et al. [15] performed feature selection using two 
simple filter methods namely, the t-test and F-test to get the relevant features. Moreover, the back 
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propagation neural network (BPNN) was used as a classifier. The accuracy obtained for the two 
standard datasets MIAS [13] and DDSM [8] were 98.0% and 98.8%, respectively. Pawar and Talbar 
[16] proposed a genetic fuzzy FS approach which results in an accuracy of 89.47%. Mohanty et al. [17] 
proposed an FS algorithm named forest optimization. The different classifiers such as SVM, k-nearest 
neighbor (k-NN), Naïve Bayes, and C4.5 were used to classify normal and abnormal mammogram 
lesions. The highest accuracy achieved was 99.08 % for the C4.5 classifier using the DDSM dataset. 
The authors used the MIAS dataset as well and achieved an accuracy of 97.86% for the Naïve Bayes 
classifier [17].  

From the literature study, it was noticed that the pectoral muscle removal, feature extraction, 
selection, and classification are the key modules to increase the accuracy of a CAD system. The 
literature focused on using several datasets separately to perform a CAD system. To the authors’ own 
knowledge, no one has tried combining more than one dataset to construct a CAD system. In 
addition, most research has focused on using individual classifiers to construct a CAD system. In 
addition, the effect of using multiple classifier systems with different structures combined with 
feature selection on classification accuracy was not extensively studied.  

In this paper, a new CAD system to classify normal and abnormal mass lesions from 
mammogram images is presented. The paper focuses on combining two common datasets to 
construct a CAD system. It uses individual classifiers for the classification stage. In addition, it uses 
ensemble classifiers and compares the performances of these ensemble classifiers with the 
performance of individual classifiers. In addition, the paper performs an augmentation process to 
increase the size of the datasets and attempts to improve classification results. The proposed CAD 
system consists of four steps: image enhancement, segmentation, feature extraction, and 
classification. A suggested modification to the CAD system is introduced by adding feature selection 
before classification to improve accuracy. In the image enhancement step, the images were enhanced 
using the adaptive contrast enhancement technique. In the segmentation step, the pectoral muscle 
was eliminated and the breast was suppressed from any artifacts. Afterward, in the feature extraction 
step, some statistical features were extracted. Next, the classification step was carried out using 
individual classifiers such as the k-NN, J48 decision tree (DT), random forest (RF) DT, and random 
tree (RT) DT. Additionally, several multiple classifier systems (MCSs) were constructed. It is noted 
that MCS usually outperform individual classifiers. For this reason, several types of MCS such as 
Adaboosted and bagged k-NN, J48 DT, RF DT, and RT DT classifiers were developed and their 
performances were compared with their individual classifiers. Moreover, an MCS was built using a 
combination of J48 DT, RF DT, and RT DT classifiers fused together using averaging fusion method. 
By attempting to increase the classification accuracy, two wrapper FS approaches based on best first 
and random search strategies were applied to the extracted features in order to select those features 
that improve the classification accuracy.  

The paper is organized as follows: Section 2 describes the CAD system, section 3 shows the 
experimental setup and section 4 shows the computed results of the technique. A discussion of the 
suggested technique is presented in section 5, and finally, the work is concluded in section 6. 

2. Methodology 

As stated previously, a CAD system consists of several modules, which are (1) image 
enhancement, (2) image segmentation, (3) feature extraction, (4) feature selection (FS), (5) 
classification, and (6) an evaluation of the classifiers [18,19]. This proposed CAD system enhances 
images using a contrast enhancement method named contrast-limited adaptive histogram 
equalization (CLAHE) [20]. Afterward, it removes the pectoral muscle and suppresses the breast from 
any artifacts in the mammogram. Next, some statistical features are extracted and used to construct 
several individual and ensemble classification models. Finally, two wrapper feature selection 
techniques were used to select those features that improve the classification accuracy of both the 
individual classifiers and ensemble classifiers. The flow chart of the proposed CAD system used in 
this work is illustrated in Figure 1.  
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Figure 1. The block diagram of the computer-aided detection (CAD) system used. 

2.1. Image Enhancement 

Image enhancement in this context means the processing of the images to increase their contrast 
and suppress noise in order to aid radiologists in detecting the abnormalities. There are many image 
enhancement techniques and among them is the adaptive contrast enhancement method (AHE). The 
AHE technique is capable of improving local contrast and bringing out more details in the image. It 
is an excellent contrast enhancement method for both natural and medical images [21,22]. In this 
paper, the contrast-limited adaptive histogram equalization method (CLAHE) which is a type of AHE 
was used to improve the contrast of images [21,22]. An enhanced image using CLAHE is shown in 
Figure 2.  

The CLAHE algorithm can be summarized as follows; [20] 
1. Divide the original image into contextual regions. 
2. Obtain a local histogram for each pixel. 
3. Limit this histogram based on the clip level. 
4. Redistribute the histogram using binary search. 
5. Obtain the enhanced pixel value by histogram integration.  

Mammogram Image 

CLAHE Enhancement 

Suppression of Artifacts 

and Pectoral Muscle 

Statistical Features Extraction  

Classification  

k-NN  J48 DT  RF DT  RT DT  

Feature Selection   
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Figure 2. (a) Original abnormal mass case extracted from the Mammographic Image Analysis Society 
(MIAS) dataset [13] and (b) Enhanced image using contrast-limited adaptive histogram equalization 
method (CLAHE).  

2.2. Image Segmentation 

Image segmentation is used to divide an image into parts having similar features and properties. 
The main aim of segmentation is simplification, to represent the image in an easy analyzable way. In 
this paper, the region of interest (ROI) was extracted from the original mammogram image by 
suppressing the whole breast excluding the pectoral muscle and any other artifacts. Pectoral muscles 
are the triangle shape region located in one side of the MLO view of the mammogram either at the 
left or at the right top corner. The pectoral muscles appear approximately with a similar density as 
the dense tissues in the mammogram image. Therefore, removing the pectoral muscle plays an 
important role in detecting the tumor cell precisely.  

The steps for the ROI segmentation can be summarized as follows:  

1. Orient all the mammogram samples in the same direction. This step is done to avoid the 
situation of applying different methods for the left and the right-oriented MLO 
mammograms. Therefore, flip all the RMLO view to look like the LMLO view samples as 
an example.  

2. Eliminate the mammogram image from any radiopaque artifacts, such as labels. This is 
performed by using thresholding and morphological operations [5]. A global threshold 
with a value of 18 was found to be the most suitable threshold for transforming the 
grayscale images into binary (0,1) format [5]. Figure 3 shows the mammogram image with 
artifacts suppression. 

3. Remove the pectoral muscle using the seeded region growing (SRG) technique [5], [23]. 
The SRG performs image segmentation with respect to a set of points, known as seeds [24]. 

Figure 4 shows the mammogram image after removing (blacking) the pectoral muscle. 
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Figure 3. (a) Original enhanced abnormal mass case extracted from MIAS dataset [13] and (b) 
Suppressed image from artifacts. 

 

Figure 4. (a) Original enhanced abnormal mass case extracted from MIAS dataset [13] and (b) Pectoral 
muscle removal. 

2.3. Feature Extraction 

In this step, each image was divided into blocks of size 16 × 16. Afterward, some statistical 
features were calculated from each block of an image in the spatial domain. Next, the mean of these 
statistical features was calculated for each image in the dataset. Finally, all the features were 
combined in one feature vector. These features include entropy, mean, variance, standard deviation, 
range, minimum, maximum, and root mean square (RMS).  

2.3.1. Entropy 

Entropy is a statistical measure of randomness that can be used to characterize the texture of the 
input image. It can be used to describe the distribution variation in a region as well [12]. For an image 
I of size M × N, each image is split into Z blocks. Each Z block is of size F × G. The entropy for each 
block is calculated using Equation (1), 

𝐸𝑛𝑡௭ =  − ෍ 𝑝𝑟௜ × log 𝑝𝑟௜௡ିଵ
௜ୀ଴  (1) 
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where n is the number of grey levels. 𝑝𝑟௜  is the probability of a pixel having gray level i.  
The mean of the entropy for the Z blocks is calculated using Equation (2), 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 1𝑍 ෍ 𝐸𝑛𝑡௭௓
௭ୀଵ   (2) 

where Z is the total number of blocks in an image and z is the block order.  

2.3.2. Mean 

The mean for each image block z is calculated using Equation (3), 

µ௭ = 1𝐹𝐺 ෍ 𝑝௭(𝑖, 𝑗)ிீ
௜,௝ୀଵ  (3) 

where pz(i,j) is the pixels value in the image block z, F × G is the size of each block z. 
The mean of the mean for all Z blocks is calculated using Equation (4), 

𝑀𝑒𝑎𝑛 = 1𝑧 ෍ µ௭௓
௭ୀଵ  (4) 

2.3.3. Variance 

The variance (σ2) is the estimate of the mean square deviation of the grey pixel value from its 
mean value. It describes the dispersion within a local region [12]. The variance of each image clock z 
is calculated using Equation (5), 

𝜎௭ଶ = 1𝐹𝐺 ෍ (𝑝௭(𝑖, 𝑗) − 𝜇௭)ଶிீ
௜,௝ୀଵ  (5) 

The mean of the variance is determined using Equation (6),  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 1𝑍 ෍ 𝜎௭ଶ௓
௭ୀଵ  (6) 

2.3.4. Standard Deviation 

The standard deviation (σ) is the square root of the variance. The standard deviation for each 
block z of an image is calculated using Equation (7), 

𝜎௭ =  ඩ 1𝐹𝐺 ෍ (𝑝௭(𝑖, 𝑗) − 𝜇௭)ଶிீ
௜,௝ୀଵ   (7) 

The mean of the standard deviation (sd) for all blocks Z of an image is calculated using Equation 
(8), 

𝑆𝑑 = 1𝑍 ෍ 𝜎௭௓
௭ୀଵ   (8) 

2.3.5. Range 

The range is defined by the formula given in Equation (9), 𝑅௭ = 𝑝௭௠௔௫ − 𝑝௭௠௜௡  (9) 
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Where 𝑝௭௠௔௫and 𝑝௭௠௜௡ are the maximal and minimal pixel values in an image block z.  
Then, the mean of the range is calculated using Equation (10), 

𝑅𝑎𝑛𝑔𝑒 = 1𝑍 ෍ 𝑅௭௓
௭ୀଵ  (10) 

2.3.6. Root Mean Square 

The root mean square (RMS) provides the arithmetic mean of the squares of the mean values 
along each row and column in a block z in an image. The mean of the RMS given by (µ RMS) of all 
blocks in an image of size F × G is given by (11).  

µ𝑅𝑀𝑆 =  ට∑ หµ௜,௝หଶி௜ୀଵ𝐹    (11) 

2.4. Classification 

In this step, several classification models are constructed to classify the ROI to either normal or 
abnormal masses. This step is done using individual classifiers or multiple classifiers system (MCS).  

2.4.1. Individual Classifiers 

An individual classifier means that the classification process is done using only one classifier. 
For this purpose, k-nearest neighbor (k-NN) and several types of decision tree classifiers such as (J48), 
random forest (RF), and random tree (RT) are constructed [25–28]. 

1. K-NN is a popularly used classifier due to its simplicity, straightforwardness and high 
efficiency even with noisy data [29]. Even with its straightforwardness, it is capable of 
achieving high accuracy rates in medical applications [30,31]. K-NN assigns a class to each 
data point in the test set according to the class of it amongst k-nearest neighbors inside the 
training set [32]. This is done by measuring the distance between each data point in the test 
set needed to be classified and other data points in the training set. The distance indicates 
how similar the instance is in the test set to instances in the training set. The distance used in 
our approach is the Euclidean distance and the value of k used is two.  

2. Decision Trees (DT) classifiers are commonly used in machine learning techniques. They are 
used extensively in medical applications such as breast cancer, ovarian cancer and heart 
sound diagnosis [33,34]. This is due to their ability to visualize reactions between data 
attributes. Visualization facilitates the doctors’ understanding of how the classification 
decision is made and an association between features in the data. A DT can handle categorical 
and numeric attributes. These classifiers are also robust to outliers and missing values. A DT 
classifies data points in the training set based on rules or conditions to form a tree structure. 
A DT construction is like a tree with a root node whose leaves represent class labels and 
branch nodes, which represent attribute and reasons, which lead to those class labels. Nodes 
are connected by arcs, which represent the conditions on the attributes. The attribute splitting 
is determined by a metric such as information gain, gain ratio, or Gini index. The DT has 
several types of trees such as J48, random forest (RF), and random tree (RT).  

The J48 classifier uses a top-down and greedy search through all probable nodes to construct a 
DT. The RF is considered a strong classifier that achieves high classification accuracy with datasets 
with a large number of features even without any feature selection. Moreover, RF is capable of 
determining the important attributes of a dataset. Several trees are built to select the best tree on the 
split. The random tree is a DT classifier, which chooses a random number of attributes to construct a 
DT and classify the data [33,34]. 
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2.4.2. Multiple Classifier System (MCS) 

The multiple classifiers system (MCS) is a hybrid method that fuses classification results of a 
number of classifiers connected together by a combiner. The MCS adds the strength of each classifier 
that usually exceeds the performance of each individual classifier. The MCS can avoid the possibility 
of poor results that are generated from a certain unsuitably selected model. This is equivalent to 
medical applications in cases where diagnosis to a specific illness is made by taking decisions from 
various doctors to come to a more confident final decision [35].  

The MCS has two structures: parallel and cascaded. In the parallel structure, a number of 
classifiers are connected in parallel and their predictions are fused using either, majority voting, 
maximum probability, minimum probability, or averaging methods. These classifiers may be of 
different types or the same type, such as the bagging ensemble. The bagging ensemble stands for 
bootstrap aggregation. It depends on the bootstrap resampling method to generate a number of data 
subsets from the original data randomly. These subsets are used to build several classifiers of the 
same type, such as decision trees or k-NN’s. In the cascaded structure, the classifiers are connected 
in a cascaded manner. This structure includes the Adaboosting. The Adaboosting ensemble consists 
of a number of classifiers connected in series. Each classifier in the ensemble attempts to improve the 
performance of the previous weaker classifier. It uses a class weighting resampling technique to train 
the next classifier in the ensemble. Instances that are not correctly classified with the first classifier in 
the ensemble are given higher weights and then these resampled instances enter the next classifier. 
This procedure is repeated until all classifiers of the ensemble are processed. 

In this paper, different MCS of different structures were constructed to classify the ROI to normal 
or abnormal. The first structure includes bagging with k-NN, J48 DT, RF DT, and RT DT. The second 
structure is Adaboosting with k-NN, J48 DT, RF DT, and RT DT. The third structure is an MCS 
constructed with k-NN, J48 DT, RF DT, RT DT and combined using averaging fusing technique. 

2.5. Feature Selection 

Feature selection (FS) is commonly used in medical image processing, as it reduces the time 
needed and the effort made by physicians to measure irrelevant and redundant features. It could 
avoid overfitting that might occur during the learning process of the predictive model. It may also 
lower its complexity and speed up the prediction process [36]. It is divided into three approaches: 
filter, wrapper, and embedded. The former is the simplest and fastest method. It uses criteria or 
metric for choosing variables, which is independent of the classification process. The wrapper is a 
classifier dependent FS method and is more complex and slower than a filter. However, it involves 
the predictive model in choosing variables, which are usually preferred. In the embedded method, 
the FS process is inserted within the classifier structure. The embedded method includes the 
interaction with the classification model, while at the same time being far less computationally 
intensive than the wrapper methods [36]. 

Further, FS uses a search strategy to generate a subset of features that are then evaluated using 
a metric. There are several searching strategies for FS, however, in this paper, two strategies are 
applied to generate two wrappers FS approaches: (1) Best First (BF) and (2) Random search. The BF 
searches the space of attribute subsets by a greedy heuristic method. The BF can begin searching with 
an empty set of attributes and search forward, backward, or in both directions. It has backtracking so 
if a track that is investigated looked less favorable, the BF method can backtrack to a more favorable 
previous subset and continue the search from there. The random search examines feature space in a 
random manner. It can begin with a random feature or specified feature and add features randomly 
to get the best subset found [37–39].  

In this paper, the random search with random initial point and BF search with bi-direction 
tracking were applied to select and reduce the complexity of the classification models and select the 
features, which improve the classification accuracy. 
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2.6. Evaluation 

There are several evaluation metrics used in this paper to evaluate a classifier performance. 
Among them is the accuracy, the receiver operating curve (ROC), the area under ROC curve (AUC), 
sensitivity, specificity, precision, and the F1 score.  

2.6.1. Accuracy 

Accuracy is the measure used to determine how many instances the classifier has correctly 
classified from the whole data. Thus, it indicates the ability of the classifier to perform well. The 
accuracy is defined as in Equation (12). 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 (12) 

Where, TP is the true positive, which is the number of positive class instances that are correctly 
classified and TN is the true negative, which is the number of negative class instances that are 
correctly classified. Whereas, FP is the false positive which is the number of negative class instances 
that are incorrectly classified as positive class and FN is the false negative, which is the number of 
positive class instances that are incorrectly classified as negative class. 

2.6.2. The Receiver-Operating Characteristic  

The receiver operating characteristic (ROC) analysis is a well-known evaluation method for 
detection tasks. It is based on a statistical decision theory and it is developed in signal detection 
theory. The ROC analysis was first used in medical decision making and subsequently, it was used 
in medical imaging. A ROC curve is a graph representing the true positive rate (TPR) as a function 
of the false positive rate (FPR). The TPR is called sensitivity or recall while the true negative rate 
(TNR) is called the specificity and they are defined as in Equations (13) and (14) [40].  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) = 𝑇𝑃𝑇𝑃 + 𝐹𝑁  (13) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑇𝑁𝑅)  = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 (14) 

2.6.3. The Area Under the ROC Curve  

The area under the ROC curve (AUC) is used in medical diagnosis systems. The AUC provides 
an approach for evaluating models based on an average of each point on the ROC curve. Thus, the 
AUC score is always between 0 and 1 for a classifier performance and the model with a higher AUC 
value gives a better classifier performance [41].  

2.6.4. Precision 

Precision is the ratio of correctly predicted positive observations of the total predicted positive 
observations. High precision relates to the low FPR. Precision is calculated using the following 
Equation [42,43], 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (15) 

2.6.5. F1 Score 

The F1 score is the harmonic mean of precision and recall. It is used as a statistical measure to 
rate the performance. In other words, an F1 score is from 0 to 9, where 0 being lowest and 9 being the 
highest. Therefore, this score takes both false positives and false negatives into account. The F1 score 
is defined as in Equation (16) [42,43]. 
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F1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  (16) 

3. Experimental Setup 

The proposed CAD system was applied to mammogram images providing a possibility of each 
image to belong to one of the two classes, either normal or abnormal. In this work, a computationally 
efficient tool called Waikato Environment for Knowledge Analysis (WEKA) [44] was used. WEKA is 
an open-source software, which consists of a collection of machine learning algorithms for data 
mining tasks. 

3.1. Dataset Description 

In this study, two datasets were used to test the performance of the proposed CAD system. These 
datasets are named (1) the mammographic image analysis society digital mammogram database 
(MIAS) [13] and (2) The Digital Mammography Dream Challenge [45]. The description of each dataset 
is discussed in this section.  

An organization of the UK research groups, called Mammographic Image Analysis Society 
(MIAS), created a database of digital mammograms. The films have been digitized to a 50-micron 
pixel edge. All images are available with a size of 1024 × 1024. Mammogram images are available via 
the Pilot European Image Processing Archive (PEIPA) at the University of Essex. The MIAS dataset 
has 322 annotated images of left and right breasts. The MIAS dataset [13] was chosen to verify the 
proposed CAD system. 

Digital Mammography Dream Challenge [45] is a new dataset and is used to obtain more 
training samples. It is one of the larger efforts in using artificial intelligence to attempt to improve 
breast cancer screening outcomes. This crowdsourcing coding competition offers a large monetary 
prize for the best algorithm for predicting breast cancer on screening mammography. Final Challenge 
results were expected in late 2017 with open access to the winning coding algorithms. Hence, ongoing 
short to intermediate-term activities focus on improving this open-source algorithm to achieve higher 
accuracy, building on the challenge results to bring artificial intelligence products to the market and 
exploring how an accurate algorithm might be potentially incorporated into screening practice [46]. 
This dataset consists of 34 and 466 abnormal and normal samples, respectively.  

3.2. Data Augmentation 

Generally, training on a large number of training samples performs well and gives high accuracy 
rates. However, the biomedical datasets contain a relatively small number of samples due to limited 
patient volume. Consequently, data augmentation is essential. Data augmentation is a method for 
increasing the size of the input data points by generating new data points from the original input 
data. There are many strategies for data augmentation. The one used in this study is the rotation and 
the flipping methods. 

The total number of normal samples in the digital mammography dream challenge dataset was 
466, but only 300 samples were selected. As for the abnormal, the total number of samples was only 
34. Therefore, by comparing to the number of normal samples, there was no balance between the two 
classes. Therefore, firstly, the samples were rotated by 0, 90, 180 and 270 degrees. Then, each rotated 
image was right flipped. Therefore, each sample of the abnormal class was augmented to eight 
images. As a result, the number of abnormal samples used became 34 × 8, which is equal to 272 
samples as demonstrated in Table 1.  

Moreover, when using the samples of the MIAS dataset, the number of normal samples were 
more than that of the abnormal ones:120 and 93 samples were selected from the normal and abnormal 
classes, respectively. However, this time the samples of both classes were augmented once using the 
rotation method. The number of the normal class became 120 × 4 = 480 samples and the number of 
abnormal class became 93 × 4 = 372 samples as shown in Table 1.  
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On the other hand, when combining the two datasets together, for the abnormal samples, all the 
samples of the two datasets were used. Therefore, the total samples became 127 samples. While for 
the normal samples, 68 samples were selected from the digital mammography dream challenge 
dataset and 132 samples from the MIAS dataset so the total for this class became 200 samples. Only 
one augmentation technique, which was the rotation, was applied for each class. Therefore, each 
image was augmented to four images giving 800 and 508 for normal and abnormal classes, 
respectively as illustrated in Table 1. 

Table 1. The number of samples used for each dataset. 

 Normal Abnormal Total  
MIAS 480 372 852 

The digital mammography dream challenge 300 272 572 
The combination of the two datasets 800 508 1308 

4. Results 

The samples were enhanced and segmented using the method mentioned in section 2. Some 
statistical features were extracted from the segmented samples after splitting each image into blocks. 
Furthermore, the mean of each extracted feature was calculated. Therefore, each feature became a 
one-dimension vector. Finally, all the features were combined together in one feature vector. Then, 
these features were used to construct a classification model using both individual and multiple 
classifiers. Moreover, the two wrapper FS methods were employed to select which features influence 
classification accuracy. The two wrapper FS methods were based on the best first and random search 
methods. The accuracy, AUC, sensitivity, specificity, precision, and F1 score were calculated for each 
classifier.  

All the results were verified using a fivefold cross-validation, which split the data using an 80-
20% ratio. For k-NN, the number of k was chosen using a five-nested cross-validation, which resulted 
in the best k chosen being equal to two. A nested cross is a well-known procedure. It is used to 
overcome over-fitting and over-optimistic results that may occur during model construction, 
parameter and feature selections. The Euclidean distance was used as a distance metric for a k-NN 
classifier. For decision trees, nested cross-validation was also used to reduce error pruning. For the 
random forest, the number of trees generated was 10. For Adaboosting and the bagging classification, 
the number of ensemble classifiers was 10. 

The proposed methods were applied to the MIAS and the digital mammography dream 
challenge datasets separately. Each sample of the MIAS dataset was augmented to four images, while 
the samples of the digital mammography dream challenge dataset were augmented to eight images 
as in Table 1. 

The classification results of the individual and MCS using all classifiers, the best first and the 
random search FS for the MIAS and the digital mammography dream challenge datasets are 
illustrated in Tables 2, 3, 4, 5, 6, and 7, respectively.  

Table 2. Classification results of the four individual classifiers and the multiple classifier systems 
(MCS) constructed with all the four classifiers and their ensembles for the MIAS dataset. 

Classifier Accurac
y AUC Sensitivity Specificity Precision F1 

Score 
k-NN 88.9% 0.951 0.884 0.895 0.896 0.89 

Adaboosting k-NN 88.9% 0.951 0.884 0.895 0.896 0.89 
Bagged k-NN 86.7% 0.935 0.836 0.894 0.903 0.869 

J48 DT 98.2% 0.994 0.981 0.99 0.99 0.986 
Adaboosting J48 DT 100% 1.000 1.000 1.000 1.000 1.000 

Bagged J48 DT 97.7% 0.996 0.952 0.99 0.99 0.971 
RF DT 100% 1.000 1.000 1.000 1.000 1.000 

Adaboosting RF DT 99.6% 1.000 0.991 1.000 1.000 0.996 
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Bagged RF DT 98.4% 0.999 0.971 0.99 0.99 0.981 
RT DT 99.5% 0.995 0.99 0.99 0.99 0.99 

Adaboosting RT DT 99.4% 0.994 0.99 0.99 0.99 0.99 
Bagged RT DT 98.7% 1.000 0.971 0.99 0.99 0.981 

k-NN + J48 DT + RF DT + RT DT  
(averaging probabilities) 

99.4% 1.000 0.981 0.99 0.99 0.986 

Adaboosting (k-NN + J48 DT + RF 
DT + RT DT  

(averaging probabilities)) 
99.8% 1.000 1.000 0.991 0.99 0.995 

Bagging (k-NN + J48 DT + RF DT + 
RT DT 

(averaging probabilities)) 
98.7% 0.998 0.961 0.98 0.98 0.971 

Table 3. The classification results before and after the feature selection results using best first 
(stepwise forward and backward search strategy) for the MIAS dataset. 

Classifier Number of 
Features Accuracy AUC Sensitivity Specificity Precision F1 

Score 
k-NN  

(without FS) 
8 88.9% 0.951 0.884 0.895 0.896 0.89 

Wrapper k-NN after 
(with FS) 

5 99.5% 1.000 1.000 0.992 0.992 0.996 

J48 DT 
(without FS) 8 98.2% 0.994 0.981 0.99 0.99 0.986 

Wrapper J48 DT 
(with FS) 

6 98.5% 0.994 0.98 0.993 0.98 0.98 

RF DT 
(without FS) 

8 100% 1.000 1.000 1.000 1.000 1.000 

Wrapper RF DT 
(with FS)  

7 99.6% 1.000 0.991 1.000 1.000 0.996 

RT DT 
(without FS) 

8 99.5% 0.995 0.99 0.99 0.99 0.99 

Wrapper RT DT 
(with FS) 

6 100% 1.000 1.000 1.000 1.000 1.000 

Table 4. The classification results before and after the feature selection results using the random 
search method for the MIAS dataset. 

Classifier Number of 
Features Accuracy AUC Sensitivity Specificity Precision F1 

Score 
k-NN  

(without FS) 
8 88.9% 0.951 0.884 0.895 0.896 0.89 

Wrapper k-NN 
(with FS) 

7 99.5% 1.000 1.000 0.991 0.99 0.995 

J48 DT(without FS) 8 98.2% 0.994 0.981 0.99 0.99 0.986 
Wrapper J48 DT 

(with FS) 
8 98.8% 0.994 0.981 0.99 0.99 0.986 

RF DT 
(without FS) 

8 100% 1.000 1.000 1.000 1.000 1.000 

Wrapper RF DT 
(with FS) 

7 99.6% 1.000 0.991 1.000 1.000 0.996 

RT DT  
(without FS) 

8 99.5% 0.995 0.99 0.99 0.99 0.99 

Wrapper RT DT 
(with FS) 

7 100% 1.000 1.000 1.000 1.000 1.000 

Table 5. The classification results of the four individual classifiers and the MCS constructed with all 
the four classifiers and their ensembles digital mammography dream challenge dataset. 
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Classifier Accuracy AUC Sensitivity Specificity Precision F1 
Score 

k-NN 95.9% 0.99 1.000 0.929 0.924 0.961 
Adaboosting k-NN 95% 0.99 1.000 0.929 0.924 0.961 

Bagged k-NN 94.4% 0.98 1.000 0.855 0.83 0.908 
J48 DT 88% 0.922 0.991 0.817 0.777 0.872 

Adaboosting J48 DT 96.3% 1.000 1.000 0.935 0.93 0.964 
Bagged J48 DT 94.5% 0.996 1.000 0.906 0.896 0.946 

RF DT 98% 1.000 1.000 0.962 0.96 0.98 
Adaboosting RF DT 97.2% 1.000 1.000 0.958 0.956 0.978 

Bagged RF DT 95.8% 1.000 1.000 0.926 0.92 0.959 
RT DT 93.8% 0.942 1.000 0.893 0.88 0.937 

Adaboosting RT DT 94.5% 0.948 0.996 0.909 0.9 0.946 
Bagged RT DT 96.5% 0.999 1.000 0.938 0.933 0.966 

k-NN + J48 DT + RF DT + RT DT  
(averaging probabilities) 

96.3% 1.000 1.000 0.935 0.93 0.964 

Adaboosting (k-NN + J48 DT + RF DT 
+ RT DT  

(averaging probabilities)) 
97.3% 1.000 1.000 0.944 0.94 0.97 

Bagging (k-NN + J48 DT + RF DT + 
RT DT 

(averaging probabilities)) 
96.6% 1.000 1.000 0.938 0.933 0.966 

Table 6. The classification results before and after feature selection results using best first (stepwise 
forward and backward search strategy) for the digital mammography dream challenge. 

Classifier Number of 
features Accuracy AUC Sensitivity Specificity Precision F1 

Score 
k-NN  

(without FS) 
8 96% 0.99 1.000 0.929 0.924 0.961 

Wrapper k-NN 
(with FS) 

7 96.3% 0.991 1.000 0.935 0.93 0.964 

J48 DT(without FS) 8 87.9% 0.922 1.000 0.929 0.924 0.961 
Wrapper J48 DT 

(with FS) 
7 90.73% 0.949 0.83 0.993 0.83 0.83 

RF DT 
(without FS) 

8 98% 1.000 1.000 0.962 0.96 0.98 

Wrapper RF DT 
(with FS) 

7 98.6% 1.000 1.000 0.974 0.973 0.987 

RT DT  
(without FS) 

8 93.88% 0.942 1.000 0.893 0.88 0.937 

Wrapper RT DT 
(with FS) 

3 96.1% 0.963 1.000 0.926 0.92 0.959 

Table 7. The classification results before and after feature selection results using the random search 
method for the digital mammography dream challenge. 

Classifier Number of 
Selected Features Accuracy AUC Sensitivity Specificity Precision F1 

Score 
k-NN  

(without FS) 
8 96% 0.99 1.000 0.929 0.924 0.961 

Wrapper k-NN 
(with FS) 

5 96.85% 1.000 1.000 0.944 0.94 0.97 

J48 DT(without 
FS) 8 88% 0.922 1.000 0.929 0.924 0.961 

Wrapper J48 DT 
(with FS) 

4 95.1% 0.96 1.000 0.915 0.907 0.952 

RF DT 
(without FS) 

8 98% 1.000 1.000 0.962 0.96 0.98 
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Wrapper RF DT 
(with FS) 

8 98% 1.000 1.000 0.962 0.96 0.98 

RT DT  
(without FS) 

8 93.88% 0.942 1.000 0.893 0.88 0.937 

Wrapper RT DT 
(with FS) 

6 95% 0.951 0.996 0.915 0.907 0.95 

Moreover, the MIAS and the digital mammography dream challenge datasets were combined 
together and all the samples went through the same procedures as previously stated. Table 8 shows 
a comparison between the classification results of the individual classifiers, their ensembles, and the 
MCS constructed using all these classifiers for the combined datasets.  

Additionally, the two wrapper FS methods were employed to select which features influence 
classification accuracy. 

Table 9 and 10 show the results of the individual, MCSs obtained after the best first and the 
random search wrapper feature selection approaches.  

Table 8. The classification results of the four individual classifiers and the MCS constructed with all 
the four classifiers and their ensembles for the combination of the two datasets. 

Classifier Accuracy AUC Sensitivity Specificity Precision 
F1 

Score 
k-NN 90% 0.964 0.875 0.907 0.91 0.893 

Adaboosting k-NN 88% 0.934 0.854 0.894 0.899 0.876 
Bagged k-NN 90% 0.964 0.875 0.907 0.91 0.893 

J48 DT 93.88% 0.985 0.89 0.976 0.978 0.932 
Adaboosting J48 DT 97.4% 0.996 0.966 0.98 0.98 0.973 

Bagged J48 DT 99.7% 1.000 0.993 1.000 1.000 0.997 
RF DT 98.7% 0.99 0.988 0.987 0.986 0.987 

Adaboosting RF DT 98.5% 0.99 0.985 0.985 0.985 0.985 
Bagged RF DT 99.2% 0.99 0.993 0.994 0.994 0.994 

RT DT 97.1% 0.97 0.98 0.966 0.965 0.973 
Adaboosting RT DT 98.7% 0.99 0.988 0.987 0.986 0.987 

Bagged RT DT 97.8% 0.98 0.992 0.97 0.969 0.981 
k-NN + J48 DT + RF DT + RT DT  

(averaging probabilities) 
97.8% 0.99 0.98 0.979 0.978 0.979 

Adaboosting (k-NN + J48 DT + RF 
DT + RT DT  

(averaging probabilities)) 
99.5% 1.000 1.000 0.994 0.993 0.997 

Bagging (k-NN + J48 DT + RF DT 
+ RT DT 

(averaging probabilities)) 
98.1% 0.99 0.982 0.982 0.981 0.982 

Table 9. The classification results before and after feature selection results using best first (stepwise 
forward and backward search strategy) for the combination of the two datasets. 

Classifier Number of 
Features 

Accuracy AUC Sensitivity Specificity Precision F1 
Score 

k-NN  
(without FS) 

8 90% 0.964 0.875 0.907 0.91 0.893 

Wrapper k-NN 
(with FS) 

2 100% 1.000 1.000 1.000 1.000 1.000 

J48 DT(without FS) 8 93.88% 0.985 0.89 0.976 0.978 0.932 
Wrapper J48 DT 

(with FS) 
7 98.85% 1.000 0.994 0.986 0.985 0.99 

RF DT 
(without FS) 

8 98.7% 0.99 0.988 0.987 0.986 0.987 

Wrapper RF DT 
(with FS) 

7 99.3% 1.000 0.989 0.996 0.996 0.993 
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RT DT  
(without FS) 

8 97.1% 0.97 0.98 0.966 0.965 0.973 

Wrapper RT DT 
(with FS) 

7 99.4% 0.995 1.000 0.991 0.99 0.995 

Table 10. The classification results before and after feature selection results using the random search 
method for the combination of the two datasets. 

Classifier Number of 
Features Accuracy AUC Sensitivity Specificity Precision F1 

Score 
k-NN  

(without FS) 
8 90% 0.964 0.875 0.907 0.91 0.893 

Wrapper k-NN 
(with FS) 

6 99.7% 0.995 1.000 0.996 0.995 0.998 

J48 DT(without FS) 8 93.88% 0.985 0.89 0.976 0.978 0.932 
Wrapper J48 DT 

(with FS) 
8 93.88% 0.985 0.883 0.976 0.978 0.929 

RF DT 
(without FS) 

8 98.7% 0.99 0.988 0.987 0.986 0.987 

Wrapper RF DT 
(with FS) 

7 99.3% 1.000 0.989 0.996 0.996 0.993 

RT DT  
(without FS) 

8 97.1% 0.97 0.98 0.966 0.965 0.973 

Wrapper RT DT 
(with FS) 

6 99.4% 0.99 0.996 1.000 1.000 0.998 

In comparison to other researches results, the results obtained from the newly proposed 
methods were the highest results. This is clear in Table 11. 

Table 11. Classification results for different breast classification methods using different classifiers. 

Reference Contribution Data Set Accuracy AUC 

Fu et al. [14] 

Features were extracted from both the spatial 
domain and spectral domain, then selected by 

sequential forward search algorithm, and 
classified by SVM and GRNN  

Nijmegen 
University Hospital 

(Netherlands) 
database 

- 
0.98 
0.978 

El Toukhy et 
al. [47] 

Wavelet for feature extraction and SVM to 
classify normal and abnormal 

Curvelet transform for feature extraction and 
SVM to classify normal and abnormal 

MIAS 
95.84% 
95.98% 

- 

Beura et al. 
[15] 

Grey level co-occurrence matrix (GLCM) and 
DWT to extract the texture features, features were 

selected using the filter methods namely two-
sample t-test and F-test, classified by BPN 

MIAS 
DDSM 

98% 
98.8% 

- 

Pawar and 
Talbar [16] 

Features were extracted using the wavelet co-
occurrence, selected using the wrapper method, 

and classified by the fuzzy classifier 
MIAS 89.47% - 

Phadke and 
Rege [48]  

Local and global feature extraction and SVM to 
classify normal and abnormal 

MIAS 93.1% - 

Mohanty et 
al. [17] 

Contourlet transform feature extraction, features 
were selected using wrapper forest optimization 

algorithm, and Naïve Bayes classifier for 
classifying normal and abnormal lesions  

MIAS 97.86% - 

The 
proposed 

System 

Statistical feature extraction and Adaboosting J48 
DT 

MIAS 

100% 1.000 

Statistical feature extraction and RF DT 100% 1.000 
Statistical feature extraction, best first FS, and 

wrapper RT DT 
100% 1.000 
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Statistical feature extraction, random search FS, 
and wrapper RT DT 

100% 1.000 

Statistical feature extraction and RF DT 

Dream Challenge 

98% 1.000 
Statistical feature extraction, best first FS, 

wrapper RF DT 
98.07% 1.000 

Statistical feature extraction, random search FS, 
wrapper RF DT 

98% 1.000 

Statistical feature extraction and Adaboosting J48 
DT 

MIAS and Dream 
Challenge 

99.7% 1.000 

Statistical feature extraction, random search FS, 
wrapper k-NN 

99.7% 0.995 

Statistical feature extraction, best first FS, 
wrapper k-NN 

100% 1.000 

5. Discussions 

This paper presents a new CAD system to differentiate between normal and abnormal mass 
lesions in the breast. In the segmentation step, the breast was segmented from any artifacts and the 
pectoral muscle was eliminated. Afterward, each image was split into blocks of size 16 × 16. Some 
statistical features were extracted from these blocks such as the entropy, mean, standard deviation, 
minimum, maximum, variance, range, and RMS. Afterward, the mean was calculated for each 
feature. Finally, all the features were combined together to have a feature vector of only eight features. 
These features were then used to construct several individuals and MCS models such as the decision 
tree (J48), random forest (RF), random tree (RT), k-NN, and their ensembles. Additionally, some 
features were selected using two FS techniques: (1) best first and (2) random search to increase the 
classification accuracy of both individual and MCS models of different structures. 

The nested cross fold validation was conducted for the optimization of the k for k-NN and prune 
over fitting of decision tree classifiers. Then, the cross-fold validation for actual validation was used. 
Moreover, the nested cross-fold validation was employed for feature selection. First, the cross-fold 
validation was used for selecting the features through nested folds, and then it was used to validate 
the results of the features selected and evaluate the classifier performance based on these features. 

The experiments were applied on the MIAS and the digital mammography dream challenge 
datasets. First, each set was trained and tested separately, and then both datasets were merged to 
study the effect of combining two datasets on classification accuracy.  

To increase the number of sample data, augmentation was applied to the samples. In this work, 
all images of both datasets were rotated by 0, 90, 180 and 270 degrees. Moreover, the flipping method 
was applied to the abnormal samples of the digital mammography dream challenge dataset. This was 
necessary due to the very small size of the abnormal samples compared to the normal ones. Therefore, 
the samples were first rotated, and then each rotated sample was flipped horizontally. Hence, each 
image was augmented to eight images.  

All the features calculated for the images and the rotated ones were the same, except for the 
range feature. Table 12 shows the name of the features that were omitted using each FS method. It is 
clear from the table that the range feature was usually omitted using most FS strategies. Figures 5 
and 6 show the two-dimensional scatter plots based on the feature vectors for normal and abnormal 
samples of breast cancer datasets. Figure 5 represents the standard deviation feature versus the 
minimum feature for the first 10 samples of images and their orientations with a total of 40 images 
for each class. Figure 6 represents the variance feature versus the minimum feature features for the 
second 10 samples and their orientations. 
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Figure 5. The minimum feature values versus the standard deviation feature values for the first 10 
samples of images and their rotated versions. 

 

Figure 6. The variance feature values versus the minimum feature values for the second 10 samples 
of images and their rotated versions. 

For the MIAS samples, the total number of samples used was 852 as shown in Table 1. When 
classifying normal and abnormal lesions using individual classifiers and their ensembles, it was clear 
that the Adaboosting of J48 DT and the random forest achieved the highest accuracy of 100%. This 
was the highest accuracy compared to the other classifiers as shown in Table 2. Moreover, the AUC, 
the sensitivity, specificity, precision, and the F1 score for both classifiers also achieved the highest 
scores. All of them recorded a value of one (100%).  

Moreover, when using multiple classifiers, the Adaboosting ensemble of k-NN, J48 DT, RT DT, 
and RF DT proved to have the highest accuracy, AUC, sensitivity, specificity, precision, and F1 score 
compared to the bagging ensemble as shown in Table 2.  

Furthermore, when selecting the features using the best first searching strategy as shown in 
Table 3, the numbers of features selected were 5, 6, 7, and 6 for k-NN, J48 DT, RF DT, and RT DT 
classifiers, respectively. In this case, for the k-NN classifier, the mean, RMS, and range features were 
omitted from the feature vector as shown in Table 12. Furthermore, for J48 DT and RT DT classifiers, 



Diagnostics 2019, 9, 165 19 of 27 

both the mean and range were excluded. Additionally, for the RF DT classifier the range feature was 
removed. The accuracy, AUC, sensitivity, specificity, precision, and the F1 score for the wrapper FS 
based on RT DT classifier achieved the highest values compared to others. The values recorded 100% 
accuracy and 1.0 (100%) for the AUC, sensitivity, specificity, precision, and the F1 score, respectively. 
Whereas, when using the random search strategy, the wrapper RT DT achieved the highest value 
compared to other classifiers as well. However, this time the highest values were achieved using 
seven instead of six features as for the best first strategy. Notably, the range feature was omitted for 
all classifiers as in Table 12. All the values yielded to 100% also as illustrated in Table 4.  
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Table 12. The name of the unselected features for each FS method for breast cancer datasets. 

Classifier Number of Selected 
Features 

Name of Unselected Features 

MIAS Dataset – Best First FS Strategy 
Wrapper k-NN 5 Mean, RMS, and range 
Wrapper J48 DT  6 Mean and range  
Wrapper RF DT  7 Range  
Wrapper RT DT 6 Mean and range 

MIAS Dataset – Random Search FS Strategy 
Wrapper k-NN 7 Range 
Wrapper J48 DT 7 Range 
Wrapper RF DT 7 Range 
Wrapper RT DT 7 Range 

Digital Mammography Dream Challenge Dataset – Best First FS Strategy 
Wrapper k-NN 7 Range  
Wrapper J48 DT 7 Range  
Wrapper RF DT 7 Range  

Wrapper RT DT 3 Entropy, variance, standard deviation, RMS, 
range 

Digital Mammography Dream Challenge Dataset – Random Search FS Strategy 
Wrapper k-NN 5 Entropy, variance, and range 
Wrapper J48 DT 4 Entropy, mean, max, and range 
Wrapper RF DT 8 - 
Wrapper RT DT 6 Mean and standard deviation 

MIAS + Dream Challenge Dataset – Best First FS Strategy 

Wrapper k-NN 2 
Entropy, variance, standard deviation, minimum, 

maximum, and range 
Wrapper J48 DT  7 Range  
Wrapper RF DT 7 Range 
Wrapper RT DT 7 Range 

MIAS + Digital Mammography Dream Challenge Dataset – Random Search FS Strategy 
Wrapper k-NN 6 Maximum and range 
Wrapper J48 DT 8 - 
Wrapper RF DT 7 Range 
Wrapper RT DT 6 Entropy and Range 

For the digital mammography dream challenge samples, the total number of samples used was 
572 as shown in Table 1. The RF DT classifier achieved the highest scores compared to other classifiers 
as shown in Table 5. The accuracy, AUC, sensitivity, specificity, precision, and the F1 score achieved 
98%, 1.0 (100%), 1.0 (100%), 0.962 (96.2%), 0.96 (96%), and 0.98 (98%), respectively as shown in Table 
5. Additionally, when using the MCs and their ensemble, the MCs achieved an accuracy, AUC, 
sensitivity, specificity, precision, and the F1 score of 96.3%, 1.0 (100%), 1.0 (100%), 0.935 (93.5%), 0.93 
(93%) and 0.964 (96.4%), respectively. Whereas the Adaboosting and the bagging of these MCs 
achieved an accuracy of 97.3% and 96.6%, the AUC was 1.0 (100%) for both ensembles and the 
sensitivity reached 1.0 (100%) as well. Additionally, the specificity and the precision recorded 0.94 
(94%) and 0.93 (93%), respectively for both ensembles as illustrated in Table 5. Finally, the F1 score 
achieved a value of 0.975 (97.5%) and 0.966 (96.6%) for Adaboosting and bagging MCs, respectively. 
From these results, it was clear that the Adaboosting MC achieved the highest values compared to 
the others.  
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When selecting the features using the best first strategy as it is clear in Tables 6 and 12, the 
wrapper FS was based on RF DT classifier with only seven features, excluding the range achieved an 
accuracy of 98.6%. Whereas, the AUC, sensitivity, specificity, precision, and F1 score achieved 1.0 
(100%), 1.0 (100%), 0.974 (97.4%), 0.973 (97.3%), and 0.987 (98.7%), respectively. It is obvious that 
when selecting features using the best first strategy, the accuracy increased compared to using all the 
features while the other values maintain the same.  

Conversely, when using the random search FS strategy, the wrapper RF with all the features 
achieved the highest values compared to other wrappers as shown in Table 7. 

On the other hand, when combining the two datasets together, it is obvious from Table 8, in the 
case of classifying normal and abnormal lesions using individual classifiers, the RF DT classifier 
achieved the highest accuracy of 98.7% compared to other individual classifiers which achieved an 
accuracy of 90%, 93.88%, and 97.1% for k-NN, J48 DT, and RT DT classifiers. Moreover, the AUC, 
sensitivity, specificity, precision, and F1 score for the RF classifier were 0.99 (99%), 0.988 (98.8%), 0.986 
(98.6%), 0.965 (96.5%), and 0.972 (97.2%), respectively, which were greater than the other scores 
performed by the other classifiers. 

Furthermore, when the MCS were constructed using k-NN, J48 DT, RF DT, and RT DT classifiers 
and their ensembles (Adaboosting and bagging), the results showed that these ensemble models have 
outperformed the performance of these individual classifiers. This proves the concept that usually 
MCs improves the performance of individual classifiers. In Table 8, the Adaboosting of J48 DT 
classifier achieved an accuracy of 99.7%, which was greater than the 90%, 99.2%, and 97.8% for the 
Adaboosting of k-NN, RF DT, and RT DT classifiers, respectively. It was also greater than that of the 
individual J48 DT classifier (93.88%). The accuracy of Adaboosting J48 DT has also outperformed that 
of the bagged k-NN (88%), bagged J48 DT (97.4%) and bagged RT DT (98.7%). Additionally, the 
Adaboosting of J48 DT classifier achieved the highest AUC 1.0 (100%), sensitivity 0.992 (99.2%), 
specificity 1.0 (100%), precision 0.985 (98.5%), and the F1 score 0.984 (98.4%) compared to the others 
MCS. The bagging and Adaboosting k-NN achieved AUC (0.934, 0.964), sensitivity (0.85, 0.875), 
specificity (0.89, 0.9), precision (0.899, 0.978), and the F1 score (0.875, 0.931). Whereas, the bagging 
and Adaboosting RF DT achieved AUC 0.99 for both cases, sensitivity (0.98, 0.99), specificity (0.98, 
0.99), precision (0.986, 0.981), and the F1 score (0.98, 0.892). Finally, the bagging and Adaboosting RT 
DT achieved AUC (0.99, 0.98), sensitivity (0.98, 0.99), specificity (0.98, 0.96), precision (0.97, 0.98), and 
the F1 score (0.93, 0.97).  

Additionally, it was clear from Table 8 that the accuracy of the MCS model constructed with the 
Adaboosting ensembles of (k-NN, J48 DT, RT DT, RF DT) four classifiers reached 99.5%, which was 
greater than the 90%, 93.88%, 98.7%, and 97.1% of the k-NN, J48 DT, RF DT, and RT DT individual 
classifiers. This MCS model has also outperformed the performance of MCS constructed using the 
bagged ensembles of these four classifiers and the MCS constructed using k-NN, J48 DT, RF DT, and 
RT DT classifiers. Their accuracy reached 98.1% and 97.8% and AUC of 0.99 (99%). Additionally, all 
the values of the sensitivity, specificity, precision, and the F1 score achieved 0.98 (98%) for both cases. 
From these results, it is clear that the AUC, sensitivity, specificity, precision, and the F1 score for the 
MCS constructed using the Adaboosting ensembles of the four classifiers achieved the best results.  

The two FS methods based on the best first and random search were introduced in this paper to 
select the significant features. Table 9 shows the classification results after the wrapper FS based on 
the best first searching strategy. The number of selected features was 2, 7, 7 and 7 for k-NN, J48 DT, 
RF DT, and RT DT classifiers. The range feature was omitted for J48 DT, RF DT, and RT DT classifiers 
as illustrated in Table 12. However, for the k-NN classifier, only the mean and RMS features were 
selected. These selected features increased the classification accuracy for the k-NN classifier from 90% 
to 100%, J48 DT classifier from 93.88% to 98.85%, RF DT classifier from 98.7% to 99.3%, and RT DT 
classifier from 97.1% to 99.4%. Moreover, these selected features improved the AUC for k-NN 
classifier from 0.964 (96.4%) to 1.0 (100%), J48 DT classifier from 0.985 (98.5%) to 1.0 (100%), RF DT 
classifier from 0.990 (99%) to 1.0 (100%), and RT DT classifier from 0.970 (97%) to 0.995 (99.5%). In 
addition, the reduced number of features increased the sensitivity, specificity, precision, and the F1 
score as shown in Table 9.  
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On the other hand, when using the second wrapper FS method based on the random search 
using k-NN, RF DT, and RT DT classifiers, the number of features reduced to 6, 7, and 7 features. For 
the k-NN classifier, the range and maximum features were omitted by the FS strategy. On the other 
hand, for the RT DT classifier, the entropy and range were removed by the FS method. The accuracies 
achieved were 99.7%, 99.3%, and 99.4%, which proved to be greater than 90%, 98.7%, and 97.1% of 
the full model k-NN, RF DT, and RT DT classifiers as illustrated in Table 10. Moreover, the AUC, 
sensitivity, specificity, precision, and the F1 score for k-NN, RF DT, and RT DT classifiers after FS 
were better than that of the full model as in Table 10.  

To analyze the features extracted from the datasets, Table 13 shows the statistical analyses for 
each feature in each dataset. Furthermore, Figures 7–9 show the histogram representation for each 
feature of the breast cancer datasets.  

Finally, the proposed CAD system has been compared with other papers in the field that have 
the same conditions to prove the efficiency of the proposed method as shown in Table 11. Regarding 
the MIAS dataset, it was clear that the results have shown that the proposed CAD system recorded 
the highest accuracy and AUC compared to El-Toukhy et al. [47], Beura et al. [15], Pawar and Talbar 
[16], Phadke and Rege [48], and Mohanty et. al. [17]. Moreover, when combining the two datasets 
together, the accuracies achieved using the Adaboosting of J48 DT, wrapper k-NN based on a random 
search and wrapper k-NN based on the best first search were 99.7%, 99.7%, and 100%. These 
accuracies were greater than 95.84% and 95.98% of the method proposed by El-Toukhy et al. [47] 
using the wavelet and curvelet feature extraction methods. 

The accuracies of the proposed method were better than that in Beura et al. [15], which had an 
accuracy of 98% and 98.8% with MIAS and the digital database for screening mammography (DDSM) 
[8], respectively. The accuracies were greater than the methods in Pawar and Talbar [16] and Mohanty 
et al. [17] which applied FS approaches to reach an accuracy of 89.47% and 97.86%. Moreover, the 
proposed CAD system has AUC of 1.0, 0.995, and 1.0 using the Adaboosting of J48 DT, wrapper k-
NN based on random search and wrapper k-NN based on the best first search. This was greater than 
the 0.98 and 0.978 of the method proposed in Fu et al. [14] who used the sequential feature selection 
algorithm (SFS).  

Nowadays, deep learning is considered the fastest growing field in machine learning techniques 
[49–52]. Therefore, the future work will be applying several deep learning techniques to classify the 
breast cancer lesions.  
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Table 13. Statistical analysis for each feature of the breast cancer datasets. 

Feature 
Statistical Analysis 

Minimum Maximum Mean Standard deviation 
MIAS Dataset 

Entropy 3.27 5.13 4.32 0.33 
Mean 62.11 122.29 96.73 10.08 

Standard Deviation 15.23 34.48 19.34 2.41 
Minimum 28.07 81.23 58.84 9.84 
Maximum 110.52 174.14 141.43 10.89 
Variance 375.05 2078.91 656.39 176.06 

RMS 68.78 126.47 100.36 9.70 
Range 65.25 126.47 87.03 11.76 

Digital Mammography Dream Challenge Dataset 
Entropy 2.92 5.81 4.79 0.51 

Mean 47.5 100.79 76.57 9.17 
Standard Deviation 25.46 48.35 36.64 4.69 

Minimum 5.4 25.4 12.2 4.02 
Maximum 111.82 195.9 161.71 16.814 
Variance 966.37 3029.92 1899.42 394.69 

RMS 56.21 111.7 86.46 9.87 
Range 56.21 183.56 145.68 21.67 

MIAS + Digital Mammography Dream Challenge Dataset 
Entropy 2.92 5.81 4.47 0.45 

Mean 47.5 122.29 90.17 13.19 
Standard Deviation 15.33 48.35 24.72 8.49 

Minimum 5.66 81.23 44.01 22.63 
Maximum 110.52 196.44 147.66 16 
Variance 366.64 3029.92 1035.48 613.02 

RMS 56.21 126.47 95.73 11.41 
Range 56.21 186.36 101.66 29.2 

 
Figure 7. The histograms of features values of the MIAS dataset. 
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Figure 8. The histograms of features values of the digital mammography dream challenge dataset. 

 
Figure 9. The histograms of features values of the combination of the MIAS and digital 
mammography dream challenge datasets. 

6. Conclusions 

The goal of this work was to classify the normal and abnormal breast tissues in mammograms. 
A new CAD system was proposed. The breast was suppressed from any artifacts and the pectoral 
muscle was eliminated as they appear, approximately, with a similar density as the dense tissues in 
the mammogram image. In the feature extraction step, some statistical features were extracted and 
used to construct several individuals, ensemble, and multiple classifier systems. The suggested CAD 
system was capable of classifying normal and abnormal breast tissues in mammograms. It considered 
the influence of combing two datasets on classification accuracy. It also studied the effect of using 
multiple classifier systems with different structures combined with the feature selection on 
classification accuracy. The proposed CAD system achieved a classification accuracy of 99.5% (using 
an individual RT DT classifier) and 97.55% (using an individual RF DT classifier) for MIAS and 
Dream Challenge datasets, respectively. The classification accuracy reached 98.7% using an 
individual RF DT classifier for MIAS and Dream Challenge datasets when combined together. This 
is better than the 97.55% of the Dream Challenge dataset. Moreover, the CAD system, constructed 
using the ensemble classifiers of the same type and multiple classifiers of different types, 
outperformed the classification results of the individual classifiers for both MIAS and Dream 
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Challenge datasets when used separately and combined together. On the other hand, the features 
selected using the best first and the random search methods of the CAD system have improved the 
classification performance of the classification models for both MIAS and Dream Challenge datasets 
when used separately and combined together. Finally, the proposed CAD system results 
outperformed the performance of several previous CAD systems that have appeared in the literature. 
The proposed CAD system was able to classify the lesions completely, as the accuracy using the best 
first wrapper FS based on k-NN was 100% in the case of combining the two datasets. Therefore, the 
proposed CAD system could be considered as a powerful tool to detect and classify abnormalities in 
the breast.  
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