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Abstract: The rat has been frequently used as a model to study several human diseases, including
cancer. In many research protocols using cancer models, researchers find it difficult to perform several
of the most commonly used techniques and to compare their results. Although the protocols for the
study of carcinogenesis are based on the macroscopic and microscopic anatomy of organs, few studies
focus on the use of imaging. The use of imaging modalities to monitor the development of cancer avoids
the need for intermediate sacrifice to assess the status of induced lesions, thus reducing the number of
animals used in experiments. Our work intends to provide a complete and systematic overview of rat
prostate anatomy and imaging, facilitating the monitoring of prostate cancer development through
different imaging modalities, such as ultrasonography, computed tomography (CT) and magnetic
resonance imaging (MRI).

Keywords: computed tomography (CT);, macroscopy; magnetic resonance imaging (MRI);
microscopy; ultrasonography

1. Introduction

The prostate is the largest accessory gland of the male reproductive tract [1], and is responsible for
the secretion of a slightly alkaline fluid that forms part of the seminal fluid [2]. This accessory gland is
not exclusive to males, with it also being present in female Mongolian gerbils [3].

Prostate cancer is the second most common cancer in men. In 2012, it affected approximately
1.1 million men and caused 307,000 deaths worldwide [4]. Prostate cancer can be studied in vitro,
allowing for the understanding of biological mechanisms underlying the development of the
disease, but the current in vitro models fail to mimic the cell interactions that occurs in the tumor
microenvironment. These data mean that animal models are of great importance for the study of
prostate carcinogenesis, and for the development of new pharmacological and non-pharmacological
prophylactic and therapeutic strategies to fight this disease. Several animal models are currently
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available for the study of prostate cancer carcinogenesis, including: spontaneous, chemically or
hormonally induced, implantation of cancer cells and genetically engineered animals [5-7].

The rat was first used as a model of prostate cancer in 1937 by Moore and Melchionna [8]. Since
the anatomy of the prostate varies greatly between species, a document providing researchers with a
complete overview of the macroscopic and microscopic anatomy of the rat prostate, and its non-invasive
monitoring by different imaging modalities, such as ultrasonography, computed tomography (CT),
magnetic resonance imaging (MRI) and positron emission tomography (PET) is sorely needed.

This work intends to fill this gap, describing the normal and abnormal cancer macroscopic
and microscopic anatomy of the rat prostate gland and its imaging monitoring by ultrasonography,
CT and MRI.

2. Prostate Cancer Induction Protocol

The images included in this article are part of an experimental assay aiming to characterize prostate
cancer evolution in male Wistar Unilever (Rattus norvegicus) rats. All procedures were performed
according to the European Directive 2010/63/EU on the protection of animals used for scientific purposes.
The Portuguese Ethics Committee for Animal Experimentation (Direcgdo Geral Alimentagio e Veterindria)
approved all of the experiments and procedures carried out on the animals (ethical approval no. 021326,
26th October 2016), after the approval (427-e-DCV-2016) from the committee for animal welfare of the
University of Tras-os-Montes and Alto Douro (18th April 2016).

The prostates of five rats (two normal and three with cancer induction) between 17 to 61 weeks
of age were evaluated by ultrasonography, CT and MRI. The animals were maintained under
controlled conditions, with stable temperature (23 + 2°C), humidity (50 + 10%), air system filtration
(10-20 ventilations/hour) and light:dark cycle (12-h:12-h). They had free access to water and a
standard laboratory diet (Mucedola 4RF21®, Milan, Italy). The water was changed and the cages were
cleaned weekly.

To induce prostate cancer the following protocol was performed in three animals: At 12 weeks
of age, the animals from the prostate cancer group received a subcutaneous administration of the
anti-androgenic drug flutamide (50 mg/kg of body weight; TCI Chemicals, Portland, OR, USA)
for 21 consecutive days. Twenty-four hours after the last administration of flutamide, testosterone
propionate (TCI Chemicals, Portland, OR, USA) was dissolved in corn oil and subcutaneously
administered to the animals at a dose of 100 mg/kg. Forty-eight hours later, the animals were
intraperitoneally injected with the carcinogenic agent N-Methyl-N-nitrosourea (MNU) (Isopac®, Sigma
Chemical Co., Madrid, Spain), at a dose of 30 mg/kg. Two weeks later, silastic tubes filled with
crystalline testosterone (Sigma Chemical Co., Madrid, Spain) were subcutaneously implanted for a
maximum period of 44 weeks in the interscapular region of animals previously anesthetized with
ketamine (75 mg/kg, Imalgene® 1000, Merial S.A.S., Lyon, France) and xylazine (10 mg/kg, Rompun®
2%, Bayer Healthcare S.A., Kiel, Germany). The two control animals were not subjected to any
treatment. At the end of the experiment, all animals were sacrificed through an intraperitoneal
injection of ketamine (75 mg/kg, Imalgene® 1000, Merial S.A.S., Lyon, France) and xylazine (10 mg/kg,
Rompun® 2%, Bayer Healthcare S.A., Kiel, Germany), followed by exsanguination by cardiac puncture.
The prostate from each animal was then collected and processed for histological analysis.

3. Macroscopic Anatomy

The anatomy of the prostate gland varies widely between species, but it is generally located below
the bladder and in front of the rectum [5-9]. The prostate is a compact structure in men and dogs, but
it is composed of several lobes in rats and mice. The rat prostate is composed of four distinct lobes
with different morphological characteristics which are commonly called the ventral, lateral, dorsal
and anterior lobes, and are classified according to their relative position to the urinary bladder [5-9]
(Figure 1). Despite the anatomical differences, prostate carcinogenesis in rats and men is controlled
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by similar molecular mechanisms, making the rat a valuable model for the study of human prostate
diseases, including cancer [7].
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Figure 1. Macroscopic appearance of rat prostate and other surrounding anatomical structures at
61 weeks of age. (A) In situ photography of an animal from control group, ventral view; (B) Photography
of prostate from an induced animal (dorsal view). Seminal vesicles and coagulative glands extended
caudally. (C) Line diagram of prostate, urinary bladder and closed sex glands. Coagulating glands
(CG), dorsal (DP) and ventral prostate lobes (VP), seminal vesicles (SV) and urinary bladder (UB).

4. Microscopic Anatomy

The rat prostate is a highly specialized tubulo-alveolar exocrine gland [10]. It consists of four
distinct paired (right and left) lobes, the dorsal prostate gland, lateral prostate gland, ventral prostate
gland, and anterior prostate gland or coagulating gland [11-13], classified according to their position
in relation to the urethra, into which the glandular ducts drain (Figure 2A) [10,14]. Each of the prostate
lobes has a distinctive histology. For the evaluation of histopathological lesions, it is important that
each gland is fully represented and correctly identified [12]. Reliable identification of the lobes depends
on obtaining a cut section that maintains the anatomical relationships of each lobe to the others and to
the urethra [12,15].

Histologically, the prostate lobes are surrounded by a thin mesothelial connective capsule. Each
lobe is composed of individual glands (alveoli or acini) and a series of branching ducts that drain
independently into the urethra [16]. The acini are separated by a thin loose connective tissue that contains
stromal cells, interspersed smooth muscle cells, vessels, nerves, ganglia [13], macrophages, and mast
cells [17]. The cells lining the acini and ducts include luminal secretory cells, non-secretory basal cells
(less frequent, corresponding to 2% of the acinar cells) [17], and a low number of neuroendocrine
cells [18]. The luminal cells vary from cuboid to tall columnar and the height of the cells depends upon
the degree of secretory activity and glandular distension [12,19]. The acini are surrounded by smooth
muscle that contract to expel the prostate secretions [17]; depending on the secretory activity, the lobes
are filled with a proteinaceous secretion that stains slightly eosinophilic [12].

The dorsal prostate is located below and behind the attachment of the seminal vesicle and the
coagulating gland and surrounds the urethra dorsally (Figure 2B) [11]. Microscopically, it resembles
the coagulating gland [12,17]. The acini are small with reduced infolding of the epithelium [15,18] and
are loosely distributed within the stroma [11,15,18]. The acinar lining cells are generally cuboid [15],
but may vary from cuboidal to tall columnar, with cytoplasmic blebs (Figures 2C and 2D) [13,17],
and centrally located nuclei [13]. The acini are surrounded by a thin fibromuscular layer [13,17],
and contain a slightly eosinophilic secretion [11,18] that stains an intermediate color between that of
the secretions of the lateral and ventral lobes [12].
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The lateral prostate is just below the seminal vesicle and coagulating gland [11] and is lined by a
simple cuboid [11,13] to tall columnar epithelium [13], with basal nuclei and few to moderate areas
of epithelial infolding (Figure 2E) [11,13]. These cells contain an eosinophilic cytoplasm that is less
granular than that of the dorsal prostate, and which has a distinctive brush border [12] with prominent
supranuclear areas of pallor (Figure 2F) [15]. The glandular lumen may be of different sizes, from small
to large, and contains a strongly eosinophilic secretion [10,12,13,15,17,20]. Due to the relative difficulty
associated with the anatomic individualization of the dorsal and lateral lobes [10,18], and similar
overlapping histological features [17], these lobes are usually classified as a single element, called the
dorsolateral prostate.

The ventral prostate arises from the ventral aspect of the urethra, immediately below the
bladder [11]. It is the largest lobe, constituting approximately half of the mass of all the prostatic
tissue, and is most easily separated from the rest of the prostate [11]. It is composed of closely
packed varying-sized acini lined by low to tall columnar epithelium [11,13], basophilic cytoplasm
(Figure 2G) [15,19], a basally located nucleus and a supranuclear clear area (Figure 2H) [11,13,15].
Glands show very scarce infolding [11,13,15,19], are surrounded by a very small amount of smooth
muscle, and contain pale eosinophilic serous [12,13,15,18] or flocculent secretions [12,19].

The coagulating gland is sometimes referred as the dorsocranial, cranial, or anterior prostate [12,20],
and lies adjacent and parallel to the concave surface of the seminal vesicle [11,12]. The acini are
tightly packed and surrounded by a prominent fibromuscular layer [15]. The glands are lined by
simple cuboid to columnar epithelium [11-13], with an eosinophilic granular cytoplasm, a centrally
located nucleus and an inconspicuous nucleolus [13]. The cells are arranged in extensive branching
pattern, forming papillary, or cribriform structures [12,13,15], and the lumen contains an abundant,
homogeneous, pale eosinophilic proteinaceous secretion (Figures 2I and 2J) [12,13] similar to that seen
in the dorsal prostate [12]. The epithelial height varies throughout the gland, as does the secretory
activity [11].

Figure 2. Cont.
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Figure 2. Microscopic features of normal rat prostate, 61 weeks of age. (A) Midtransverse section of the
prostate showing prostatic urethra (PU) containing coagulated secretion (CS) (also denominated seminal
plug or copulatory plug), and showing prostate ducts (PD) and ductus ejaculatorii (DE) enclosed
by smooth muscle (SM) and surrounded by lateral prostate (LP). (B) Tissues surrounding PU with
neighboring dorsal (DP) and lateral (LP) prostate lobes. (C) Dorsal prostate: small acini surrounded
by a fibromuscular layer. (D) Dorsal prostate: cuboid to columnar cells presenting cytoplasmic blebs.
(E) Lateral prostate showing moderate epithelial folding. (F) Lateral prostate acini lined by cuboid
cell with supranuclear clear areas and brush border (arrow). (G) Ventral prostate showing acini with
scarce infolding lined by basophilic cells. (H) Ventral prostate lined by columnar cells with basal nuclei
and supranuclear cytoplasmic clear areas. (I) Coagulating gland showing tightly packed acini with
intense infolding. (J) Coagulating gland presenting acini with high number of papillary structures,
surrounded by a prominent fibromuscular layer (FM). (A-J) H&E staining.

5. Prostate Imaging

Prostate cancer-related deaths have decreased over the last few years, in part due to the extensive
use of screening strategies such as digital rectal examination and the measurement of serum levels of
prostate-specific antigen (PSA) [21]. Furthermore, the prostate gland and prostate carcinogenesis may
be non-invasively monitored through different imaging modalities, such as ultrasonography, CT, MRI,
and PET/CT.
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5.1. Ultrasonography

Ultrasonography is the oldest and most widely used technique for anatomical imaging in clinical
practice [21]. It has some advantages when compared with other imaging modalities: it does not impose
radiation that may harm the patient or the handler [22], it allows for dynamic and real-time study, may be
used guiding prostate biopsies, it is better tolerated than other imaging modalities in patients with
claustrophobia, it can be used in patients with pacemakers or other metal implants, and it is portable
and less expensive than most other imaging modalities [22-26]. However, ultrasonography also has
several important clinical limitations in differential diagnosis of cancerous tissue and nonmalignant
conditions and low sensitivity in early diagnosis [26]. In terms of experimental research, where
the animals are monitored several times throughout the experiment, the fact that ultrasonography
can be performed in awake animals previously adapted to the researchers constitutes an additional
advantage when compared with CT and MRI, in which the animals need to be anesthetized beforehand.
Ultrasonography allows not only for the study of prostate anatomy (dimension, shape, structure of
parenchyma), but can also evaluate the tumor microenvironment (prostate vascularization, pattern
of distribution of the vessels inside the parenchyma) through the use of distinct modes, like B mode,
Power Doppler, Color Doppler, Pulsed Doppler, B Flow and Contrast-enhanced ultrasound [26,27].

Procedure for rat prostate monitoring: For ultrasonographic examination, alert animals should be
restrained by a researcher and placed in the supine position. The skin of the caudal aspect of the
abdomen and the inguinal region should be shaved using a machine clipper (AESCULAP® GT420 Isis,
Aesculap Inc, Center Valley, PA, USA) (Figure 3A). A real-time scanner (Logiq P6®, General Electric
Healthcare, Milwaukee, WI, USA) and a 12 MHz linear transducer may be used, and acoustic gel needs
to be applied (Aquasonic, Parker Laboratories Inc., Fairfield, NJ, USA). A complete transverse scan
from the caudal aspect of the abdomen to the inguinal region (Figure 3B), and a longitudinal scan
(Figure 3C) should be performed using B mode.

- J
»

Figure 3. Preparation of a rat for a ultrasonographic exam. The animals should be restrained by
a researcher and placed in supine position. The skin of the caudal aspect of the abdomen and the
inguinal region should be shaved (A). Transverse (B) and longitudinal (C) scans of the prostate may be
performed using B mode.
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Transverse scan: In the transverse scan, the urinary bladder presents as a round to oval shape filled
with urine (anechoic structure) and the prostate lobes are visible around the urinary bladder. The ventral
prostate lobes appear as hypoechoic elongated structures (one right and one left) with a hyperechoic
capsule, placed ventrally to the urinary bladder (Figure 4A, B). In this scan, the dorsal prostate is only
observed close to the urinary bladder neck (urinary bladder with low diameter, almost disappearing from
the screen) (Figure 4B). The dorsal prostate appears as a round hypoechoic structure with a hyperechoic
capsule, placed dorsally to the urinary bladder. The seminal vesicles (accessory glands of the male genital
tract) are also observed in this transverse scan. They are seen as the hypoechoic elongated structures
(less hypoechoic when compared with prostate gland lobes), placed dorsally to the urinary bladder, in
the transition area between the cranial abdomen and urinary bladder neck (Figure 4A).

Figure 4. Transverse ultrasonographic scan of the prostate from control animals. The scan was
performed in the caudal aspect of the abdomen (A) and in the inguinal region (B). In A can be observed
the urinary bladder (asterisk) surrounded by the ventral lobes of the prostate (arrowheads) and the
seminal vesicles (arrows), and in B, the neck of the urinary bladder surrounded by the ventral prostate
lobes (arrowheads) and the dorsal prostate lobe (bold arrow). The 1 represents the depth (1 cm).
The yellow II represents the focus of the ultrasound beam.

Sagittal scan: In the sagittal scan, the urinary bladder is observed as an elongated structure filled
with urine (anechoic content). The ventral prostate lobes are occasionally observed ventrally to the neck
of the urinary bladder, with an appearance as previously described for the transverse scan. The dorsal
prostate is observed dorsal to the neck of the urinary bladder, presenting as a round to elongated shape,
with a hypoechoic appearance and a hyperechoic capsule (Figure 5).

Figure 5. Longitudinal ultrasonographic scan of prostate from control animals (A,B). The dorsal
prostate lobe (arrow) is observed dorsally to the neck of the urinary bladder (asterisk).

Monitoring of the prostate during the experimental induction of prostate cancer: The development
of prostate cancer was induced through a multistep protocol. The prostates of both the control
(Figure 6A-F) and prostate cancer-induced (Figure 6G-L) groups were monitored at different time
points during the experimental protocol. The transverse scan allowed for the observation of the ventral
prostate lobes and seminal vesicle around the urinary bladder, and the longitudinal scan allowed for
the observation of the dorsal prostate. The first scan was performed one week before the beginning of
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the experiment (11 weeks of age) (Figure 6A,G), and showed similar morphologic characteristics in
both groups. The second scan was performed three weeks after the administration of the anti-androgen
drug flutamide (15 weeks of age), and a reduction of the size of the ventral prostate lobes was observed
in the prostate cancer-induced group (Figure 6H). The third scan was performed six weeks after
flutamide administration and four weeks after the administration of the carcinogenic agent MNU
(21 weeks of age) and demonstrated an increase of the size of the prostate lobes, when compared to the
previous exam (Figure 6]). The fourth US exam was performed 17 weeks after the administration of
MNU (32 weeks of age), and an increase in prostate size was also observed (Figure 6]). The last US
exam was performed 46 weeks after the administration of MNU and an increase in size was mainly
observed in the dorsal prostatic lobe (Figure 6L). In the control group, the size of the prostate lobes
gradually increased from the first to the last exam (Figure 6A-F).

Control group Prostate cancer-induced group

11 weeks of age

15 weeks of age

21 weeks of age

32 weeks of age

35 weeks of age

61 weeks of age

Figure 6. Prostates of both control (A-F) and prostate cancer-induced (G-L) animals were monitored
by ultrasonography through the experimental protocol at the same time points. Transverse scans were
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performed at different abdomen levels one week before flutamide administration (G), three weeks
after flutamide administration (H), six weeks after MNU administration (I), 17 weeks after MNU
administration (J) and 20 weeks after MNU administration (K). Longitudinal scans were performed
46 weeks after MNU administration (L). Changes in prostate and seminal vesicles dimension are evident
in images, as well as some alterations of internal echogenicity of these structures in cancer-induced
animals. The urinary bladder (asterisk) is surrounded by the ventral prostate lobes (arrowheads),
dorsal prostate (bold arrow) and seminal vesicles (arrows).

Due to the mentioned limitations of ultrasonography for detecting and locating prostate cancer,
and in finding the exact boundaries between benign and malignant tissue, other imaging modalities,
such CT, MRI and PET/CT are therefore employed [28].

5.2. Computed Tomography (CT)

CT has had a massive impact on medical practice over the last 40 years [29]. By creating detailed
images of large anatomical regions in few seconds, CT has allowed for a deepened understanding of
anatomy, physiology and pathology, with improved diagnosis, a reduction in the number of unneeded
medical procedures and increased success of treatment. Despite this, CT has important limitations
in soft tissues differentiation (normal and cancerous) and use ionizing radiation with inevitable side
effects [29,30], being rarely used for human prostate cancer diagnosis or monitoring.

Procedure for rat prostate monitoring: For CT, the animals should be anesthetized by an
intraperitoneal injection of ketamine (75 mg/kg, Imalgene® 1000, Merial S.A.S., Lyon, France) and
xylazine (10 mg/kg, Rompun® 2%, Bayer Healthcare S.A., Kiel, Germany). They should be placed
in a supine position and a scan can be performed with the Brivo CT325 scanner (General Electric
Healthcare, Milwaukee, WI, USA). A 24G catheter (BBraun, Barcarena, Portugal) should be inserted in
the caudal vein for the administration of about 1 mL (900 mg I/Kg) of the iodine-based contrast agent
Ultravist 300 (Bayer HealthCare, Berlin, Germany) [31,32].

Scan: The urinary bladder presents as a round structure with a lower signal than the prostate
lobes and seminal vesicles. The ventral prostate lobe is observed ventral to the urinary bladder, while
the seminal vesicles are observed in a dorsal position (Figure 7). The contrast-enhanced images do not
allow a better visualization of the prostate lobes, neither become visible prostate zones with distinct
contrast enhancement. Prostate cancer, even in early phase is characterized by an increased blood flow
due to the angiogenesis [33].

Figure 7. CT soft tissue window (WW 400, WL 40) transverse plane of prostate from control (A) and
from cancer-induced (B) animals at 60 weeks of age without contrast. An enlargement of prostate
and seminal vesicles from the cancer-induced animal is evident in the image (B). The urinary bladder
(asterisk) is surrounded by the ventral prostate (arrowheads) and the seminal vesicles (arrow).
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5.3. Magnetic Resonance Imaging (MRI)

MRI is a safe diagnostic technique widely used in medicine. Advances in MRI have improved
the detection and characterization of prostate cancer due to the use of a multiparametric approach
that combines anatomical and functional data [2]. MRI T2-weighted images (WI) sequences allow
excellent zonal anatomy of human prostate, a characteristic low-signal intensity of cancerous tissue and
detection of disease extension [34]. However, other benign prostate conditions are also characterized
by T2 WI low signal intensity and a definitive diagnosis of prostate cancer is not possible [34]. Unlike
CT, MRI does not use ionizing radiation and works by measuring the reversal of the atomic spin,
and not by changing their structure, composition or properties [35]. However, the relatively high
cost, the requirement of injected contrast agents for functional imaging, no detection of calcification,
claustrophobia and the long scanning time required constitute the main disadvantages of MRI [36].

Procedure for rat prostate monitoring: The anesthetic protocol described above for CT is also
adequate for MRI. The animals should be placed in a supine position, and both axial and sagittal scans
can be performed with the GE MRI 3 Tesla scan (General Electric Healthcare, Milwaukee, WI, USA)
using a coil encompassing the rat pelvic region.

Scan: Proton-density (PD) (Repetition time (TR) = 1240, Echo time (TE) = 40) and T2 (TR = 4000,
TE = 100) weighted studies with transverse plane images (slice thickness of 3 mm) allow for a good
visualization of the prostate and surrounding structures (Figure 8A—C). The urinary bladder presents
as a round structure surrounded by the ventral prostate and the seminal vesicles. The seminal vesicles
exhibit low signal when compared to the prostate and urinary bladder in both PD and T2 images
(Figure 8A—C). Morphological differences between the prostate and seminal vesicles in normal and
induced rats can be clearly observed. In T1 (TR = 300, TE = 14) weighted studies, the prostate and
surrounding structures exhibit a low signal (Figure 8D). Scanning in other planes, such as dorsal
and sagittal views, also help to provide good three-dimensional information about the prostate and
surrounding tissues (Figure 9).

Figure 8. Transverse MRI scan at different levels of rat prostate at 58 weeks of age: (A) PD weighted
image of a normal animal; (B) PD weighted image of a cancer-induced animal (similar level of A);
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(C) T2 weighted image of a cancer-induced animal; (D) T1 weighted image of a cancer-induced animal
(similar level as (C)). The urinary bladder (asterisk) is surrounded by the ventral prostate (arrowheads),
dorsal prostate (bold arrows) or seminal vesicles (arrows). A prostate and seminal vesicles enlargement
is evident in cancer-induced animal, as well some changes with low-intensity signal of some zones of
these structures (open arrows). In images (A) and (B), it is possible to observe the transition between
the seminal vesicles and the dorsal prostate, standing out the loss of signal intensity of seminal vesicle

in prostate cancer-induced animal.

Figure 9. MRI PD weighted images of a cancer-induced animal, 58 weeks of age in dorsal (A,B) and
sagittal (C) plane. The urinary bladder (asterisk) is well visible, surrounded by the dorsal (bold arrow)
and ventral prostate (arrowhead), and the seminal vesicles (arrow). Low-intensity MRI signals were
observed (open arrows) in transition dorsal/ventral prostate (B) and in seminal vesicles (C).

5.4. Positron Emission Tomography/Computed Tomography (PET/CT)

Positron emission tomography/computed tomography (PET/CT) using a radiotracer with glucose
is a common procedure in oncologic human diagnosis as it results in differential tissue signal, dependent
of high or low glucose tissue metabolism [37]. PET/CT is particularly helpful in early diagnosis, to detect
metastases or to assess treatment responses and to provide prognostic indicators [38]. However, this
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common PET/CT radiotracer showed limitations in detection of primary prostate cancer, due to the
low glucose metabolic rate and proximity of urinary excretion [37,39]. Some recent studies using
specific radiotracers without glucose, as 1 C-choline, 18F-fluciclovine, prostate-specific membrane
antigen (PSMA) and 18F-sodium fluoride, had promising results, distinguishing areas of prostatic
cancer from normal tissue, as well as evaluating bone metastasis [34,40,41]. PET-CT evaluation
results in more accurate assessment of patients with recurrent high PSA serum levels and overcome
many limitations of other medical imaging modalities [42]. !C-choline targets cell membrane lipids
biosynthesis enhanced in cancer cells [40]. 18F-fluciclovine is an amino acid analog with an enhanced
uptake in cancer cells [40]. PSMA is normally expressed in epithelial cells within the prostate and
several PSMA ligands are commercially available as Gallium-68, Fluorine-18 and Copper-64 [43].
The ' C-choline, 18F-fluciclovine and PSMA signal positively correlates with PSA serum levels and had
a good sensitivity to find sites of prostatic cancer recurrence after radical prostatectomy or radiation
therapy [40,43]. Current evidence suggests that PSMA tracers have the best detection performance
with low serum PSA levels [40,42,43]. PSMA is overexpressed in prostate cancer cells being associated
with cancer aggressiveness, metastasis and recurrence [33,43]. The 18F-sodium fluoride is useful for
evaluating bone metastasis, is highly sensitive to osteoblastic activity and has better image resolution,
sensitivity and specificity than conventional bone scintigraphy [40]. PET/CT studies in rat prostate
cancer model are scarce; however it has sometimes been used to test new radiotracers or to study
tissue hypoxia [44,45].

6. Discussion

Considering the high incidence and the high mortality of prostate cancer, its study is of great
importance. Researchers have therefore employed their efforts to develop in vivo models, which are
of paramount importance for the comprehension of this disease and for the development of new
preventive and therapeutic strategies to fight it. Rats are frequently considered to be the best model for
the study of various human diseases, because they are relatively cheap when compared with other
species, their physiology and genetics are well-known, they are easy to manipulate, the carcinogenesis
process occurs fast (initiation, promotion, progression and metastasis may be observed) and most
importantly they are mammals like humans [46,47]. Although the rat has been frequently used as
a model to study prostate disease, including prostate cancer, there are few reports on the normal
anatomy of the rat prostate and its monitoring by different imaging modalities, such as ultrasound, CT,
MRI or PET.

Nowadays, imaging is considered indispensable in clinical management of human prostate
cancer being helpful for abnormal tissue detection, localization or guiding needle biopsies [34,48].
An important milestone was the introduction of ultrasonography to identify lesions and guide
transrectal biopsies in 1989 in humans [48]. However, in the meantime, other imaging modalities have
emerged with advantages in terms of precocity of diagnosis and delimitation of lesions [34]. The rat
was firstly used for the study of prostate carcinogenesis in 1937 by Moore and Melchionna [8]. Prostate
cancer induction protocol leads to the enlargement of prostate rat ventral and dorsal lobes, as well
seminal vesicles. This enlargement is well detected by ultrasonography, MRI or CT. In rat the MRI seems
to be better than ultrasonography to detect and localize abnormal prostate and seminal vesicles tissue
(Figure 10). The appearance of rat prostate dorsal and ventral lobes in MRI sequences is similar being
evident a homogeneous high-intensity signal in T2 and PD WL Normal seminal rat vesicles in MRI T2
and PD WI also show a high-intensity signal, but its enlargement was associated with MRI signal loss.
The seminal vesicles enlarged showed mural atrophy, flattened papillary folds, reduction of glandular
structures, atrophy of muscle layer and in some areas, inside the glandular structures, we observed
small masses of eosinophilic laminated concretions of luminal secretions, variable in size and shape
(corpora amylacea) (Figure 11A). The human prostate peripherical zone in MRI T2 weighted sequences
is also characterized by a high-intensity signal due to water rich tissue composed by numerous ductal
and acinar elements [34]. In this zone, cancerous lesions appear as low-intensity signal ill-defined tissue.
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However, these low-intensity changes are also characteristic of inflammatory conditions, atrophy and
local hemorrhages and definitive diagnosis can be only performed by histopathologic studies [34].
In the case of the MRI T2 and PD WI low-intensity signal observed in transitional zone between left
ventral and dorsal rat prostate lobes (Figures 8 and 9) in histologic study was described as extensive
necrosis, acute acini inflammation, and chronic stromal inflammation with fibrosis. In MRI T2 WI
study (Figure 8) the loss of signal homogeneity of seminal vesicles was also characterized by zones
with a low-intensity signal, in histologic study was diagnosed the development of a papillary adenoma
(Figure 11C). Ultrasonography is very helpful for monitoring rat prostate dimension and form, and
possibly to detect large lesions, and it is the only one that may be performed in awake animals. CT does
not allow soft tissues differentiation (normal and cancerous) and is rarely used for human prostate
cancer diagnosis or monitoring. CT in rats only detected the enlargement of prostate and seminal
vesicles in prostate cancer animals and even the contrast-enhancement did not show ability to become
evident prostate zones with distinct vascularization. However, CT allows a good especial prostate zonal
localization and is frequently used in humans combined with PET (PET/CT) [37,44,49]. PET highlights
the metabolic, molecular and cellular activity of prostate tissue. In humans, when used in combination
with an imaging modality with a good anatomic information, such as CT or MR], it allows prostate
cancer diagnosis, staging, or detection of metastasis development [34]. However, the ideal radiotracer
does not exist, and further research is required to find the optimal clinically helpful PET tracer in
human prostate cancer [39]. The PET/CT studies in rat prostate cancer are scarce, and some works
showed promising results in evaluation of prostate cancer therapies and hypoxia zones [44].

Figure 10. Comparison of an MRI T2 WI (A) and ultrasonographic (B) transverse scan of the rat prostate.
In both images, it is possible to observe the ventral prostate (arrowheads) and the transition between
the seminal vesicles (arrows) and the dorsal prostate (bold arrows). A low-intensity signal of prostate
is observed in (A) (open arrow), no abnormal tissue echogenicity was evident in (B).

Figure 11. Cont.
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Figure 11. Microscopic appearance of abnormal rat seminal vesicles and prostate at 61 weeks of

age in prostate cancer induced group. (A) Enlarged seminal vesicle showing corpora amylacea (*);
(B) Dorsolateral left prostate lobe showing extensive necrosis, acute acini inflammation (*) and chronic
stromal inflammation with fibrosis (arrow) (see normal dorsal and lateral prostate lobes in Figure 2B,F).
(C) Seminal vesicle mural atrophy and presence of a papillary adenoma (*).

7. Conclusion

This work provides a description of the macroscopic and microscopic anatomy of the rat prostate,
and its imaging by ultrasonography, CT and MRI. Both ultrasonography and MRI allow for a
comprehensive and detailed study of the rat prostate and seminal vesicles, and are recommended
for the study of prostate anatomy and for the monitoring of prostate diseases such as cancer. MRI
show high sensitivity for detecting and delimiting abnormal prostatic tissue. The CT showed
limitations in differentiation of internal prostate zones, eventually with different abnormal tissue even
in contrast-enhancement studies.
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