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Abstract: Prostate cancer (PCa) diagnosis with current biomarkers is difficult and often results in
unnecessary invasive procedures as well as over-diagnosis and over-treatment, highlighting the need
for novel biomarkers. The aim of this review is to provide a summary of available metabolomics
PCa biomarkers, particularly for clinically significant disease. A systematic search was conducted
on PubMed for publications from July 2008 to July 2018 in accordance with PRISMA guidelines to
report biomarkers with respect to their application in PCa diagnosis, progression, aggressiveness,
recurrence, and treatment response. The vast majority of studies report biomarkers with the ability
to distinguish malignant from benign prostate tissue with a few studies investigating biomarkers
associated with disease progression, treatment response or tumour recurrence. In general, these
studies report high dimensional datasets and the number of analysed metabolites often significantly
exceeded the number of available samples. Hence, observed multivariate differences between case
and control samples in the datasets might potentially also be associated with pre-analytical, technical,
statistical and confounding factors. Giving the technical and methodological hurdles, there are
nevertheless a number of metabolites and pathways repeatedly reported across various technical
approaches, cohorts and sample types that appear to play a predominant role in PCa tumour biology,
progression and recurrence.
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1. Introduction

Prostate cancer (PCa) is the most common cancer in males aged over 70 years and the second
most common cause of cancer death in men [1]. Annually, there are more than 1.1 million newly
diagnosed patients worldwide. Curative treatment consists primarily of surgery and various forms
of radiation therapy [2,3]. Nevertheless, globally each year about 270,000 men die from PCa [4].
Moreover, costs occurring in developed nations in the first year after diagnosis are high. On the one
hand, overtreatment of indolent tumours, besides having a negative impact on quality of life, is a
major burden on public health care systems. There is a growing body of evidence indicating that an
important proportion of patients with high-risk disease may be undertreated, leading to further and
often costly treatments for more advanced or metastatic disease [5]. As incidence rates are expected
to rise due to demographic changes, improved clinical management of PCa would improve patient
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outcomes and reduce the cost-burden to health care systems. Most patients with early-stage PCa are
asymptomatic [1]. Signs of locally advanced or metastatic disease include unspecific lower urinary
tract symptoms that can also arise from benign hyperplasia of the prostatic gland. To date, digital
rectal examination (DRE) and testing for prostate specific antigen (PSA) are still the most common
clinically used tools for early detection, which however fail to predict clinical behaviour [1]. As PSA
has a low specificity and is associated with a high number of false positive rates [1], any nodularity or
induration of the prostate gland or increase in PSA-level will consecutively lead to further evaluation
by biopsy or via imaging technologies.

While multiparametric magnetic resonance imaging (MRI) holds some potential with
continued evaluation to improve prognostic information [6], current clinical practice still relies on
histopathological evaluation of biopsy specimens using the Gleason scoring system, which is based on
the glandular architecture [1]. Biopsies, albeit the most reliable, remain a problematic assessment of
the tumour extent and biology, as the procedure with up to 20 cores taken constitutes a substantial
burden and has significant potential side effects and complications. Patients are assigned into clinical
risk groups (low, intermediate, or high-risk), depending on PSA-level, Gleason grade and clinical
tumour-lymphnode-metastasis (TNM) staging [1]. The extent of PCa may be supplemented with bone
scanning, computed tomography (CT) staging or MRI according to clinical risk groups. Unfortunately,
this scoring system suffers from a high inter-observer variability [7] and the inherent risk of missing
more progressed/aggressive areas of the tumour, leading to misclassification. More importantly, these
classifications used for clinical decision-making cannot consider distinct tumour phenotypes and hence
fail to reliably predict patients’ individual risk.

The majority of PCa detected by screening have PSA levels between 4–10 ng/mL and moderate
Gleason sum scores. These patients are considered to have low to moderate risk disease, and
their treatment decisions should ideally be tailored to their anticipated tumour behaviour. “Active
surveillance” that defers initial treatment in favour of close monitoring and reassessment of
non-aggressive low-Gleason score PCa was introduced. However, it still requires repeated PSA-testing
coupled to re-biopsies (often at multiple time points) with additional risks and costs.

Depending on the findings and the psychological distress, clinicians and patients often tend to
opt for intense therapy in the absence of any decisive indication for the presence of aggressive disease,
which significantly contributes to widespread overtreatment. According to current estimates, up to
50% of PCa patients are subjected eventually to intense therapy, while only 20% are suffering from
aggressive disease [1]. Thus, PCa is a common but not particularly aggressive form of cancer.

Once a clinical decision for intense therapy has been made, patients will initially receive surgery or
various forms of radiation therapy, which is associated with severe side effects, impacting negatively on
quality of life [2,3]. Up to 50% of men treated with surgery or radiation in curative intent will eventually
relapse based on evidence of a detectable or rising level of PSA [8]. The current standard of care
for metastatic disease is anti-hormonal therapy (+/− docetaxel chemotherapy or second generation
androgen receptor pathway inhibitor), as most tumours are hormone-dependent and therefore respond
initially well to various forms of androgen deprivation therapy. Unfortunately, most PCas will recur
after 18–33 months to develop castration-resistant prostate cancer (CRPC). This cancer subtype requires
a multidisciplinary approach and involves counselling of the individual patient to discuss the viable
treatment options such as second line hormonal treatment or chemotherapy. Despite ongoing research
efforts, including studies with modern tyrosine kinase inhibitors, modern strategies to control CRPC
have shown clinical benefits that are not sustained beyond two years [9]. This is mainly due to the fact
that stratification of PCa patients based on molecular characteristics has not been implemented, which
in turn is explained, at least in part, by the genetic complexity of PCa [10].

All these facts underline the urgent need for novel biomarkers [11] to improve clinical decision
making and management of PCa. The rapid advances in molecular technologies allowed identification
of various potential biomarkers for PCa. These technologies include genetic sequencing, transcriptomic
expression profiling, proteomic and metabolomic profiling. The metabolome represents the complete
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set of metabolites as end products of cellular processes in a biological cell, tissue, organ or organism.
Metabolomics can be considered as a downstream or end-result measure of activities on the level of
the genome, epigenome, transcriptome and proteome, and their interactions with the environment [5].
Tumour cells are particularly reported to express distinct metabolic signatures [10] and their
interactions with the environment are more and more described as tumour microenvironment and
carcinoma-associated fibroblasts that are emerging fields of research [12,13]. Accordingly, over the last
decade, an increasing number of studies have attempted to capture metabolomic biomarkers for PCa
and these were most recently discussed in several narrative review articles. However, none of these
were systematic. Therefore, the aim of this review is to provide a systematic qualitative summary of
current evidence relevant to metabolomics biomarkers for prediction, diagnosis, progression, prognosis,
or recurrence of PCa according to PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines.

2. Methods

This systematic review follows the PRISMA guidelines and is reported in accordance with the
PRISMA statement.

2.1. Search Strategy

A systematic search was conducted on PubMed for all publications with relation to metabolomics
biomarkers of prostate cancer reported from July 2008 to July 2018, using the following combinations of
MeSH terms: prostate cancer (tiab) intervention with (metabolite OR metabolomic OR metabolomics)
intervention with (marker OR biomarker). Initially, titles and abstracts of all identified studies were
screened and reviewed on the basis of the established selection criteria.

2.2. Selection Criteria

English articles were selected based on their titles and abstracts for full-text review according
to their relevance to the issue of interest. The following inclusion criteria were applied with no
restriction to the bio-specimen used: identification of human PCa specific metabolites; indication
on PCa diagnosis, prognostics, aggressiveness or recurrence; evidence for the clinical utility of the
biomarkers; level of standardization of the analytical platforms used and their limitations. Only
metabolomics studies were included; other “omics” results were excluded. In addition, reviews and
studies made on animal models of PCa or on cell model systems were excluded. Finally, a screening
of the reference lists of included articles resulted in reviewing additional titles and abstracts for
potential inclusion.

2.3. Data Extraction

The selected studies were thoroughly examined and the following information were extracted
from each article: name of first author, year of publication, sample size (specifying the number of
cases and controls), analytical platform used, use case, relevant biomarkers candidates, validation
of biomarkers, statistical details and relevant comments about the study. Data were independently
extracted by two different reviewers (M.K., S.H.) and disagreements regarding the selected information
were solved by further review and discussion among them.

3. Results

A total of 169 articles were identified in the literature search (Figure 1). The full text was obtained
for 64 articles after screening and exclusion on the basis of titles and abstracts. Five of these article were
excluded from the analysis after the full text reading. The remaining 59 are summarized in Tables 1–4.



Diagnostics 2019, 9, 21 4 of 44

Records identified through
database searching

(n = 166)

Additional records identified
through other sources

(n = 3)

Records screened
(n = 169)

Records excluded
(n = 105)

Full-text articles
assessed for eligibility

(n = 64)

Full-text articles
excluded, with reasons

(n = 5)

Studies included in
the systematic review

(n = 59)

Id
en

tifi
ca

tio
n

Sc
re

en
in

g
E

lig
ib

ili
ty

In
cl

u
d

ed

Figure 1. PRISMA flow diagram of the literature search process.

3.1. Study Characteristics

Of all the 59 selected reports, a total of 43 studies were conducted on only one bio specimen as
follows: 14 studies were conducted on blood samples, 10 on urine samples and 19 on tissue samples.
Eight studies have used more than one of the aforementioned bio specimen in their analysis and thus
were reported in more than one table. nine reports analysed other types of biospecimens, such as
seminal fluid, or did in vivo magnetic resonance spectroscopy imaging (MRSI), i.e., spectroscopic
analysis of the prostate in situ using MRI scanners.

3.2. Outcomes

3.2.1. Blood Based Biomarkers

In total, seventeen metabolomics studies were conducted on blood samples (Table 1). Six
publications attempted to identify biomarkers of prostate cancer risk. Three of the six studies were
nested within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC) [14–16], while one
was part of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) [17], another
embedded in the JANUS cohort [18] with a further study incorporated within the European Prospective
Investigation into Cancer and Nutrition (EPIC) [19]. Ten studies focused on the assessment of biomarkers
for diagnostic and/or staging purposes. Only one study focused on the identification of prognostic
metabolites. Likewise, only one study reported on biomarkers for therapy prediction was found.

Blood Biomarkers Associated with PCa Risk

The ATBC study was a cancer prevention trial that enrolled 29,133 Caucasian male smokers
from Finland. These men were aged between 50–69 years at baseline, smoked at least 5 cigarettes
per day, and were assigned to one of four distinct intervention groups. The aim of the study was to
examine whether the vitamin supplementation with alpha-tocopherol and beta-carotene, either alone
or in combination, would prevent lung and other cancers compared to Placebo. All metabolomics
studies within the ATBC cohort were conducted by Demetrius Albanes and co-workers with the aim
to identify metabolomic profiles associated with the risk of prostate cancer up to 20 years prior to
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diagnosis. The group applied ultrahigh performance liquid chromatography/mass spectrometry
(LC-MS) and gas chromatography/mass spectrometry (GC-MS) for metabolic profiling of fasted serum
samples collected at baseline. In their first study, Mondul et al. analysed sera from 148 participants [14].
The case group comprised 74 patients who developed PCa up to 23 years after blood collection, while
74 participants without PCa diagnosis in the same period were selected to match the collection date and
age to serve as controls. The authors found a significant (corrected p < 0.000119) inverse association of
1 stearoylglycerol with overall prostate cancer risk (Odds ratio 0.34, p = 0.00006). Additional biomarker
candidates identified included glycerol and alpha-ketoglutarate, but their associations did not reach
statistical significance when corrected for multiple comparisons.

In their second study within the ATBC cohort [15], the authors repeated the metabolomics analysis
using an additional set of 200 confirmed cases of PCa and 200 controls that were independent of the
sample set of the first study. Notably, they were unable to replicate the association of 1-stearoylglycerol
and glycerol with increased PCa risk. Additionally none of the detected metabolites achieved statistical
significance after correction for multiple testing (p = 0.00008). Nevertheless, strong risk associations
between molecules involved in energy and lipid metabolism and risk of aggressive cancer were
observed. In addition, the previously reported association between alpha-ketoglutarate and risk of
aggressive prostate cancer (defined as TNM stage III-IV, AJCC stage≥ 3, or Gleason≥ 8) was confirmed
with a significance level of p = 0.00008 (Odds ratio = 0.69, p = 0.02). In addition, the authors identified
citrate, a large number of glycerophospholipids, including oleoyl-linoleoyl-glycerophosphoinositol,
and long chain fatty acids (LCFA) among the top metabolites associated with risk of aggressive Pca.
Most of these biomarkers were inversely related to aggressive PCa risk, with inositol-1-phosphate,
a precursor of myo-inositol, showing the strongest association (Odds ratio = 0.56, p = 0.002). When
stratified by median time from blood collection to diagnosis, distinct metabolites were found to be
associated with risk of aggressive PCa. Furthermore, high risk of aggressive Pca was associated with
elevated levels of thyroxine and trimethylamine N-oxide (TMAO), a liver metabolite biosynthesised
from trimethylamine which in turn is produced from dietary phosphatidylcholines and carnitine by
gut bacteria. In contrast, the pyrimidine-nucleoside 2′-deoxyuridine and adenosine 5′-monophosphate,
a constituent of ribonucleic acid, appeared related to more indolent forms of PCa.

Using the same sample set, the authors performed a secondary analysis in order to test,
whether men diagnosed with ≥ T2 tumours exhibit different metabolite profiles up to 20 years
prior to clinical diagnosis [16]. Compared to controls, qualitative differences in metabolite
profiles were found for tumour groups and various metabolites were reported; however, most
of them did not reach statistical significance after correction for multiple testing. Solely the
glycerophospholipid oleoyl-linoleoyl-glycerophosphoinositol already identified in the primary analysis
turned out to be significantly associated with subsequent diagnosis of locally advanced (T3) PCa
(Odds ratio = 0.49, p = 0.000017), but surprisingly not with later diagnosis of T4 disease. Apart
from that, non-significantly elevated serum levels of metabolites in histidine metabolism, including
the nucleoside 2’-deoxyuridine also found in the primary analysis, and an inverse association
with certain glycerophospholipids were found in men with T2 tumours. Men with T3 prostate
cancers showed increased sphingolipids and as well as lower glycerophospholipid signals. Men
with a later diagnosis of T4 tumour exhibited elevated signals for secondary bile acid lipids, sex
steroids and caffeine-related metabolites, while the carboxylic acids fumarate and citrate were
decreased in this group compared to controls. Moreover, the authors found consistent lower
levels of glycerophospholipids stearoyl-arachidonoyl-glycerophospho-ethanolamine (GPE) and
stearoyl-linoleoyl-GPE as well as a positive signal for euricoyl sphingomyelin in T2 and T3, but not
in T4 cases. Serum levels of the histidine metabolite 4-imidazoleacetate and the secondary bile acid
glycolithocholate sulfate were found to be elevated across all tumour stages.

The same group performed metabolomics profiling using serum samples from the PLCO trial [17],
which was a large randomized-controlled trial to evaluate the efficacy of screening methods for
different cancers including PCa. Participants were enrolled from 10 centres in the USA between 1993
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and 2001 and randomly assigned to either the screening or non-screening arm. From the screening
arm, non-fasting serum samples and data on serum total PSA measurement and DRE examination
(in contrast to the ATBC studies) were available for analysis. 380 participants with PCa diagnosis
during the post-screening trial period, i.e., 4.4–17.0 years after baseline, and 380 controls matched by
age, race, study centre, study year, and date of blood collection were included. Numerous metabolites
were reported to be associated with PCa risk, but none demonstrated statistical significance following
correction for multiple comparisons. They observed an inverse association with overall risk of PCa
and risk of aggressive PCa (T3, T4 or Gleason ≥ 8) for several amino acids and their derivatives, while
stearoylcarnitine was positively associated. Alpha-tocopherol, primary bile acid, and steroid hormone
metabolites were inversely associated with risk of indolent PCa. Positive associations of lipids with
overall risk of PCa as well as risk of aggressive PCa were also reported and were inconsistent with
findings in the ATBC cohort. Notably, alpha-ketoglutarate and citrate did not replicate and had even
opposite regulation in the PLCO cohort. Moreover, previous associations with aggressive PCa observed
for e.g., thyroxine and TMAO were not confirmed. However, the association of 2’-deoxyuridine with
overall prostate cancer risk could be replicated, as well as the associations of the glycerophospholipid
1-palmitoleoyl-2-linoleoyl-GPC and the bile acid tauro-beta-muricholate.

The JANUS study conducted by de Vogel and colleagues investigated the association of sarcosine
and metabolites along the choline oxidation pathway, i.e., from betaine down to serine, with risk of
incident PCa [18]. For this study, serum samples were analysed from 317,000 Norwegian men either
participating in health screening surveys or blood donation. LC-MS and GC-MS were used for targeted
analysis of six distinct metabolites in 3000 serum samples from patients with incident PCa with a
mean time to diagnosis of 15.6 years. 3000 control samples were available, being matched by age,
date of serum sampling, and county of residence. The results suggested that men with high serum
sarcosine (p = 0.03) or glycine (p = 0.07) levels have modestly reduced PCa risk, whereas serum betaine,
dimethylglycine, and serine were not associated with prostate cancer risk. However, the association of
sarcosine and glycine only held true when folate concentration was above 13.7 nmol/L. In addition, a
high glycine/serine ratio was related to a decreased PCa risk (p = 0.001), while other metabolite ratios
containing betaine, dimethylglycine, sarcosine or glycine were not.

Schmidt et al. reported various metabolites from several metabolite classes associated with risk
of PCa, advanced stage disease and death from PCa using blood samples from the EPIC study [19].
This trial was a European multi-center cohort study aiming to examine how diet is associated with
cancer risk. Case group comprised 1077 men diagnosed with PCa after blood collection matched to 1077
controls by the study center, length of follow-up, age, time of day, and fasting status at blood collection.
Using a targeted mass spectrometry approach, 122 metabolites were evaluated. Their strongest findings
were an inverse association of citrulline with overall risk of prostate cancer diagnosis within the first
five years of follow-up, whereas 12 different glycerophospholipids were inversely related to advanced
stage disease (TNM stage T3, T4 and/or N1-3 and/or M1). All these associations were significant
after correcting for multiple testing. In addition, conventionally significant associations (p < 0.05)
were seen for three acylcarnitines, two amino acids and a glycerophospholipid with overall risk of
prostate cancer, for 29 metabolites including 20 different glycerophospholipids with risk of advanced
disease, for 13 metabolites with risk of aggressive PCa (T4 and/or N1-3 and /or M1 or Gleason ≥ 8),
and for seven metabolites with death from prostate cancer. However, none of these markers have been
validated in an independent sample set.

Blood Biomarkers for Diagnosis and Staging of PCa

Andras and colleagues published a study that aimed to identify a metabolomic score for PCa
using 90 serum samples from patients who were suspected to have PCa and underwent prostate
biopsy [20]. In contrast to most other studies, where specimens were preserved at −80 ◦C, serum
was stored at −20 ◦C. The data set was split into a training/discovery set (n = 59) and a validation
set (n = 31), with 25 patients suffering from benign prostatic hyperplasia (BPH) and 34 patients
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diagnosed with PCa in the training set and 17 patients with BPH and 14 PCa patients in the validation
group. High-performance liquid chromatography coupled to electrospray ionization quadropole
Time-of-Flight mass spectrometry (HPLC-ESI-QTOF MS) was performed for a targeted analysis of
18 amino acids and 33 metabolites. No amino acid was significantly different between PCa and BPH
patients in the training cohort (p < 0.05). However, several of the 33 metabolites were significantly
altered, including glycerol-3-phosphate, glycerophosphocholine, distinct lysophosphatidylcholines,
retinoic acid, and prostaglandin. Due to a high grade of multicollinearity between metabolites,
six metabolites with p < 0.02 and the lowest correlations with other compounds were selected
for partial least square regression. The resulting score incorporating lysophosphatidylcholine 18:2,
homocysteine-inosine, methyladenosine, lipoic acid, hydroxymelatonin and decanoilcarnitine as
markers showed an area under the curve (AUC) value of 0.779 (p < 0.001) with a sensitivity of 74% and
a specificity of 76% for discriminating PCa from BPH in the training set. In the validation set, the score
distinguished PCa from BPH with a sensitivity of 88% and specificity of 60%. Including PSA to the
metabolomic score did not significantly increase its AUC-value.

Kumar et al. conducted two metabolomics studies using NMR spectroscopy to identify diagnostic
PCa biomarkers in serum [21,22]. Both studies lacked independent validation cohorts, but some
results of the first report were replicated in their second study. In their first publication [21], the group
analysed 102 serum samples obtained from 70 PCa patients (30 harboured high grade (Gleason ≥ 8)
and 40 low grade (Gleason ≤ 7) PCa) and 32 healthy controls (HC) after an overnight fast. Bin-based
orthogonal projections to latent structures-discriminant analysis (OPLS-DA) models established on
70% of the data as training set. These models yielded accuracies of 90%, 95%, 94%, and 99% for
discriminating between HC and PCa patients, HC and low-grade PCa, HC and high-grade PCa, and
low grade and high grade cancer, respectively, in the test set (remaining 30% of data). Several statistical
approaches, including ANOVA followed by a post hoc Student–Newman–Keuls multiple comparisons
test, were applied to identify important metabolites. Alanine, glycine, pyruvate, and sarcosine were
found to be statistically significant (p < 0.01) and discriminated between HC and PCa samples with an
AUC of 0.966 in receiver operating characteristic (ROC) analysis following calculation of discriminant
predicted probability scores. While the combination of alanine, glycine, and sarcosine provided the
highest AUC (0.970) for differentiating HC and low grade tumours, glycine and sarcosine showed best
discriminative power when comparing HC to high-grade tumours (AUC 0.997). Alanine, pyruvate,
and glycine were able to distinguish low grade from high grade cancers with an AUC value of 0.978.
Unfortunately, it is unclear whether the reported performances in ROC analyses refer to the whole
data set or the test set only.

In their second study [22], the same authors profiled 210 fasted serum samples obtained from
65 HC, 70 BPH patients and 75 PCa patients. In contrast to their previous study, proteins and
lipoproteins were removed using centrifugal filtration prior to NMR analysis. Univariate analysis
(ANOVA followed by Student–Newman–Keuls test) of 52 assigned compounds revealed 13 metabolites
that were significantly altered between the three patient groups. These 13 markers were used for
multivariate linear discriminant function analysis. Based on this, alanine, sarcosine, and glycine
were replicated as markers for discriminating HC from PCa patients and, together with citrate,
correctly classified 97% of patients. The same four metabolites in combination with creatinine
showed an accuracy of 88% when comparing PCa cases to BPH. Moreover, glycine, sarcosine, alanine,
creatine, xanthine, and hypoxanthine appeared important markers to distinguish HC from BPH and
PCa patients (86%). Glycine, xanthine, pyruvate, methylhistidine, and creatinine were important
metabolites for distinguishing HC from BPH (86%). Metabolomic patterns performed better than
clinical parameters (PSA, digital rectal exam, and transrectal ultrasound) in each classification category
and consistently showed higher AUC values. When using 75% of the data set as training set and the
remaining 25% of samples as test set, categorizations of 83%, 82%, 94% and 89% were achieved in the
test set for HC vs. BPH and PCa, HC vs. BPH, HC vs. PCa, and BPH vs. PCa, respectively.
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Tessem and co-workers explored the value of combined serum and plasma metabolomics analysis
to differentiate 29 PCa patients from 21 control patients with BPH using various techniques [23].
Serum samples were profiled by NMR and GC and identified 28 metabolites, 105 lipoprotein-related
variables, and 34 fatty acids. In addition, LC-MS/MS contributed 142 metabolites from plasma
samples for analysis. Although several metabolites from the distinct analyses were conventionally
significant (p < 0.05), none reached statistical significance after correction for multiple testing
(Benjamini Hochberg correction, q > 0.05). Using OPLS-DA, only data acquired by NMR and MS
resulted in significant classification models. A combination of 14 and 12 metabolites from NMR and
MS gave best classification results and their discriminative power was assessed in ROC analyses.
Among these 26 markers, the carnitine derivatives decanoylcarnitine (C10:0), tetradecenoylcarnitine
(C14:1), octanoylcarnitine (C8) as well as the sulfur compound dimethylsulfone, and the amino
acids phenylalanine and lysine were all increased in PCa and of high importance for classification.
The phosphatidylcholine diacyl C34:4, and lipid signals from (CH2)n -CH2-CH2-CO were increased
BPH and also contributed substantially to separation of BPH and PCa groups.

Fan et al. applied random forests to identify metabolite alterations in serum for the detection
and the staging of PCa [24]. They reported nine metabolites identified using NMR analysis in serum
samples from 42 patients diagnosed with PCa (20 with Gleason 5; 22 with Gleason 7) and 14 men
with BPH and PSA follow up for 4–5 years were available. Among the NMR-detected metabolites,
only glutamate and formate were significantly elevated in PCa compared to BPH patients (ANOVA,
p < 0.05). AUC values calculated using random forests with 10-fold cross-validation were 0.876 and
0.532 for distinguishing BPH from PCa and Gleason 5 from Gleason 7, respectively. However, the
authors did not mention the most important NMR metabolites for these classifications.

Osl et al. developed a novel feature selection algorithm termed associative voting for identifying
biomarker candidates in PCa [25]. Flow injection analysis-MS/MS and LC-MS/MS were applied
to serum samples obtained from 114 men screened negative for PCa and 206 patients diagnosed
with PCa for targeted analysis of 112 metabolites. Among the PCa patients, 121 men had low grade
PCa (Gleason 6) and 85 were diagnosed with high grade (Gleason ≥ 8) PCa. The new algorithm
outperformed existing feature selection methods with respect to AUC values in most comparisons of
patient groups. For distinguishing PCa from controls, two lysophosphatidylcholines, C16:0 PC and
C18:0 PC as well as serotonine, aspartate, and ornithine were top-ranked metabolites. Notably, the two
lysophosphatidylcholines, ornithine, and serotonin were selected by at least one of the existing feature
selection methods, while aspartate was highly ranked in all three methods tested. No reliable marker
candidates were found for discriminating low from high grade tumours.

Zang et al. developed a metabolite-based in vitro diagnostic multivariate index assay (IVDMIA)
using serum samples from a cohort of 64 PCa patients and 50 age-matched healthy controls [26].
Metabolomic analysis was performed using UPLC-MS which yielded a total of 480 features. The data
set was split into a training (70%) and a test set (30%). An optimum set of 40 discriminative features
identified by support vector machine classified PCa patients and healthy controls with an average
accuracy of 93% from 10 distinct iterations. Likewise, a good separation between these groups was
achieved when principal component analysis as an unsupervised approach was applied to the best
40 features. Additional support vector machine models were built using smaller sub-panels of the
40 metabolites. When only 13 features that were confidently assigned to metabolites were used for
modelling, PCa and controls were still distinguished with an accuracy of 85%. Several differential
metabolites were identified as fatty acids, amino acids, lysophospholipids, and bile acids.

Dereziński and colleagues performed a targeted analysis of amino acids (proteinogenic and
non-proteinogenic) in serum and urine samples to identify potential biomarkers of PCa [27]. By using
LC-ESI-MS/MS, they profiled both urine and serum samples from 49 patients diagnosed with PCa
and 40 healthy controls without cancer or chronic diseases. In serum, 32 amino acids were detectable
in all 89 samples. In univariate analysis, 18 amino acids were significantly different (p < 0.05) between
serum samples from PCa and those from control patients with 14 amino acids being reduced in PCa
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patients. These included methionine, ethanolamine, glutamine, isoleucine, arginine, and leucine
(all p < 0.00002), all of which had AUC values above 0.75 in univariate ROC analyses. Sarcosine
(p = 0.006), 3-methylhistidine (p = 0.008), β-alanine (p = 0.013), and aspartate (0.034) were detected at
higher levels in PCa patients but showed higher p-values and poorer performance in ROC analyses.
Methionine, sarcosine, and 3-methylhistidine, together with serine and proline, were the most
significant metabolites in multivariate PLS-DA according to their VIP scores. The same metabolites
were also most frequently found in models built on two-thirds of the dataset and validated in the
remaining third of samples in multivariate ROC analyses based on a Monte Carlo cross-validation
approach. In a stepwise discriminant function analysis, sensitivity of 68% and specificity of 100%
were observed for classifying PCa and control patients. Among the most important metabolites in
serum, ethanolamine and arginine were also reported as potential biomarkers in urine (details see
urine section below).

In addition to the above mentioned publications, we found two studies that analysed blood
samples but mainly focused on data generated using other biospecimens. In 2009, Sreekumar and
colleagues profiled tissue, blood, and urine samples using GC-MS and LC-MS [28]. However, they
focused on their tissue data, since they detected most robust differences using this specimen type, and
did not report details of their metabolomics plasma profiles (for details see tissue section). The goal
of the other report was to discover biomarkers for metastatic PCa [29]. The main work was done
using GC-TOF-MS of tissue samples from bone metastases and primary tumours. However, plasma
samples derived from patients with high-risk tumours with (M1, n = 7) and without bone metastases
(M0, n = 6) and from patients with benign prostates (n = 17) were analysed as well. Using OPLS-DA,
ANOVA and Mann–Whitney U-test, seven of 27 identified metabolites were significantly altered,
including pseudouridine (an isomer of the nucleoside uridine), creatinine, glucose, glutamate, taurine,
phenylalanine, and stearate, the last four of which were also identified as markers of metastatic PCa
in bone tissue. In addition, sarcosine was specifically measured using a targeted approach, but no
significant differences in sarcosine levels were observed when comparing patients with PCa to patients
with benign prostate biopsies or metastatic PCa to non-metastatic PCa.

Blood Biomarkers for Therapy Prediction and Prognosis in PCa

The only study focusing on blood biomarkers for predicting treatment response was conducted
by Huang and colleagues and published in 2014 [30]. They analysed serum from 18 patients with
newly diagnosed PCa (untreated group) and 18 healthy controls (control group) by LC-MS. In addition,
serum samples collected from 36 PCa patients who received androgen deprivation therapy (ADT) at
the time of CRPC (castration-resistant prostate cancer) diagnosis were examined. Among the treated
PCa patients, 18 responded to treatment for less than one year (poor response group) while 18 were
sensitive for more than two years (good response group). Based on OPLS-DA, the authors selected
100 and 60 ions showing the largest significant differences (VI p-values > 1.5 and p < 0.05) between
healthy controls and PCa groups and between poor and good responders to ADT, respectively. When
comparing these 160 features, 20 ions were common in the two OPLS models and had less than 20%
relative standard deviations in each group. Tandem MS identified two bile acids deoxycholic acid and
glycochenodeoxycholate, the omega-3 fatty acid docosapentaenoic acid (all involved in cholesterol
metabolism), tryptophan, the omega-6 fatty acid arachidonic acid, the nucleotide deoxycytidine
triphosphate, and pyridinoline (released from cross-linked collagen fibers during bone loss) as potential
biomarkers for predicting response to ADT. All these markers were altered in PCa compared to healthy
controls. However, their serum levels in patients who responded to ADT reverted close to the levels
observed for the control group. This suggests that serum levels of these metabolites are potential
markers for the early response to endocrine therapy.

Like in the field of therapy prediction, only one of the identified studies dealt with prognostic
biomarkers in blood [31]. In their work published in 2011, Stabler and colleagues used GC-MS for
targeted analysis of metabolites of the methionine metabolism, including sarcosine, dimethylglycine,
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methionine, homocysteine, cystationine, cysteine, methylmalonic acid and methylcitrate, in serum with
the aim to identify markers that predict biochemical recurrence after radical prostatectomy. To this end,
they compared pre-surgical serum samples from 30 patients without biochemical recurrence for at least
five years after prostatectomy (“recurrence-free”) to pre-surgical sera from 28 patients with biochemical
recurrence within two years (“recurrent”). Among the metabolites analysed, only homocysteine,
cystathionine, and cysteine were significantly different (p < 0.001) between the two populations
in Wilcoxon rank sum tests. Each of these metabolites was able to rapidly separate recurrent
from recurrence-free patients in Kaplan–Meier curves with cysteine being the most discriminating
marker. The same three markers were also independent predictors of recurrence-free survival in
Cox proportional hazard regression models. Likewise, these metabolites were the top predictors for
recurrence in multiple logistic regression models. The addition of serum homocysteine to a basic
model with serum PSA and Gleason score resulted in the greatest improvement in discriminating
between recurrence-free and recurrent patients (p = 0.0007). The AUC values for models including
one of the markers were similar (AUC = 0.86) and superior to the basic model with an AUC of 0.81.
Interestingly, when urine samples were analysed, only cysteine along with sarcosine (p = 0.03), was
found to be significantly different (p = 0.007) between the two groups (see below), while homocysteine
and cystathionine were not.
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Table 1. Results of the metabolomics studies conducted on blood samples.

Author Year Sample Size Technique Use Case Biomarkers Candidates Validated? Statistical Details Comments

Schmidt [19] 2017 PCa: 1077
Controls: 1077 PCa risk citrulline No Conditional logistic

regression

Study population from
European Prospective

Investigation into Cancer
and Nutrition (EPIC)
Fasting not required

Huang [16] 2017

n = 338
PCa: 72 (T2), 51 (T3),

15 (T4)
Controls: 200

LC-MS
GC-MS

Staging
PCa risk

N-acetyl-3-methylhistidine
(T2)lycerophospholipid

oleoyl-linoleoyl-GPI (T3)
No logistic regression

p = 0.05

Study population from the
ATBC Study cohort

Overnight fasting serum
Time serum collection - Dx

avrg = 10 years (range 1–20)

Andras [20] 2017 Training Set: n = 59
Validation Set: n = 31

HPLC- ESI+
QTOF - MS Diagnosis

lisophosphatidylcholine 18:2,
homocysteine-inosine,

methyladenosine, lipoicacid,
hydroxymelatonin and

decanoilcarnitine

Yes
Mann–Whitney test

PLSR-DA
ROC analysis

Assessement of the
predective value of

metabolomic analysis for the
presence of PCa at the first

systematic biopsy

Dereziński
[27] 2017

n = 89
PCa: 49
HC: 40

LC-ESI-MS/MS Diagnosis
methionine, ethanolamine,

glutamine, isoleucine, arginine,
leucine

No

Mann–Whitney U test
Student’s t-test
Welch’s F test

PLS-DAROC analysisv
discriminant function

analysis

targeted analysis of 32 amino
acids in serum

urine samples were profiled
as well

Kumar [22] 2016

n = 210
HC: 65

BPH: 70
PCa: 75

NMR Diagnosis

HC vs. PCa: alanine, sarcosine,
glycine, citrate

BPH vs. PCa alanine, sarcosine,
glycine, citrate, creatinine

HC vs. BPH + PC: aglycine,
sarcosine, alanine, creatine,

xanthine, and hypoxanthine
HC vs. BPH: glycine, xanthine,
pyruvate, methylhistidine, and

creatinine

Yes

ANOVA
Student–Newman–Keuls

test
DFA

ROC analysis

Overnight fasting

Huang [17] 2016 PCa: 380
controls: 380

UPLC-MS
GC-MS PCa risk

pyroglutamine,
gamma-glutamylphenylalanine,

phenylpyruvate, N-acetylcitrulline,
and stearoylcarnitine

No
Conditional logistic

regression
p = 0.000072

Study population from the
Prostate, Lung, Colorectal

and Ovarian Cancer
Screening Trial (PLCO)

Fasting not required
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Table 1. Cont.

Author Year Sample Size Technique Use Case Biomarkers Candidates Validated? Statistical Details Comments

Giskeødegård
[23] 2015

n = 50
PCa: 29
BPH: 21

MRS
GC-MS Diagnosis

decanoylcarnitine (c10),
tetradecenoylcarnitine (c14 : 1),

octanoylcarnitine (c8),
dimethylsulfone, phenylalanine,

lysine, phosphatidylcholine diacyl
C34:4, lipid signals

-(CH2)n-CH2-CH2-CO

No

PCA (no discrimination)
OPLS-DA and OPLS
Wilcoxon rank sum

testing (p ≤ 0.05)
ROC analyses

Fasting serum and plasma
samples

Missing data for some
variables were replaced by
estimated values using a
built-in data imputation

algorithm

Mondul [15] 2015

n = 400
PCa: 200 (100

aggressive)
Controls: 200

UPLC-MS
GC-MS PCa risk

Inositol-1-phosphate
oleoyl-linoleoylglycerophosphoinositol,
1-stearoylglycerophosphoglycerol,

stearate and docosadienoate
.Both alpha-ketoglutarate and
citrate were associated with

aggressivedisease risk as were
elevated thyroxine and
trimethylamine oxide

No

Conditional logistic
regression

Threshold for statistical
significance p = 0.003 in

the main analysis

Study population: from
Alpha-Tocopherol,

Beta-Carotene Cancer
Prevention Study cohort

Fasting serum collected up
to 20 years prior to case

diagnoses
Missing values were

assigned the minimum
nonmissing value.

Kumar [21] 2015

n = 102
PCa: 70 (40 low grade

PCa, 30 high grade
PCa)

HC: 32

NMR Diagnosis
Staging

HC vs. PCa: alanine, pyruvate,
glycine, sarcosine

low grade PCa vs. high grade PCa:
alanine, pyruvate, and glycine

No

Unsupervised PCA
supervised OPLS-DA

ANOVA
Student–Newman–Keuls

test
ROC analysis

Fasting serum samples

Mondul [14] 2014 PCa: 74
Controls: 74

UPLC-MS
GC-MS PCa risk 1-stearoylglycerol

Glycerolalpha-ketoglutarate No
Logistic regression

threshold for statistical
significance: 0.000119

Study population from the
Alpha-Tocopherol,

Beta-Carotene Cancer
Prevention (ATBC)study
Overnight fasting serum

Zang [26] 2014
n = 114
PCa: 64

Controls: 50
UPLC-LS/MS Diagnosis fatty acids, amino acids,

lysophospholipids, and bile acids No
SVM
PCA

significance level 0.05

40 discriminant metabolites
are found

Only the top ranking ones
are presented here

Huang [30] 2014

n = 72 newly
diagnosed

PCa: 18
HC: 18

good ADT
responders: 18

poor ADT
responders: 18

LC-MS Therapy
prediction

deoxycholic acid (DCA),
glycochenodeoxycholate (GCDC),
L-tryptophan, docosapentaenoic

acid (DPA), arachidonic acid,
deoxycytidine triphosphate, and

pyridinoline

No

PLS-DA and OPLS
ANOVA

Statistical significance
p = 0.05

Fasting serum (overnight
fast)
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Table 1. Cont.

Author Year Sample Size Technique Use Case Biomarkers Candidates Validated? Statistical Details Comments

de Vogel [18] 2014 PCa: 3000
Controls: 3000 LC-MSGC-MS PCa risk Sarcosine; glycine No condiotional logistic

regression

Study population within the
JANUS cohort

Fasting status: unknown

Fan [24] 2010

n = 56
PCa: 42 (20 GS5,

22 GS7)
BPH: 14

NMR Diagnosis glutamate and formate No ANOVA
Random Forests

Article focusing on
proteomics by applying RF

to 2D-DIGE data
NMR data were also

presented but with much
lower predictive

performance

Osl [25] 2008
n = 320

Controls: 114
PCa: 206

FIA-MS/MS
LC-MS/MS

Diagnosis
Staging

Diagnosis: PC a C16:0, PC a C18:0,
Serotonin, Aspartate,

OrnithineStaging: No reliable
biomarkers

No
Associative Voting

algorithm
Logistic regression

Study population: Men
participation in PCa

screening
One simple rejected

Stabler [31] 2011

n = 58 patients after
radical prostatectomy

recurrent free: 30
recurrent: 28

GC-MS Prognosis homocysteine, cystathionine,
cysteine No

Wilcoxon rank sum test
Logistic regression

Likelihood ratio
ROC analysis

Kaplan Meier plots
Cox proportional hazard

regressio models

analysed both serum and
urine samples

targeted analysis of
sarcosine, dimethylglycine,
methionine, homocysteine,

vystathionine, cysteine,
methylmalonic acid,

methylcitrate

Thysell [29] 2010

PCa with metastases:
7

PCa w/o metastases:
6

benign: 17

GC-TOFMS Staging
pseudouridine, creatinine, glucose,
glutamate, taurine, phenylalanine,

stearate
No OPLS-DA

Mann–Whitney U-test

main work was done on
tissue extracts from

fresh-frozen biopsies of bone
metastases and from

biopsies of primary PCa and
benign prostate

all patients were selected to
have hihg-risk tumours
(i.e., presence of bone

metastases, locally advanced
tumour or poorly

differnitated cancer)

Sreekumar
[28] 2009

n = 42 tissue samples
benign adjacent: 16
localized PCa: 12

metastatic PCa: 14

UHPLC-MS/MS
GC-MS Diagnosis blood metabolites not reported No Wilcoxon rank-sum test

study analyzed tissue, blood,
and urine samples but

focused on tissue data only

ADT: androgen deprivation therapy; ANOVA: one-way analysis of variance; avrg: average; BPH: benign prostate hyperplasia; DFA: discriminant function analysis; Dx: diagnosis;
ESI: electrospray ionization; FIA: flow injection analysis; GS: Gleason score; GC: gas chromatography; HC: healthy control; (HP/UP)LC: (high performance/ultra performance) liquid
chromatography; MRS: magnetic resonance spectroscopy; MS: mass spectrometry; MS/MS tandem mass spectrometry; NMR: nuclear magnetic resonance; OPLS-DA: orthogonal
projections to latent structures-discriminant analysis; (Q)TOF: (quadrupole) time of flight; PCa: prostate cancer; PCA: principal component analysis; PLS(R)-DA: partial least squares
(regression)-discriminant analysis; RF: random forests; ROC: receiver-operating characteristic; SVM: support vector machine; T2,T3,T4: tumor stages according to TNM classification.
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3.2.2. Urine Based Biomarkers

Nine studies used urine samples for metabolomics profiling (Table 2). Eight papers reported
discriminating metabolites for diagnostic purposes. Two of them also searched for metabolites related
to diseases prognosis. Only one study attempted to identify predictive metabolites.

Urine Biomarkers for Diagnosis and Prognosis of PCa

Zhang et al. reported urinary alterations associated with PCa validated in a partially independent
cohort [32]. They introduced a protocol based on the use of LC-MS with orthogonal hydrophilic
interaction (HILIC) and reversed phase (RP) liquid chromatography methodes. The established
protocol was used for the analysis of the urinary metabolome and was then evaluated as a diagnostic
tool for PCa. Thirty PCa subjects and 30 controls were included. The authors tested different
normalization methods (against creatinine levels, osmolality or MS total useful signals/MSTUS)
compared to un-normalised data. Orthogonal partial least square discriminant analysis (OPLS-DA)
modelling was applied to 25 PCa subjects and 25 controls as a training set while the remaining
five cases and controls served as a test set. The discriminative power was higher with creatinine
and MSTUS normalisation compared to osmolality and un-normalised data. Thirty additional PCa
patients from a different geographic region were compared to the already used control samples
using creatinine normalisation. Fourteen metabolites were significantly (p < 0.05) altered and four
of them were identified as ureido isobutyric acid (an intermediate in the thymine catabolism),
indolylacryloyglycine (a compound derived from dietary tryptophan or indole compounds),
acetylvanilalinine (a catecholamine metabolite) and 2-oxoglutarate (also called alpha ketoglutarate).
The four identified biomarkers had an AUC value of 0.90 which was comparable to the use of the
PSA testing (AUC at 0.94). Gkostos et al. measured sarcosine, uracil and kynurenic acid in urine
samples of 32 PCa patients prior to radical prostatectomy, 101 patients with increased PSA prior to
ultrasonographically guided biopsy. Samples were collected before and after prostatic massage (PM),
and 15 healthy volunteers as controls [33]. The objective was to evaluate metabolites as potential
biomarkers for PCa detection and progression. The ROC analysis for all participants showed that of
the biomarkers, sarcosine (AUC = 0.47) and kynurenic acid (AUC = 0.44) had no diagnostic value.
Uracil (AUC = 0.59) showed the highest diagnostic value but without reaching statistical significance
(p = 0.066). Moreover, none of the metabolites detected in pre-PM showed any diagnostic potential
in patients undergoing biopsy. In post-PM urine samples, however, kynurenic acid had a significant
diagnostic value (AUC = 0.62). ROC curves were used to also investigate the role of the aforementioned
metabolites in the monitoring of PCa progression using Gleason score as a cut-off point between high
and low aggression. Results from urine samples of all participants did not show any predictive value
for sarcosine, kynurenic acid and uracil (p = 0.819, 0.858 and 0.525, respectively).

In a validation study conducted by Gamagedara et al. levels of proline, kynurenine, uracil, and
glycerol-3-phosphate were analysed in 126 patients with genitourinary malignancies (PCa and BCa)
and were compared to healthy controls (n = 68) having no evidence of malignancy (NEM) [34]. The four
metabolites did not exhibit any significant differences (p > 0.005) when comparing PCa to NEM as well
as BCa to PCa and NEM. Furthermore, their urine levels were associated neither with tumour grade
nor with tumour stage. However, the biomarkers were highly correlated with urinary creatinine levels,
suggesting that their occurrence is mainly regulated by renal excretion. The levels of biomarkers in
both cancer and normal samples were not correlated to age or PSA.

Fernández-Peralbo et al. performed an untargeted metabolomics analysis of urine from 62 patients
with clinically significant PCa and 42 healthy individuals (both groups confirmed by biopsy) [35].
Twenty-eight significant metabolites were reported (unpaired t-test) and used to develop a partial least
squares discriminant analysis model characterized by 88% sensitivity and 93% specificity. The stability
of the model was assessed in a validation set comprising 30% of the entire samples set not used in the
prior training step. Sensitivity and specificity were 63% and 79%, respectively. Several metabolites were
found to contribute to clustering of the PCa patients, such as urea and the purine 7-methylguanine.
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In contrast, amino acids, including tyrosine, citrulline and histidine, together with acetylated and
methylated amino acids such as acetyllysine, acetylhistidine, dimethyllysine and trimethyllysine were
relevant markers in the control group of individuals with a negative biopsy. In another principal
component analysis, imidazole lactate, acetylputrescine and dimethylarginine characterized the healthy
group, while a heterogeneous group of metabolites including 5-methyldeoxycytidine-5-phosphate,
7-methylguanosine, acetylcitrulline, acetylaspartatylglutamic acid and acetyltaurine supported
clustering of the PCa patients group. Dereziński et al. focused on determining urinary amino acids
(proteinogenic and non-proteinogenic) profiles as potential biomarkers [27]. Among the 26 amino
acids found to be significantly different between PCa and control groups, γ-amino-n-butyric acid,
phosphoethanolamine, ethanolamine, homocitrulline, arginine, δ-hydroxylysine, and asparagine
showed the lowest p-values (all with p < 0.00002) and AUC values above 0.75 in univariate ROC
analyses. A stepwise discriminant function analysis using two-thirds of the samples for training
showed a sensitivity and specificity in a test set (remaining third of the samples) of 89% and 73%.
No significant differences in urinary amino acid profiles between patients with different Gleason scores
were observed.

Tanzeela et al. investigated volatile organic compounds (VOCs) emanating from urine samples
and their ability to discriminate PCa samples (n = 59) from non-cancer ones (n = 43) using
random forest (RF) and linear discrimination analysis (LDA) [36]. The diagnostic potential of
2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone were analysed and compared to
the diagnostic performance of serum PSA using a repeated double cross validation approach. Serum
PSA levels alone were able to classify patients with mean accuracies of 61% and 63% using RF and
LDA, respectively. Classification based on the four VOCs, yielded similar mean accuracies of 65%
and 63%. A combination of PSA levels with urinary VOCs only gave a marginal improvement
with accuracies of 71% and 65%, using RF and LDA, respectively. Pérez-Rambla’s study set out
to identify potential non-invasive urinary metabolites discriminating PCa from BPH patients using
1H-NMR spectroscopy [37]. For this purpose, an OPLS-DA model was built but did not exhibit any
statistical power. After reducing the number of variables (to overcome potential overfitting) and
carrying out further analysis, eight metabolites showed statistically significant differences in their
urine concentrations between PCa and BPH patients. Urine from PCa patients was characterized
by increased concentrations of the branched-chain amino acids valine, leucine and isoleucine,
glutamate and pseudouridine, and decreased concentrations of glycine, dimethylglycine, fumarate,
and 4-imidazole-acetate. These results were partially consistent with observations made in a study
conducted by Struck-Lewicka et al. who used liquid chromatography–mass spectrometry (LC–MS)
and gas chromatography–mass spectrometry (GC–MS) for metabolomics profiling [38]. Although
Struck-Lewicka and co-workers used healthy individuals (instead of patients with BPH) as control
group, they also reported decreased levels of glycine in urine of PCa patients. In addition, glycine,
serine, threonine, alanine, isocitrate, aconitate and succinate as well as several carnitines (including
dimethylheptanoyl carnitine, propanoylcarnitine, butyrylcarnitine and octanoylcarnitine) were all
decreased in urine of prostate cancer patients compared to healthy controls. Stabler and colleagues
report metabolites for prediction of biochemical recurrence in urine samples from 54 patients. Of those
patients, 25 developed biochemical recurrence within two years and 29 remained recurrence free after
prostatectomy [31]. They reported that urinary sarcosine was significantly elevated at the time of
surgery in patients who later developed biochemical recurrence. Likewise, urinary cysteine was found
to be significantly elevated in biochemically-recurrent patients compared to recurrence-free patients.
Urinary dimethylglycine and homocysteine were not significantly different between the two groups.
Multiple logistic regression model for prediction of biochemical recurrence was only developed using
serum metabolites.
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Urine Biomarkers for Risk Prediction of PCa

Kosti et al. reported the only pilot study of urinary changes associated with PCa risk
prediction [39]. They used a liquid chromatography-tandem mass spectrometry method to determine
urinary concentrations of 15 estrogen metabolites in 77 incident PCa cases, 77 healthy controls, and 37
subjects without evidence of prostate cancer based on prostate biopsy. The PCa cases were enrolled
prior to initiation of treatment. Univariate analysis revealed that 16-ketoestradiol (16-KE2) and
17-epiestriol (17-epiE3) were significantly lower in PCa cases compared to healthy controls. In addition,
17-epiE3 was also found to be lower among biopsy controls compared to healthy controls (p = 0.01).
There was an inverse association between the levels of urinary 16-KE2 and 17-epiE3 and prostate
cancer risk (p trend = 0.02), after adjustment for age, race, smoking status, presence of BPH and time of
urine collection. Estrogen concentrations were not affected by body mass index, use of non-steroidal
anti-inflammatory drugs, presence of diabetes, family history of prostate cancer or presence of BPH.
However, smoking is a modifier of urinary estrogen levels. Men in the lowest quartile of 16-KE2 had a
4.6-fold risk of prostate cancer (Odds ratios = 4.62, 95% confidence interval = 1.34–15.99) compared
with those in the highest quartile. However, larger studies are needed to confirm these findings.
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Table 2. Results of the metabolomics studies conducted on urine samples.

Author Year Sample Size Technique Use Case Biomarkers Candidates Validated? Statistical Details Comments

Pérez-Rambla
[37] 2017

n = 115
PCa: 64B
BPH: 51

1H-NMR Diagnosis

branched-chain amino acids
(BCAA), glutamate and

pseudouridine
glycine, dimethylglycine, fumarate

and 4-imidazole-acetate.

No
PCA analysis

OPLS-DA
p = 0.01

Gkotsos [33] 2017
PCa: 32

elevated PSA: 101
HC: 15

UPLC-MS/MS Diagnosis
Prognosis kynurenic acid No ROC analysis

p = 0.05

Ultrasonographically-guided
prostatic biopsy collected before
and after prostatic massage for

the 101 patients
Urinary concentrations of

metabolites were not
normalized to urinary creatinine
The control group was recruited

only from individuals
presenting for other etiologies
and these patients usually are

much younger than those
presenting prostate cancer.

Fernández-
Peralbo [35] 2016

n = 104
PCa: 62
HC: 42

LC-QTOF Diagnosis 28 significant metabolites No

PLS-DA
t-test with

Benjamini–Hochberg
false discovery rate

p = 0.05

Morning urine samples
The controls are negative biopsy

individualsCases are patients
with significant PCa confirmed

by prostate biopsy
MSTUS was selected for

normalization ofurine samples

Tanzeela [36] 2015 PCa: 59
HC: 43 GC/MS Diagnosis 2,6-dimethyl-7-octen-2-ol, pentanal,

3-octanone, and 2-octanone No RF
LDA

Urine samples were obtained at
different times of the day
samples were classified as

prostate cancer or controls after
pathological examination of the

biopsy specimens

Struck-Lewicka
[38] 2015 PCa: 32

HC: 32
HPLC-TOF/MS
GC-QqQ/MS Diagnosis

metabolites involved in biochemical
pathways like AA, purine and

glucose metabolism as well as urea
and TCA cycle

No
PCA analysis

PLS-DA
p = 0.05
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Table 2. Cont.

Author Year Sample Size Technique Use Case Biomarkers Candidates Validated? Statistical Details Comments

Zhang [32] 2013 LC-HRMS
HILICRP Diagnosis

ureido isobutyric acid,
indolylacryloyglycine,
acetylvanilalinine and

2-oxoglutarate

Yes
(PCa:30)

OPLS-DA
ROC analysis

p = 0.05

Urine samples were stored at
−30 ◦C

Three independent
normalisation methodsTesting

against a new cohort of patients.

Gamagedara
[34] 2012 PCa: 63

HC: 68 LC-MS/MS Diagnosis
Prognosis

proline, kynurenine, uraciland
glycerol-3-phosphate No

Linear regression
PCA analysis

CART
p = 0.05.

Validation study

Wu [40] 2011
PCa: 20
BPH: 8
HC: 20

ID GC/MS
MAD Diagnosis

PCa vs. HC: Propenoic acid,
Pyrimidine, Dihyroxybutanoic acid,

Creatinine, Purine, Purine,
Glucopyranoside,

Ribofuranoside,Xylonic acid,
Xylopyranose

PCa vs. BPH: Dihyroxybutanoic
acid, Pyrimidine, Xylonic acid,
Xylopyranose, Ribofuranoside

No
PCA analysis
ROC analysis

p = 0.05

Cao [41] 2010 PCa: 86
HC: 45 LC-MS Diagnosis Sarcosine No

Logistic regression
ROC analysis

p = 0.05

First voided urines after digital
rectalexamination (DRE)

Kosti [39] 2010
PCa: 77
HC: 77

Biopy controls: 37
LC-MS Predection 16-ketoestradiol 17-epiestriol No Logistic regression

The biopsy controls had
elevated PSA due to BPH
(n = 27) or other urologic

conditions (10)

Dereziński
[27] 2017 PCa: 49

HC: 40 LC-ESI-MS/MS Diagnosis

γ-amino-n-butyric acid,
phosphoethanolamine,

ethanolamine, homocitrulline,
arginine, δ-hydroxylysine and

asparagine

No
ROC analysis

PLS-DA
p = 0.05

Evaluation of free amino acid
profiles in both urine and serum
samples from the same patiens
Controls recruited among men

subjected to the routine periodic
medical examination

Sample collection period over
3 months
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Table 2. Cont.

Author Year Sample Size Technique Use Case Biomarkers Candidates Validated? Statistical Details Comments

Stabler [31] 2011 PCa: 54 GC-MS Reccurence sarcosine and cysteine No Logistic regression
p = 0.007

Study conducted on both urine
and serum

Subjestcs were divided into
2 groups:

- Cases who developed
biochemical recurrnce within

2 years
- Controls who remained

recurrence-free after 5 years.

BPH: benign prostate hyperplasia; CART: classification and regression trees; ESI: electrospray ionization; GC: gas chromatography; HC: healthy control; (HP/UP/HILICP)LC:
(high performance/ultra performance/hydrophilic interaction and reversed phase) liquid chromatography; MS: mass spectrometry; MS/MS tandem mass spectrometry;
NMR: nuclear magnetic resonance; OPLS-DA: orthogonal projections to latent structures-discriminant analysis; QqQ/MS: triple quadrupole mass spectrometry; (Q)TOF:
(quadrupole) time of flight; PCa: prostate cancer; PCA: principal component analysis; PLS(R)-DA: partial least squares (regression)-discriminant analysis; RF: random forests; ROC:
receiver-operating characteristic.
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3.2.3. Tissue Based Biomarkers

We identified 21 studies that used tissues as biospecimen for the discovery of metabolomic
biomarkers of prostate cancer (Table 3). Almost all of them aimed to identify biomarkers for diagnosis
and/or staging of PCa: ten publications focused mainly on diagnostic metabolites, while 10 other
studies searched predominantly for biomarkers that reflect aggressiveness of the disease. Nevertheless,
the diagnostic studies in part also reported on biomarkers for staging and vice versa. Some publications
investigated metabolic profiles of genetically distinct subtypes of PCa. In addition, one group aimed to
identify biomarkers for predicting biochemical recurrence of PCa, defined as detectable serum PSA
level (>0.2 ng/mL) after radical prostatectomy. Three additional studies addressed this issue at least
in subgroup analyses. Most studies did paired analysis by comparing cancer tissue with adjacent
benign tissue of the same tissue sample and generally used fresh frozen tissue. The majority of studies
applied mass-spectrometry approaches on tissue metabolite extracts, while seven studies used high
resolution magic angle spinning magnetic resonance spectroscopy (HR-MAS MRS) to analyse intact
tissue samples. Only nine of the studies validated their results in independent sample sets.

Tissue Biomarkers for Diagnosis of PCa

A relatively stringent validation approach using three independent sample sets was employed by
Huan and colleagues, although sample sizes were small [42]. For biomarker discovery, they used a set of
12 non-cancerous tissue samples and 13 PCa tissue samples (10 samples with >30% cancer proportion)
obtained ex vivo by core biopsy from 16 subjects after prostatectomy. Metabolite extracts were prepared
and the amine/phenol submetabolome was profiled by LC QTOF-MS following 13C/12C dansyl
labelling. Of the 4090 metabolites found in total, OPLS-DA and Volcano plotting revealed 52 common
metabolites that were significantly different (VIP score of ≥1.5 in the OPLS-DA analysis and fold
change of ≥1.5 or ≤0.67 and p-value of ≤0.01) between normal and cancer tissue. Among these, three
metabolites, i.e., adenosine monophosphate, spermidine (polyamine interacting with nucleic acids),
and uracil, were definitively identified, and were combined with two unidentified metabolites into a
diagnostic model based on a linear vector machine approach. The resulting model was initially
tested in an independent sample set of 19 PCa and 17 normal tissue samples from 18 subjects.
These results were used to further optimise the model by integrating two additional biomarkers
that performed well in both the discovery and the first validation set and were putatively identified as
phosphorylated ophthalmic acid (a tripeptide and analogue of glutathione) and 2,3-diaminopropionic
acid (a non-proteinogenic amino acid). In a second independent validation set consisting of 12 cancer
and 12 normal tissue samples from 12 subjects, this optimised model achieved 85% sensitivity and 91%
specificity for classifying normal and cancer tissue samples.

In another study that had a validation set available, transcriptomics and metabolomics were
combined to identify altered metabolic pathways in prostate cancer [43]. By this “dual omics” approach,
significant changes in cysteine and methionine metabolism, nicotinamide adenine dinucleotide (NAD)
metabolism, and hexosamine biosynthesis were found. For metabolomic analysis, LC-MS was applied
on tissue extracts from 25 paired PCa and adjacent benign tissue samples for biomarker discovery
and from 51 PCa and 16 BPH patients for validation. The authors aimed to identify metabolites that
are significantly (p < 0.05) correlated with disease progression but unaltered in normal tissue or BPH.
Their strongest finding was significantly elevated sphingosine levels in both discovery and validation
cohorts (p < 0.001). Sphingosine increased with disease progression and showed an AUC of 0.81 in the
validation cohort. Besides sphingosine, citicoline (an intermediate in phosphatidylcholine synthesis
and also known as cytidine diphosphate choline), choline, pantothenic acid, carnitine C4-OH, GPC,
NAD (all increased in PCa), phenylacetyl-glutamine and carnitine C14:2 (both decreased in PCa)
showed significant correlation with PCa. In a study comparing different biospecimens, Sreekumar and
colleagues performed metabolomic analysis on tissue and matched urine and plasma samples [28].
They used GC-MS as well as LC-MS for metabolomic profiling and found the most robust differences
between PCa and non-PCa when using tissue extracts derived from biopsy samples as biospecimens.
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They thus focused on the tissue datasets, where 16 benign tissue samples were compared with 12
localized PCa and 14 metastatic PCa samples using Wilcoxon rank-sum test (p < 0.05). They identified
37 and 91 known metabolites that were altered in localized PCa compared to benign tissue and in
metastatic PCa compared to localized PCa, respectively. The authors highlighted six metabolites,
namely sarcosine, uracil, kynurenine, glycerol-3-phosphate, leucine, and proline, which were reported
to be significantly and consistently increased from benign tissue over localized to metastatic PCa.
When using a support vector machine classification algorithm to discriminate between these groups
these markers exhibited p-values <0.001 in 100% of the leave-one-out cross-validated datasets.

These metabolites (except for sarcosine) were recapitulated by two subsequent studies (see below),
one that focused on biomarkers for PCa aggressiveness [44], and one that developed a method for
performing metabolomics and histopathology on the same sample [45]. Sreekumar and co-workers
focused on sarcosine as potential biomarker for PCa and were able to confirm the significant increase
of sarcosine with disease progression and its differential behavior in an independent set of 25 benign,
36 localized PCa and 28 metastatic PCa samples. In urine samples from 44 biopsy-positive and
51 biopsy-negative patients, sarcosine exhibited AUC values of 0.71 and 0.67 in ROC analyses for
urine sediments and supernatants, respectively. The role of sarcosine in PCa was examined further
using extensive cell culture experiments. In 2015, Liu and colleagues analysed the metabolomic
dataset established by Sreekumar et al. using a novel approach, directed random walk on global
gene-metabolite pathway graph (DRW-GM), for joint analysis of the metabolomic profiles together
with matched gene expression profiles [46]. By evaluating the topological importance of genes on
a reconstructed gene-metabolite graph and by applying logistic regression to construct classifiers,
they were able to discriminate between benign and localized PCa tissue and between localized and
metastatic PCa tissue with AUC values of >0.85 in the training data set as well as in three independent
data sets. Amongst others, proline and sarcosine were found to be topologically important differential
metabolites for differentiating localized from metastatic PCa, replicating these metabolites as already
identified by Sreekumar and colleagues. Besides proline and sarcosine, the polyamines spermidine,
spermine and putrescine as well as 4-Acetamidobutanoate (a derivative of gamma-Aminobutyric
acid) were frequently selected metabolites for discriminating localized from metastatic PCa, while
glycine was important for distinguishing benign vs. localized PCa. The central aim of the study from
Shuster and colleagues was to describe a method that allows metabolomic and histological analysis on
the same sample [45]. They fixed 96 biopsy specimens obtained from eight prostatectomies in 80%
methanol:water to extract metabolites and demonstrated that subsequent processing of the tissue for
staining with hematoxylin and eosin was successful. They also performed GC-MS and LC-MS/MS on
extracts from 14 benign and 14 PCa-positive biopsies and detected significantly (p < 0.05) changed
levels for 83 metabolites in cancer-containing tissue. Highest increases in cancer biopsy extracts
were observed for cysteine, the unsatturated fatty acids dihomo-linoleate and docosapentaenoate,
N-acetylaspartate, N-acetylglucosamine (glucose derivative and constituent of hyaluronic aicd), uracil,
xanthine, and the glycerophospholipid 1-stearoylglycerophophoinositol. In addition, they evaluated
the behavior of the set of six metabolites described by Sreekumar et al. (except for sarcosine which
was below the detection limit) and were able to recapitulate the previous findings, i.e., higher levels
in cancer compared to benign tissue extracts and in T3 PCa compared to T2 PCa. Moreover, they
assessed the levels of known biomarkers reported from in vivo studies using MRSI for assessing the
metabolomic profile of PCa in situ, i.e., within living patients. Consistent with the in vivo data, choline,
lactate, and alanine were increased in cancer compared benign tissue and at least choline was higher
in T3 cancer than in T2 cancer. Citrate and the polyamines putrescine, spermidine, and spermine
exhibited more complex behavior, as these metabolites were detected at increased levels in T2 but at
lower concentrations in T3 PCa when compared to benign tissue samples.

In another study lacking a validation cohort, a German group around Glen Kristiansen used
GC-MS and LC-MS/MS to analyse tissue extracts of PCa and matched non-cancerous adjacent
tissue obtained via punch-biopsy from cryo-sections of 95 prostatectomies [47]. Among the 124
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differential metabolites identified (FDR-corrected p-value < 0.05), 12 known metabolites overlapped
with differentiating metabolites discovered in both the studies of Sreekumar et al. and Shuster et al.
(see above ), namely 2-aminoadipate (an intermediate in lysine metabolism), alanine, cysteine,
glutamate, glycine, histidine, leucine, malate, proline, threonine, uracil, uridine. Based on four
distinct criteria, the authors selected eight metabolites exclusively found in their study as well as
2-aminoadipate as common metabolite for further evaluation. Among these, the long-chain fatty acid
tricosanoic acid showed the highest AUC value for discriminating malignant from non-malignant
tissue in ROC analysis (AUC of 0.86), which was only slightly below the AUC value of 0.88 when all
nine metabolites were combined. AUC values > 0.8 were also reported for other long chain fatty acids
namely cerebronic acid and 2-hydroxybehenic acid. None of the biomarkers were able to distinguish
between Gleason score <7 and ≥7, and only gluconic acid showed moderate discriminating power to
differentiate between pT2 and pT3 tumours (AUC of 0.64).

The group around Massimo Loda and colleagues conducted two metabolic studies using
GC-MS and LC-MS/MS. In their first study, they investigated whether prostate cancer subtypes
driven by distinct oncogenes, namely AKT1 or MYC, exhibit distinct metabolic profiles. Untargeted
metabolomic profiling was done in cell line and prostate samples from mice and humans, while
selected metabolites, including the fatty acids oleic acid, arachidonic acid and docosahexaenoic acids
as well as 2-aminoadipate and creatine, were validated in human tissue [48]. While the latter two
metabolites were increased in AKT1-driven tumours, oleic acid (p < 0.01), arachidonic acid (p < 0.05),
and docosahexaenoic acid (p < 0.05) were found significantly increased in MYC-driven tumours. The
main goal of their second study was to evaluate whether formalin fixed paraffin embedded (FFPE)
tissue specimens can be used for metabolic profiling and the results were compared to metabolomics
performed on fresh frozen tissue [49]. Besides work on cell lines, metabolite extracts from twelve
human paired tissue samples obtained by punch biopsy from tissue slices from radical prostatectomies
were analysed. Eight of the paired tissue samples were used as training set and 32 metabolites were
found to be significantly different (p < 0.05) between PCa and benign samples in both frozen and
FFPE tissue. OSC-PLS modelling was performed and correctly discriminated between normal and
cancer tissue in the validation set (four matched tissue pairs). The relevant metabolites were however
not disclosed.

In addition to the above mentioned studies, there were two studies with small sample sizes.
Wang and colleagues used a MALDI-FTICR-MS approach to profile three matched, intact tissue pairs
and identified differential metabolites using student’s t-test [50]. However, they did not highlight
or evaluate further any of the detected metabolites. Likewise, Brown et al. applied GC-MS and
LC-MS/MS on tissue extracts from eight matched pairs of cancer and non-cancerous adjacent tissue
samples, but did not evaluate further the 40 metabolites found by Welch’s two sample t-test and
hierarchical clustering [51].

Tissue Biomarkers for Staging of PCa

Among the identified metabolomic studies focusing on metabolite biomarkers for staging
PCa, four studies were conducted by M.B. Tessem’s group from Norway using HR-MAS-MRS for
metabolomic analysis of intact tissue. In one of their first studies, the group aimed to discover
metabolite biomarkers for aggressive PCa by metabolomics profiling [52]. They included 158 tissue
samples from 48 snap-frozen tissue slices taken from 48 prostatectomies. Of these samples, 47
were normal prostate tissue from non-cancerous adjacent areas while 111 samples contained cancer
tissue with 81 defined as high grade (Gleason ≥ 7). They used 80% of the sample set for biomarker
discovery and tested on the 20% remaining samples, with repeating this procedure 20 times with
different randomly chosen training and test sets. Using PLS-DA approaches, models were obtained
that correctly classified cancer and benign tissue with average sensitivity of 87% at a specificity
of 85% (p < 0.001). Relevant metabolites were citrate, taurine and creatine (all decreased in PCa
samples) and glycerophosphocholine, phosphocholine, choline, and glycine (all increased in PCa



Diagnostics 2019, 9, 21 23 of 44

samples). Correct classification of normal, high grade and low grade PCa by PLS-DA was achieved
with overall accuracies of 86%, 77%, and 66%, respectively. Absolute quantification of metabolite
levels revealed significant differences between low and high-grade cancer for spermine and citrate
(Benjamini–Hochberg corrected p-values < 0.05), while choline metabolite levels did not change
significantly with Gleason score. Thus, spermine and citrate contribute mainly to the observed
higher total choline+creatine+polyamines over citrate (CCP/C) ratio in high grade than in low grade
tumours. Interestingly, none of the metabolites distinguished Gleason score 7 cancers from cancers
with higher scores.

In another study published in 2013, Selnæs et al. assessed 40 tissue samples from prostatectomies
of 13 patients that underwent MRI prior to surgery and compared the ex vivo spectra to the in vivo
spectra recorded during MRI at the same location [53]. They calculated the choline, creatine and
spermine over citrate ratio (CCS/C) and found increased CCS/C ratios with increasing Gleason
score by Spearman’s rank analyses (Spearman’s r = 0.69, p < 0.001). When comparing non-cancer,
low risk (Gleason < 3 + 4), and high risk (Gleason > 4 + 3) groups, significant differences were
also observed in the CCS/C ratio (p < 0.05). In a more recent study [54], the group used a
discovery cohort of 129 (95 cancer and 34 benign) tissue samples from 41 patients to examine
whether non-canonical Wnt pathway (NCWP) and epithelial-to-mesenchymal transition (EMT) are
associated with metabolic alterations and aggressiveness in prostate cancer. Besides gene expression
analysis, the authors conducted a targeted analysis of 23 metabolites in tumour subgroups defined
as having low, intermediate or high activation of NCWP-EMT based on the newly identified gene
expression signature. Spermine and citrate were found to be significantly decreased in samples
with high NCWP-EMT score compared to samples with low or intermediate NCWP-EMT score
(Benjamini Hochberg-corrected p < 0.05). Levels of taurine (a non-proteinogenic sulfur amino acid
and, amongst other, inhibitory neurotransmitter) and phophoethanolamine (precursor molecule for
glycerophospholipid and sphingomyelin derivatives) were significantly altered between low and
intermediate score groups (p < 0.05). Since the NCWP-EMT score was reported to be associated with
biological recurrence and metastasis, spermine and citrate may therefore be considered indirectly
as biomarkers for aggressive PCa. In 2016, Tessem et al. used the same sample set to assess the
metabolic profile of PCa driven by the TMPRSS2-ERG gene fusion [55], which is associated with
higher risk of progression and aggressiveness of disease. Besides transcriptomic profiling, they again
performed a targeted analysis of 23 metabolites. Among the cancer samples, 34 samples were classified
as having high levels of ERG (ERGhigh), while 30 and 31 samples were classified as ERGlow and
ERGintermediate, respectively. Levels of ethanolamine, phophocholine and phophoethanolamine
increased with ERG status. Compared to ERGlow, ERGhigh tumours showed significantly (p < 0.05)
decreased levels of citrate, spermine, putrescine and glucose, while glycine levels were significantly
increased. These trends held true only for spermine and citrate in the validation cohort. However,
after correction for multiple testing (Benjamini–Hochberg correction), the difference in spermine and
citrate concentrations remained statistically significant only in the main cohort (p < 0.001).

Besides their publication on diagnostic biomarkers, Kristiansen and co-workers focused on PCa
staging in subsequent studies [56,57]. In 2013, the group conducted a targeted analysis of sarcosine
to evaluate its role as a biomarker for aggressive disease and disease progression [56]. To this end,
extracts were prepared from paired PCa and adjacent benign tissue samples from 92 prostatectomies
and analysed by GC-MS. Although normalized sarcosine levels (normalized to the weight of each
sample and to the median of reference samples) were slightly (7%) but significantly (p < 0.05) higher in
PCa than in benign tissue, no significant differences were observed between tumour stage (pT2 vs. pT3)
or grade (neither Gleason <7 vs. Gleason ≥7 nor Gleason ≤7 vs. ≥8). Consistently, sarcosine showed a
moderate AUC value of 0.59 for discriminating PCa and benign tissue, but inferior performance for
predicting tumour grade or stage (AUC 0.54). Moreover, no association of sarcosine with biochemical
recurrence was found, leading the authors to argue against sarcosine as a suitable marker for tumour
aggressiveness or biochemical recurrence. In a more recent study based on an untargeted approach,
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Meller et al. profiled tissue metabolite extracts from matched tumour and normal adjacent tissue taken
from 106 prostate specimens after prostatectomy using GC-MS and LC-MS/MS [57]. ANOVA analysis
(p < 0.05) confirmed the previously found association of gluconic acid with Gleason score [47]. Besides
gluconic acid and amongst others, pantothenic acid was positively associated with Gleason score,
while maltose, fructose-6-phosphate, and cholesterol were negatively correlated. Like Hansen et al. in
their work from 2016 [55], they additionally analysed the metabolic profile of prostate cancers with
ERG translocation. Compared to ERG negative cancers, differential metabolites included gluconic
acid and maltotriose, both being negatively associated with the presence of ERG translocation, as well
as the long chain fatty acids cerebronic acid, 2-hydroxybehenic acid and tricosanoic acid that were
all positively correlated with ERG translocation. Citrate, spermine and putrescine were significantly
decreased in ERG-positive samples. McDunn et al. analysed two cohorts with a total of 331 PCa
tissue samples and 178 benign tissue (matched to 178 of the PCa specimens) samples using GC-MS
and LC-MS/MS without leaving a subset of samples for validation purposes [44]. Tissue samples
derived from frozen optimal cutting temperature (OCT)-embedded tissue from radical prostatectomies
and metabolites were extracted for metabolomic analysis. When comparing benign with PCa tissue,
almost all significantly altered metabolites found by Sreekumar et al. (see above) replicated in this
study (p < 0.05 corrected using the Benjamini–Hochberg method), including the progression-associated
metabolites glycerol-3-phosphate, kynurenine, proline, threonine, and uracil. Notably, sarcosine
was only significantly elevated in tissue samples with Gleason score of 8 or higher. Besides these
findings, the authors mainly focused on metabolites that are correlated with aggressive PCa with
extracapsular extension, Gleason pattern progression and tumour spread into seminal vesicles and
regional lymph nodes as clinically defined endpoints. Calculation of the odds ratios for the distinct
endpoints revealed NAD+, N-acetylaspartate, putrescine, glucose as top markers (highest and lowest
odds ratios) for extracapsular extension, while choline phosphate, glycerol-3-phosphate, putrescine,
6-sialyl-N-acetyllactosamine (oligosaccharide involved in immune response regulation and colon
cancer progression) showed highest associations with tumour spread. Proline, malate, ADP-ribose
(occurs as post-translational modification of proteins and is involved in cell signaling, DNA repair
and gene regulation) and 6-sialyl-N-acetyllactosamine were top ranked metabolites associated with
Gleason pattern progression. Interestingly, when looking for metabolites for improving clinical
performance of nomograms, different sets of metabolites turned out to be important for predicting
organ confinement when added to the Partin table (5,6-dihydrouracil, choline phosphate, glycerol, and
methylpalmitate (fatty acid methyl ester)) and for predicting 5-year recurrence when added to the Han
table (7-ahydroxy-3-oxo-4-cholestenoate (involved in primary bile acid biosynthesis), pregnen-diol
disulfate (steroid sulfate oxoanion), and mannosyl tryptophan(glycopeptide)).

In 2011, Keshari et al. published a targeted analysis of phospholipid metabolites in prostate
cancer [58]. 1D and 2D HR-MAS-MRS were applied to analyse 49 tissue samples obtained via core
biopsy following prostatectomy. The tissue samples consisted of 13 high grade, 22 low grade, and
14 benign prostate tissues. Consistent with the previous findings of Tessem and colleagues (see
above), citrate and polyamines were found to be reduced in PCa tissue. In addition, an increase
in choline, phosphocholine (PC), glycerophosphocholine (GPC), phosphoethanolamine (PE) and
glycerophosphoethanolamine (GPE) levels was observed compared to benign tissue (p < 0.05).
Moreover, PE and GPE increased especially from benign to low grade PCa, while concentrations
of PC and GPC showed the highest increase between low grade and high grade PCa. Interestingly,
these findings contrast to the results published by Tessem et al. [52], which did not observe any
significant differences in choline- or ethanolamine-containing metabolites between low and high
grade cancers.

The aim of a more recent study of the same group published in 2014 was to identify metabolomic
biomarkers that are correlated with Ki-67 staining and pathologic grade in histopathology and are
able to discriminate between aggressive and indolent cancer recurrences in patients who received
radiation therapy [59]. To this end, HR-MAS-MRS was applied to 124 biopsy tissues, 71 samples from
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47 men with untreated prostate cancer and 53 samples from 39 men who received radiation therapy
(average 6.4 years before biopsy). The majority of these biopsy specimens represented benign tissue
(58 and 32 for untreated and treated patients, respectively), while 5 and 7 were indolent and 8 and 12
were aggressive cancer (untreated and treated PCa, respectively). A significant correlation (p < 0.05)
with Ki-67 staining, which is increased in more aggressive cancer, was observed for phosphocholine
(PC), glycerophosphocholine (GPC), and free choline. In untreated cancer, levels of choline, PC, GPC,
glutamate, alanine, and lactate were significantly (p < 0.05) increased between indolent and aggressive
cancer. The same was true for benign vs. indolent cancer tissue. In contrast, the concentrations of
citrate and polyamines were significantly lower in cancer compared to benign tissue. Although signal
intensities were reduced compared to samples from untreated prostates, there was an increase in
choline, PC, and GPC from benign tissue over indolent to aggressive cancer in tissue from treated
prostates. Moreover, these metabolites were significantly higher in aggressive cancer tissue than in
indolent cancer (or benign) tissue. Lactate levels were also significantly elevated in post-radiation
cancers but were unable to distinguish between indolent and aggressive cancer. The ratio of total
choline, i.e., choline + PC + GPC, to creatine ratio was significantly higher in aggressive vs. indolent
cancer and predicted aggressive recurrent prostate cancer after radiation therapy with an AUC value
of 0.95 in ROC analysis.

In 2010, Thysell and colleagues published a metabolomics study that aimed to identify metabolite
biomarkers for metastatic PCa using primarily tissue from bone metastases but also primary tumour
and plasma samples [29]. Following GC-TOFMS of tissue extracts from bone metastases (n = 14
samples) and adjacent normal appearing bone tissue (n = 10), they used OPLS-DA, ANOVA and
Mann–Whitney U-test to discriminate between the groups and 34 known of 71 significantly differential
metabolites (VIP > 0.9 (OPLS-DA) or p < 0.05 (Mann–Whitney-U)) were identified. The resulting
OPLS-DA model was able to discriminate PCa bone metastasis samples (n = 6) from normal
bone samples (n = 11) in an independent cohort. When modelling was repeated using the test
set, most metabolites identified in the discovery set were replicated as significantly separating
biomarkers. Moreover, bone metastases from PCa were distinguishable from bone metastases of
other cancer in OPLS-DA. Besides several amino acids, myo-inositol-1-phosphate, citrate, fumarate,
glycerol-3-phosphate, and fatty acids, especially cholesterol was found to be the most important
differential marker. The authors also applied metabolomic analysis to primary high-risk tumour
samples with and without bone metastases (M1, n = 7 and M0, n = 6) and benign prostate samples
(n = 17). Eight of 13 known metabolites were found to be significantly altered both between M1 and
M0 and between M1 and benign, namely malate, dehydroascorbic acid (oxidized derivative of ascorbic
acid o vitamin C), urea, hypoxanthine, asparagine, threonine, fumarate, and linoleic acid (the last
four were also found in bone metastases samples). Since sarcosine was not detected by profiling, this
metabolite was specifically measured using a targeted approach. Sarcosine was increased in PCa bone
metastases compared to normal bone tissue, but seemed to be unaltered between bone metastases of
different origins and between benign prostate and primary PCa tissue.

Tissue Biomarkers for Staging of PCa

Only one study performed metabolomic profiling in tissue with the main goal to find metabolite
biomarkers that predict the risk of biochemical cancer recurrence (detectable serum PSA > 0.2 ng/mL).
However, Kristiansen and colleagues at least addressed this issue in subgroup analyses in their two
studies on PCa diagnosis [47] and staging [57]. In 2010, Maxeiner et al. published a retrospective study
of prostatectomy cases from which needle biopsies had been analysed by HR-MAS-MRS [60]. They
matched 16 PCa cases with biochemical recurrence during follow-up with two distinct control sets
randomly selected from 183 patients without biological relapse. Matching was done by age, Gleason
score, and observation period and was based on either clinical (first control set) or pathological
stages (second control set). Given the low number of cases with biochemical cancer recurrence,
these two control groups were used to create two distinct data sets, which however shared the
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identical 16 recurrence cases, for biomarker discovery and testing. The authors performed principal
component analysis and canonical analysis of the first nine principal components and four principal
components correlated with pathological findings on the clinical-stage-matched dataset for biomarker
discovery. The resulting metabolomic profiles were then applied to the second dataset comprising the
pathological-stage-matched controls and yielded overall accuracies of 71% (four components) to 78%
(nine components). Spermine, glutamine, the inositol stereo-isomers myo-inositol and scyllo-inositol,
phophoryl choline and glutamate were reported to be the major discriminating metabolites in
these profiles.

In their studies on metabolite biomarkers for PCa diagnosis and staging (see above), Kristiansen
and colleagues also evaluated their biomarkers for prognostic potential to predict biological recurrence.
In the diagnostic study [47], they analysed their selected set of nine metabolites in Kaplan–Meier and
Cox regression analyses, in which aminoadipic acid, gluconic acid and the trisaccharide maltotriose
turned out to be associated with biological relapse (p < 0.05 corrected by Benjamini–Hochberg method).
However, when combined with tumour stage and Gleason score in multivariate Cox regression analysis,
only aminoadipic acid was an independent marker for recurrence risk prediction. This metabolite set
pre-selected for diagnostic purposes did not include any of the biomarkers found by Maxeiner et al.,
and replication of results was thus not possible. In their second study focusing on biomarkers for PCa
staging [57], the same group looked for prognostic biomarkers without a pre-selection step using 254
candidates. In Cox Hazard Ratio analysis, nine amino acids or amino acid derivatives were among
the top ten metabolites (p < 0.05 corrected by Benjamini–Hochberg method). However, none of the
markers found by Maxeiner et al. could be replicated. Tryptophan and tyrosine showed the highest
prognostic potential for predicting biochemical relapse (with p < 0.0001). In their targeted analysis of
sarcosine as PCa marker, they found no evidence for sarcosine levels being correlated with biochemical
recurrence [56].
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Table 3. Results of the metabolomics studies conducted on tissue samples.

Author Year Sample Size Technique Use Case Biomarkers Candidates Validated? Statistical Details Comments

Wang [50] 2017

n = 3 subjects
Cancer tissue: 3
Benign adjacent

tissue: 3

MALDI-
FTICR-MS Diagnosis differential metabolites were not mentioned No students t-test coated tissue slice

Huan [42] 2016

Training set: n = 16
Pca: 13; Benign: 12

Validation set 1:
n = 18

Pca: 19; Benign: 17
Validation set 2:

n = 12
Pca: 12; benign: 12

LC QTOF-MS Diagnosis

adenosine monophosphate, spermidine,
uracil, ophthalmic acid + HPO3,

2,3-diaminopropionic acid + HPO3 + 2
unknown metabolites = putative

identification

Yes OPLS-DA volcano plot
Tissue extracts from
core biopsies after

prostatectomy

McDunn [44] 2013

Pca: 331
Benign: 178 (matched

to 178 of the Pca
samples)

UHPLC-MS/MS
GC-MS Staging

aggressive Pca:ADP, Glucose,
6-sialyl-N-actyllyctosamine,

2-hydroxypalmitate, 5,6 dihydrouracil,
choline, fumarate, kynurenine, phophate,

2-hydrxoystearate, Ac-SDKP, choline
phosphate, glycerol-3-phophate,

n-acetylaspartate
Gleason pattern progression:proline, malate,

ADP-ribose,
6-sialyl-N-acetyllactosamineextracapsular

extension:NAD+, N-acetylaspartate,
putrescine, Glucose

Tumor spread (regional lymph
nodes/seminal vesicles):choline phosphate,

Glycerol3-phophate, putrescine,
6-sialyl-N-acetyllactosamine

No paired t-testWilcoxon test
linear regression

Tissue extract from
OCT embedded

tissue from
prostatectomies

Jung [47] 2013

n = 95
matched cancer and

benign adjacent
tissue

LC-MS/MS
GC-MS

Diagnosis
Prognosis
Biological
recurrence

Diagnosis of Pca:2-hdroxybehenic acid,
crebronic acid, tricosanoic acid,

glycerophophoethanolamine, isopentenyl
pyrophosphate, 7-methylguanine,
2-aminoadipic acid, gluconic acid,

maltotriose, tricosanoic acid
Prediction of biological recurrence

risk:2-aminoadipic acid, gluconic acid,
maltotriose

No

Wilcoxon paired test
ROC analysis logistic

regression Kaplan–Meier
curves univariate and

multivariate Cox
regression

tissue extracts of
punch biopsy from
cryosections after

prostatectomy

Brown [51] 2012

n = 8
matched cancer and

benign adjacent
tissue

UHPLC-MS/MS
GC-MS Diagnosis > 40 metabolites not specified further No Welch’s two sample t-test

hierachical clustering

tissue extracts from
core biopsy after
prostatectomy
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Table 3. Cont.

Author Year Sample Size Technique Use Case Biomarkers Candidates Validated? Statistical Details Comments

Selnæs [53] 2012 n = 13 subjects
40 tissue samples HR-MAS-1H-MRS Staging

CCS/C ratio
(choline+creatine+spermine

over citrate)
No

Spearman’s rank
correlation Jonchheere–

Terpstra test

intact tissue from needle biopsy
after prostatectomy

Maxeiner [60] 2010

Pca with biological
recurrence: 16
Pca without

biological recurrence:
32

HR-MAS-1H-MRS Prognosis
spermine, glutamine,

myo-inositol, phophoryl choline,
scylloinositol, glutamate

Yes
PCA student’s t-test
Canonical analysis

ANOVA ROC analysis

intact tissue from needle biopsy
after prostatectomy;training and test

set with identical case group but
distinct control groups

Sreekumar
[28] 2009

n = 42 tissue samples
benign adjacent: 16

localized Pca: 12
metastatic Pca: 14

UHPLC-MS/MS
GC-MS Diagnosis

sarcosine, uracil, kynurenine,
glycerol-3-phophate, leucine,

proline
Yes Wilcoxon rank-sum test

tissue extracts from biopsy
samplesonly sarcosine was
analyzed in validation set

Cacciatore
[49] 2017

matched benign and
Pca samples

Training set: n = 8
Validation set: n = 4

UHPLC-MS/MS
GC-MS Diagnosis

32 metabolites reported;
biomarkers included in the

model not specified
Yes Hierarchical clustering

OSC-PLS

tissue extracts from tissue section
after prostatectomyalso compared

OCT-embedded and FFPE tissue as
biospecimen

Sandsmark
[54] 2017

n = 41 subjects
Pca: 95benign
adjacent: 34

HR-MAS-1H-MRS Diagnosis

Pca with high vs. Pca with
low/intermediate NCWP-EMT
score: spermine and citratePca

with low vs. Pca with high
NCWP-EMT score taurine,

phosphoethanolamine

No t-test

intact tissue from
prostatectomiesmain focus:

alterations in non-canonical WNT
signaling pathway (NCWP) and
EMT in Pcajoint gene expression

and metabolomic analyses; targeted
analysis of 23 metabolites;

metabolomics was performed only
on the main cohort

Hansen [55] 2016
n = 41 subjects

Pca: 95
benign adjacent: 34

HR-MAS MRS Staging
citrate, spermine (correlated

with presence ERG
translocation)

Yes
unsupervised
multivariate

analysis PLS-DA

gene expression analysis and
TMPRSS2-ERG as marker for

disease aggressiveness;intact tissue
from tissue slices collected from

prostatectomies; analyzed metabolic
alterations in PCA patients positive
for TMPRSS2-ERG/high ERG gene

fusion; targeted analysis of
23 metabolites

Meller [57] 2016

n = 106 subjects
matched cancer and

benign adjacent
tissue

ERG-positive Pca: 27
ERG-negative Pca: 23

GC-MS
LC-MS

Staging
Prognosis
Biological
recurrence

Gleason score:pantothenic acid,
maltose, fructose-6-phosphate,

gluconic acid, cholesterol
ERG status:maltotriose, gluconic

acid, citrate, cis-aconitate,
spermine, putrescine, cerebronic

acid, 2-hydroxybehenic acid,
tricosanoic acid, Biological

relapse:tyrosine and tryptophan

No ANOVA PCA tissue extracts of punch biopsy from
cryosections after prostatectomy
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Table 3. Cont.

Author Year Sample Size Technique Use Case Biomarkers Candidates Validated? Statistical Details Comments

Ren [43] 2016

Training set:25 paired
PCa and adjacent

benign
Validation set:51
paired Pca and
adjacent benign

16 BPH

LC-MS Diagnosis

sphingosine, citicoline, choline,
pantothenic acid, carnitine

C4-OH, GPC, NAD,
phenylacetyl-glutamine,

carnitine C14:2

Yes

PCA PLS-DA Signrank
Wilcoxon signed rank

two-sides test (biomarker
analysis)

joint transciptomics and
metabolomics to identify altered

metabolic pathways in PCA
tissue;tissue extracts from

prostatectomies

Liu [46] 2015

n = 42 tissue samples
benign adjacent: 16

localized Pca: 12
metastatic Pca: 14

n.a. Diagnosis

Proline, Cholesterol, sarcosine,
spermidine, spermine,

Putrescine,
4-Acetamidobutanoate

Yes DRW-GM + logistic
regression

joint analysis of genomic and
metabolomic data and pathway
topology using directed random
walk on a global gene-metabolite

pathway graph;used dataset
established by Sreekumar et al. 2009

Priolo [48] 2014

Discovery set:
Pca: 61; benign: 25

Validation set:
Pca: 40; benign: 16

UHPLC-MS/MS
GC-MS

Diagnosis
Tumour

subtyping

MYC-driven Pca:Oleic acid,
arachidonic acid,
docosahexaenoic

acidsAKT1-driven
Pca:2-aminoadipic acid, creatine

Yes Mann–Whitney test

metabolomic profiling of tumors
driven by MYC and AKT1

oncogenes;extracts of frozen tissue
from prostatectomy;metabolomic

profiling in cell lines, mice and
human tissue; validation of selected
markers in human tissue samples

Keshari [58] 2011

n = 49 tissue samples
high-grade Pca: 13
low-grade Pca: 22

benign: 14

1-D and 2-D
HR-MAS

Spectroscopy
Staging

Benign vs. Pca tissue: choline,
phosphocholine,

glycerophosphocholine,
phosphoethanolamine,

glycerophosphoethanolamine,
citrate, polyamineslow-grade vs.
high-grade Pca:phosphocholine,

glycerophosphocholine

No Student’s t-test
intact tissue from core biopsies after
prostatectomy;targeted analysis of

phospholipid metabolites

Shuster [45] 2011 Pca: 14
benign: 14 GC-MSLC-MS/MS Diagnosis

cysteine, dihomo-linoleate,
docosapentaenoate,
N-acetylaspartate,

N-acetylglucosamine, uracil,
xanthine, and

1-stearoylglycerophophoinositol;uracil,
kynurenine,

glycerol-3-phosphate, leucine,
proline; choline, lactate, alanine
citrate, putrescine, spermidine,

spermine

No matched paired t-test

tissue extracts from needle biopsies
after prostatectomy;description of

the mPREF methodreplicated
metabolites previously published by
Sreekumar et al. 2009 and various in

vivo studies



Diagnostics 2019, 9, 21 30 of 44

Table 3. Cont.

Author Year Sample Size Technique Use Case Biomarkers Candidates Validated? Statistical Details Comments

Zhang [59] 2014

untreated patients:
benign: 58; indolent

Pca: 5; aggressive Pca: 8
radiation-treated

patients:
benign: 32; indolent

Pca: 7 (relapse);
aggressive Pca: 12

(relapse)

1-D and 2-D
HR-MAS

Spectroscopy

Staging
Diagnosis

aggressive vs. indolent
Pca:choline, phosphocholine,

glycerophosphocholine, [choline
+ phosphocholine +

glycerophosphocholine] to
creatine ratio, (lactate; only in

untreated)benign vs. Pca
(untreated):citrate, polyamines,

lactate, glutamate, alanine

No

linear mixed-effects
model Wilcoxon Rank

Sum Test Kruskal–Wallis
Test

intact tissue from core biopsies

Giskeødegård
[52] 2013

n = 158 tissue samples
from 48 subjects

benign: 47v low-grade
Pca: 30

high-grade Pca: 81

HR-MAS 1H
MRS Staging

Pca vs. benign: citrate, taurine,
creatine, glycerohpophocholine,

phosphocholine, choline,
glycinelow-grade vs. high-grade

Pca:spermine, citrate, CCP/C
ratio

No Linear mixed models
PLS-DA models intact tissue from biopsies

Jentzmik [56] 2011
n = 92

Matched PCa and
adjacent benign tissue

GC-MS Staging sarcosine No

Mann–Whitney U test
Wilcoxon test

Spearman rank
correlation

Kaplan–Meier curve
Cox proportional

hazards regression
analysis

log rank test
ROC analysis

target analysis of sarcosine as
biomarker for disease progression

tissue extracts from punch
biopsies of tissue sections collected

after prostatectomy

Thysell [29] 2010

Discovery set:
bone metastases: 14

(hormone-naive Pca: 7;
CRPC 7)

adjacent normal bone:
10

Validation set:bone
metastases: 13(6 Pca, 7

other cancers)
normal bone: 11
Primary tumour:

with metastases: 7
w/o metastases:

6benign: 17

GC-TOFMS Staging

Bone tissue: metastases vs.
normal: Cholesterol,

myo-inositol-1-phosphate,
citrate, fumarate,

glycerol-3-phosphate, amino
aicds

Primary tumour: metastatic PCa
vs. benign tissue and

non-metastatic PCa:malate,
dehydroascrobic acid, urea,
hypoxanthine, asparagine,

threonine, fumarate,
linoleic acid

Yes OPLS-DA Mann–Whitney
U-test

tissue extracts from fresh-frozen
biopsies of bone metastases and

from biopsies of primary Pca and
benign prostateall patients were

selected to have hihg-risk tumours
(i.e., presence of bone metastases,

locally advanced tumour or poorly
differnitated cancer)validation set
available only for bone metastatic
tissueblood plasma samples from

men who underwent prostate
biopsies were also analyzed

ADT: androgen deprivation therapy; ANOVA: one-way analysis of variance; BPH: benign prostate hyperplasia; GC: gas chromatography; (HP/UP)LC: (high performance/ultra
performance) liquid chromatography; MALDI-FTICR: matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging; MRS:
magnetic resonance spectroscopy; MS: mass spectrometry; MS/MS tandem mass spectrometry; (HR-MAS) NMR: (high resolution - magic angle spinning) nuclear magnetic
resonance; OPLS-DA: orthogonal projections to latent structures-discriminant analysis; (Q)TOF: (quadrupole) time of flight; PCa: prostate cancer; PCA: principal component analysis;
PLS(R)-DA: partial least squares (regression)-discriminant analysis; ROC: receiver-operating characteristic.
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3.2.4. Other Specimen Types

Besides the work on PCa biomarkers in blood, urine, and tissue, literature search revealed nine
additional publications that were either performed on clinically rarely used bio specimens or were
conducted in vivo using MRI-based spectroscopy of prostates in situ (Table 4). Two studies used urine
extracellular vehicles (EVs) in an attempt to increase the efficiency of biomarker discovery and one
study applied NMR-based metabolomics to seminal fluid. All of the six remaining reports presented
data from in vivo MRSI studies and assessed their relationship to PCa diagnosis or aggressiveness.

PCa Biomarkers in Urine Extracellular Vesicles

Extracellular vesicles (EVs) are small particles with a lipid bilayer. EVs are released from cells
by outward budding from the plasma membrane or by fusion of multivesicular bodies with the
plasma membrane or after apoptosis. They typically contain a mixture of cytoplasmatic proteins,
lipids, and RNA representative to their cellular origin. Clos-Garcia et al. aimed at the identification of
metabolic alterations detectable in urine EVs associated with PCa cancer pathogenesis and progression.
To this end, they compared metabolic profiles of EVs in PCa vs. BPH, PCa pathological TNM stage
3 vs. 2 and finally perineural invasion Pn1 vs. Pn0 within the T2 group [61]. EVs were isolated
by differential ultracentrifugation from urine and analysed by UPLC-MS metabolomics analysis.
The number of EVs per mL did not differ between different groups; however, their size increased with
tumour stage, meaning that major differences of EV particle sizes were observed between BPH and T3.
Univariate analysis revealed a higher abundance of phosphatidylcholines (PC) in BPH samples and
acyl carnitines and sterols were more abundant in PCa samples. Ceramides with low carbon number
in their acyl chains were increased in PCa samples in contrast to those with higher carbon number
(>C23). Moreover, carboxylic acids and glycerolipids were slightly decreased, and vitamins were
increased in PCa EVs. As for the fatty acid family, arachidonic acid (20:4n-6) was decreased in PCa
samples while other polyunsaturated fatty acids with shorter carbon chain (16:3) were significantly
increased in the PCa group. When searching for biomarkers for staging of PCa, three ceramides
[Cer(d18:1/16:0), Cer(d18:1/20:0), Cer(d18:1/22:0)] one glycerophospholipid [PC(30:0)], and one
stearoylcarnitine [AC(18:0)] showed significant differences (p = 0.031, 0.049, 0.040, 0.052 and 0.028,
respectively) between T2 and T3 subgroups. Finally, they also tried to identify metabolites associated
with disease prognosis. EV samples with perineural invasion (Pn1) had significantly lower abundance
of cyclic AMP (cAMP) and higher abundance of the combination of isomers of the steroid hormone
metabolites androsterone sulphate and etiocholanolone sulphate. However, sample size for this
purpose was low and the unsupervised multivariate analysis was unable to separate any of the
above-mentioned groups.

In a similar context, Puhka et al. also conducted a proof-of-concept study of PCa-derived changes
in urinary EV (uEV) [62]. Their focus was on the detection of metabolites that were altered in
pre-prostatectomy cancer samples relative to healthy controls and post-prostatectomy samples. Several
normalization methods were tested: normalization to EV volume, EV number, CD9 optical density,
other metabolites, and urine volume or urine creatinine. Normalization to EV volume, number
and CD9 optical density yielded similar results showing lower levels of adenosine, glucuronate,
isobutyryl-L-carnitine, and D-ribose 5-phosphate (nucleotide precursor) in uEV samples before
prostatectomy compared to control uEV samples and after prostatectomy. In particular, glucuronate
exhibited the largest difference with all three normalization methods. In addition to the aforementioned
metabolites, normalization to EV-derived factors resulted in lower levels of methylhistamine, creatine,
glutathione, NAD+ and two carnitines propionylcarnitine and isovalerylcarnitine. Three of the
previously identified metabolites, namely glucuronate (to choline, hippurate and niacinamide ratios),
isobutyryl-L-carnitine (to NAD+ or carnitine ratios) and D-ribose 5-phosphate (to niacinamide ratio),
were also low in the pre-prostatectomy uEV samples when normalised to other metabolites. A lowered
ratio of 1-methylhistamine to choline in the pre-prostatectomy samples compared to all the other
groups (each p < 0.01) was also observed. Normalization to choline revealed low levels of other
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metabolites in the pre-prostatectomy samples among which ratios of guanidoacetic acid (intermediate
of the urea cycle), taurine and isovalerylcarnitine to choline were statistically significant. Since robust
discrimination of pre-prostatectomy uEV samples from the other study groups was not possible
after normalisation to urine volume or creatinine levels, the authors concluded that normalisation
to EV-derived parameters or analysis of metabolite ratios should be the preferred for identifying
cancer-related alterations in uEV metabolites profiles.

Seminal Plasma

Roberts et al. conducted a study using seminal plasma for selection and monitoring of active
surveillance candidates using NMR based metabolomics [63]. One hundred fifty-one men who were
investigated for elevated PSA and/or abnormal DRE were included in the prospective cohort study.
Ejaculate specimens were obtained prior to or at least one month after prostate biopsy and NMR
spectra were obtained. Glucose signals were most dominant in most samples and their influence
on the analysis was unpredictable. Therefore, these signals were excluded from further analysis.
Risk stratification (low, intermediate, high risk) was performed according to the D’Amico criteria
[64]. Among 151 subjects, PCa status (positive = 98, negative = 53) and D’Amico risk (high = 82,
low = 69) were used as dependent variables for logistic regression analysis. Unsupervised multivariate
statistical analysis using PCA analysis did not show any clustering into clinical groups. However,
supervised partial least squares analysis, using the presence of clinically significant PCa according to
the D’Amico criteria (csPCa) as the predictive variable, showed that lipids/ lipoproteins are associated
with variation for csPCa. A subgroup of 11 samples from low (n = 1) and intermediate (n = 10) risk
tumours, confirmed by histology were analysed as well. The single low-risk sample was separated
from the intermediate risk samples due to reduced lactate, pyruvate and lipids/ lipoproteins and
increased citrate, myo-inositol, spermine and fructose. Within these samples, a discrimination was
observed due to primary Gleason pattern 4 (present against absent) and was associated with higher
levels of lipids/ lipoproteins, lactate, and pyruvate as well as lower levels of citrate, spermine, and
myoinositol. These relationships were also observed when the analysis was expanded to all low and
intermediate risk patients (determined by biopsy or RP). The models were non predictive when benign
samples were considered with risk group combinations and primary Gleason pattern 4 presence.

In Situ Magnetic Resonance Spectroscopic Imaging (MRSI) Studies

MRSI allows NMR spectroscopic analysis of prostate tissue in situ, i.e., without taking a biopsy
or tissue resection, guided by magnetic resonance imaging. In a first study, Weis et al. aimed at
estimating the concentrations of prostate choline (Cho), spermine (Spm) and citrate (Cit) in the benign
peripheral zone (PZ) and the benign central gland zone (CG) [65]. Subsequently, the relationship
between metabolite concentrations and apparent diffusion coefficient (ADC) in benign prostate
tissue was investigated by 3D MRSI. Forty-six patients with biopsy proven PCa were scanned in
addition to 10 healthy volunteers. In benign prostate tissues, positive correlations and/or trends
were found between Spm, Cho, and Cit concentrations and also between ADC and Cit. Whereas no
significant difference in Spm concentration was found between PZ and CG, differences between Cho
and Cit concentrations were significant. Moreover, Cho content in PZ was higher than in CG and Cit
concentration of benign tissues was found higher in PZ than in CG. Considerable increase of Cho
and (Cho + Spm + Cr)/Cit levels and decrease of Cit were found for spectra of malignant tissue. Due
to difficulties in quantifying Cr levels, the use of the (Cho + Spm + Cr)/ Cit ratio instead of (Cho +
Cr)/Cit or Cho/Cr for PCa detection in CG was proposed.

In a pilot study by Nagarajan et al., the validation of two different nonlinear reconstruction
methods, namely maximum entropy (MaxEnt) and total variation (TV), for PCa detection were
intended [66]. For that purpose, twenty-two PCa patients were investigated. They observed
significantly high mean Cit metabolite ratios in cancerous compared to non-cancerous locations as well
as increased levels of Spm, myo-inositol (mI) and decreased levels of glutamate plus glutamine (Glx),
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but none of the ratios could discriminate between different stages of the disease. Logistic regression
analysis and ROC analyses suggested that Cit ratio gives the best predictability (AUC = 94%) in
MaxEnt compared to TV. The same authors, in a previous study, investigated magnetic resonance
spectroscopy imaging and diffusion-weighted imaging of 41 patients with different pathologically
proven different Gleason scores [67]. They confirmed that the ratio (Cho+Cr)/Cit measured in the
lesion is positively correlated with the Gleason score, showing an increase of the Cho level and
decrease of the Cit level with rising cancer aggressiveness. Furthermore, the study supported that
lower apparent diffusion coefficient values were associated with higher Gleason scores. With the
same scope, Kobus et al. have assessed tumour aggressiveness by combining the Cho+Cr/Cit and
Cho/Cr ratios [68]. In ROC curve analyses, they confirmed the results reported by Nagarajan and
colleagues, using either Cho+Cr/Cit ratio or Cho/Cr ratio. They were able to separate low-grade from
high-grade tumours with AUC values of 0.70 and 0.74, respectively. The combination of both ratios
performed even better (AUC = 0.78), but the improvement was not statistically significant. Wang et al.
investigated the usefulness of 1H-MRSI for predicting the proliferative activity of PCa by comparing
the (Cho+Cr)/Cit ratio in 38 patients with PCa and 33 patients with BPH [69]. They found a consistent
increase of the ratio from the peripheral zone over BPH to PCa.

Kumar et al. attempted to evaluate the incidence of prostate cancer in men with increased PSA
level of 4 to 10 ng/mL and a negative MRSI study [70]. Thirty-six patients with negative MRSI findings
underwent standard transrectal ultrasound (TRUS) guided sextant biopsy and none was positive. Of
the 36 men, 26 completed an 18-month follow-up period. PSA levels increased in four men. A repeat
saturation biopsy was benign in three men and PCa was detected (with a Gleason score of 4) in one
man 29 months after the initially negative MRSI, leading to an overall predictive value of 96% for a
negative MRSI.



Diagnostics 2019, 9, 21 34 of 44

Table 4. Results of the metabolomics studies conducted on other sample types.

Author Year Sample Size Technique Use Case Biomarkers Candidates Validated? Statistical Details Comments

Clos-Garcia
[61] 2018 PCa: 31

BPH: 14 UHPLC-MS
Diagnosis

Staging
Prognosis

phosphathidylcholines, acyl
carnitines, citrate and

kynurenine
steroid hormone,

3beta-hydroxyandros-5-en-17-
one-3-sulphate

(dehydroepiandrosterone
sulphate)

NO

ROC analysis
PCA

PLS-DA
OPLS

Sample type: Urine extracellular vesicles (EVs)

Roberts [63] 2017

n = 151
PCa: 9880 (initially

diagnosed)
18 (diagnosed during

follow-up period)

NMR Risk
prediction

lipids/lipoproteins (PC1)choline
phosphocholinecitrate Fructose

and spermine
NO PCA

PLS

Sample type: Seminal plasma
Time sample collection between January 2007

and February 2013
Samples obtained prior to or at least 1 month
after prostate biopsy, prior to commencement

of any treatment
No other specifications were provided to

patients for sample collection process
Glucose signals were excluded from the spectra

Puhka 2017 PCA: 3
HC: 3 UPLC-MS Diagnosis

glucuronate, D-ribose
5-phosphate and

isobutyryl-L-carnitine
NO

Sample type: urinary and platelet EVs
Urine samples and matched plasma samples
were collected 0–3 days before and 5–6 weeks

after the prostatectomy
Control samples were from healthy

<35 year-old mennormalization to EV-derived
factors or with metabolite ratios, and not from

the original urine samples.

Weis 2016 PCa: 46
HC: 4

3D Proton
MRSI Diagnosis choline, spermine and citrate

ratios NO concentration referenced to water

Nagarajan
[66] 2015 PCa: 22

EPSI
2D-JPRESS

(4D) EP-JRESI
Diagnosis

choline, spermine, citrate,
myo-inositol and glutamate plus

glutamine (Glx)
NO

logistic regression
analysis

ROC analysis

Prostate cancer was histopathologically
confirmed after RP

Nagarajan
[67] 2012

PCa: 41
GS 3+3 (n = 12)

GS 3+4 (n = 20) GS
3+4 (n = 9)

MRSI
DWI Staging choline, creatine and citrate

ratios NO ROC analysis At least 6 weeks time period between biopsy
and MRI
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Table 4. Cont.

Author Year Sample Size Technique Use Case Biomarkers Candidates Validated? Statistical Details Comments

Kobus [68] 2011 PCa: 43 MR
MRSI Staging choline, creatine and citrate

ratios NO 3 T

Wang [69] 2008 PCa: 33
BPH: 33 1H-MRSI Diagnosis choline, creatine and citrate

ratios NO 1.5 T

Kumar [70] 2008 n = 155 MRSI Diagnosis choline, creatine and citrate
ratios NO

1.5 T
TRUS-guided prostate biopsy within 1 week

after the MRSI

BPH: benign prostate hyperplasia; DWI: diffusion-weighted imaging ; EPSI:echo-planar spectroscopic imaging; EP-JRESI: echo-planar J-resolved spectroscopic imaging; GC: gas
chromatography; GS: Gleason score; (UHP/UP)LC: (ultra high performance/ultra performance) liquid chromatography; JPRESS: J resolved spectroscopic sequence; MRS:
magnetic resonance spectroscopy; MS: mass spectrometry; MS/MS tandem mass spectrometry; NMR: nuclear magnetic resonance; OPLS-DA: orthogonal projections to
latent structures-discriminant analysis; PCa: prostate cancer; PCA: principal component analysis; PLS(R)-DA: partial least squares (regression)-discriminant analysis; ROC:
receiver-operating characteristic; T: Tesla; TRUS: transrectal ultrasound
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3.2.5. Summary

A plethora of PCa biomarker candidates have been evaluated. Candidate biomarkers often
differed by specimen type, analytical platform and statistical analysis methods applied, there
are nevertheless a number of metabolites reported repeatedly and/or independently validated
(Table 5). These metabolites can also provide insight into pathophysiological mechanisms In blood,
Mondul et al. [15] and Schmidt et al. [19] have both observed inverse associations of lipids, including
glycero-phospholipids with risk of aggressive PCa. Among the nine studies searching for markers
for PCa diagnosis, only one study used a test set to validate their biomarkers. Andras and colleagues
successfully validated Lysophosphatidylcholine 18:2, homocysteine-inosine, methyladenosine, lipoic
acid, hydroxymelatonin, and decanoylcarnitine as diagnostic biomarkers in an independent test set [20].
Interestingly, decanoylcarnitine was also discovered earlier by Giskeødegård and co-workers [52].
In addition, Kumar and colleagues replicated the amino acids alanine and glycine, as well as sarcosine
as biomarkers for PCa diagnosis in two independent reports [21,22]. With respect to PCa staging, none
of the proposed biomarkers in blood could be validated or replicated consistently. PCa biomarkers for
prognosis and therapy prediction warrant further validation.

Urine-based studies reported multiple metabolites to be associated with PCa. Two studies
validated their findings using an independent validation set. Fernández-Peralbo et al. validated urea,
7-methylguanine, tyrosine, citrulline and histidine, acetyllysine, acetylhistidine, dimethyllysine and
trimethyllysine [35]. However, none of these candidate biomarkers were replicated in the various other
studies using urine samples. Zhang et al. compared 30 additional cases to their original control group
and reported ureido isobutyric acid, indolylacryloylglycine, acetylvanilalinine and 2-oxoglutarate as
consistently associated with PCa [59]. Pérez-Rambla et al. and Struck-Lewicka et al. had glycine in
common as a PCa biomarker [37,38]; all other reported metabolites were not replicated. None of the
studies that attempted to identify metabolites for PCa staging showed significant results. Preliminary
results on PCa risk prediction and PCa recurrence are waiting for further validation.

In tissue, numerous metabolites were found by the different studies. Some metabolites
were independently reported by different groups. In regard to PCa diagnosis, uracil [28,42,45,47]
and proline [28,44,46,47] were most frequently reported as tissue biomarkers and uracil was
independently validated in one study. In addition, there was some evidence for glycine, kynurenine,
glycerol-3-phosphate, leucine, choline and citrate as potential diagnostic markers of PCa. For staging
purposes, citrate [52,54] along with the polyamines spermine [52–55] and putrescine [44,55] were the
most cited metabolites in tissue. Choline-containing metabolites, especially choline, phosphocholine,
and glycerophosphocholine, might be additional important biomarkers for aggressive PCa, although
there were contradictory results among different studies. Only a few studies applied metabolomics
to find tissue biomarkers to predict biochemical recurrence, and none of the proposed biomarkers
was validated neither by additional studies. The ratio of choline, citrate, creatine, myo-inositol is
often used for the determination of cancer tissue in the prostate gland by using magnetic resonance
spectroscopy imaging (MRSI) There is a single study on seminal fluid [Roberts et al]. Within these
samples, a primary Gleason pattern 4 was associated with lower levels of citrate and spermine.
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Table 5. Most significant metabolites reported over all the selected studies.

Risk Prediction Diagnosis Prognosis Recurrence

citrate

Mondul et al. 2015 [15] (B) Kumar et al. 2016 [22]) (B) Giskeødegård et al. 2013 [52] (T)
Huang et al. 2017 [16] (B) Weis et al. 2017 [65] (O) Sandsmark et al. 2017 [54] (T)
Roberts et al. 2017 [63] (O) Nagarajan et al. 2015 [67] (O) Selnæs et al. 2013 [53] (T)

Wang et al. 2010 [69] (O) Hansen et al. 2016 [55] (T)
Zhang et al. 2014 [59] (T) Meller et al. 2016 [57] (T)

Keshari et al. 2011 [58] (T)
Thysell et al. 2010 [29] (T)

glycine

de Vogel et al. 2014 [18] Kumar et al. 2015 [21] (B) Hansen et al. 2016 [55]
Kumar et al. 2016 [22] (B)
Pérez-Rambla et al. 2017 [37] (U)
Struck-Lewicka et al. 2015 [38] (U)
Liu et al. 2015 [46] (T)
Jung et al. 2013 [47] (T)
Giskeødegård et al. 2013 [52] (T)

glycerol-3-phosphate Andras et al. 2017 [20] (B) McDunn et al. 2013 [44] (T)
Sreekumar et al. 2009 [28] (T) Thysell et al. 2010 [29] (T)

glycerophosphocholine
Andras et al. 2017 [20] (B) Giskeødegård et al. 2013 [52] (T)

Keshari et al. 2011 [58] (T)
Zhang et al. 2014 [59] (T)

alanine

Kumar et al. 2015 [21] (B) Kumar et al. 2015 [21] (B)
Kumar et al. 2016 [22] (B) Zhang et al. 2014 [59] (T)
Struck-Lewicka et al. 2015 [38] (U)
Shuster et al. 2011 [45] (T)
Jung et al. 2013 [47] (T)
Zhang et al. 2014 [59] (T)

choline

Ren et al. 2016 [43] Selnæs et al. 2013 [53] (T)
Shuster et al. 2011 [45] Zhang et al. 2014 [59] (T)
Giskeødegård et al. 2013 [52] (T) Nagarajan et al. 2015 [67] (O)
Keshari et al. 2011 [58] (T) Kobuscet al. 2011 [68] (O)
Zhang et al. 2014 [59] (T)
Weis et al. 2017 [65] (O)
Wang et al. 2010 [69] (O)

phosphocholine
Giskeødegård et al. 2013 [52] (T) Zhang et al. 2014 [59] (T)
Keshari et al. 2011 [58] (T)
Zhang et al. 2014 [59] (T)

glycerophosphocholine
Andras et al. 2017 [20] (B) Zhang et al. 2014 [59] (T)
Giskeødegård et al. 2013 [52] (T)
Keshari et al. 2011 [58] (T)

uracil

Huan et al. 2016 [42] (T)
Sreekumar et al. 2009 [28] (T)
Shuster et al. 2011 [45] (T)
Jung et al. 2013 [47] (T)
McDunn et al. 2013 [44] (T)

proline
Dereziński et al. 2017 [27] (B) Sreekumar et al. 2009 [28] (T)
Jung et al. 2013 [47] (T) Liu et al. 2015 [46] (T)
McDunn et al. 2013 [44] (T)

histidine Fernández-Peralbo et al. 2016 [35] (U)
Jung et al. 2013 [47] (T)

spermine

Roberts et al. 2017 [63] (O) Nagarajan et al. 2015 (O) Liu et al. 2015 [46] (T)
Weis et al. 2017 [65] (O) Shuster et al. 2011 [45] (T)

Giskeødegård et al. 2013 [52] (T)
Selnæs et al. 2013 [53] (T)
Sandsmark et al. 2017 [54] (T)
Hansen et al. 2016 [55] (T)
Meller et al. 2016 [57] (T)
Maxeiner et al. 2010 [ [60] (T)

2-aminoadipic acid

Jung et al. 2013 [47] (T)
Shuster et al. 2011 [45] (T)
Sreekumar et al. 2009 [28] (T)
Priolo et al. 2014 [48] (T)

B: Blood, U: Urine, T: Tissue, O: Other.

4. Discussion

Currently, the paradigm of PCa management would benefit from robustly validated novel
biomarkers not only for optimising widely used PSA testing and MRI scans, but also for phenotyping
tumour biology before and after treatment. During the last decade, metabolomics is an emerging
and promising tool in PCa biomarker development. A plethora of multivariate biomarker sets for
different use cases has been studied. The vast majority of these studies report the identification
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of biomarker candidates with the ability to distinguish malignant from benign prostate tissue
with a few studies investigating disease progression and treatment response or tumour recurrence.
In general, the reported metabolomic analyses yield high dimensional datasets and the number of
analysed metabolites often significantly exceeded the number of available samples. Hence, observed
multivariate differences between case and control samples in the datasets might potentially not only
be associated with identified biomarkers but also by pre-analytical, technical or statistical artefacts
and confounding factors. As powerful machine learning and data mining procedures are particularly
suited to find even subtle differences in datasets to enable data discrimination, these techniques may
be prone to false-positive associations of arbitrary metabolite combinations with the outcome data,
an effect often referred to as “over fitting”. The general heterogeneity of the datasets prevents a precise
validation of a biomarker or combination of biomarkers based on the group of samples used for
discovery even when utilizing cross-validation procedures. Therefore, as best practice, metabolomics
studies should include the validation of the findings using an appropriate set of independent samples
useful for the assessment of any clinical effectiveness as a mandatory step.

For the vast majority of reported biomarkers, correcting for multiple testing was rarely applied
and replication through use of a clinical independent validation was mostly lacking. Therefore,
currently it remains unclear to which extent the reported candidates may represent false positive
statistical artefacts. This statistical correction is exemplified by the most commonly cited metabolomics
PCa marker, sarcosine. In contrast to the very promising initial reports on sarcosine [28,31,44,71],
several groups could not replicate its associations with prostate cancer phenotypes [14,29,32,40]. It
remains unclear what the reasons are for these differences in reported findings. In general, the reported
studies were comparable in terms of sample sizes. It is striking that the sample size of several dozens
or up to 100 cases per group are quite limited compared to the number of detected metabolites per
analysis, typically more than 1000 metabolites. This mismatch together with the given biodiversity of
samples and cohorts from different continents might lead to false-negative or false-positive findings.
Technical characteristics of the different laboratory developed, non-standardized analytical platforms,
i.e., liquid chromatography and gas chromatography coupled to mass spectrometry, may also be
a further potential reason for the lack of correlation [72]. There are several studies reported here
that yielded conflicting results even with consistency of analytical platform [14,29,44]. Additionally,
especially for urine based approaches, the differences in findings might well be associated with
technical hurdles related to accurately determining the sarcosine/creatine ratio [73]. This fact was also
considered by Gamagedara et al., who observed a strong correlation between several urinary marker
candidates and urinary creatinine concentrations and concluded that their renal excretion rates might
represent a major confounder in urinary studies [34].

Therefore, clinical metabolomics can only overcome its infancy and solve clinical problems when
studies for biomarker discovery and validation are carefully designed with appropriate controls in
place at the pre-analytical, the analytical and the clinical stage. Sample size is a very crucial element to
the analysis. Indeed, the choice of the statistical tests and the performance of the data processing and
modelling are dependent on the sample size of datasets. Unfortunately, sample size calculations
for these types of studies is not easy. This highlights the importance of collaboration between
research groups in terms of biostatistics, standardizing analytical strategies, choosing appropriate
clinical references to maximise reproducibility, reliability and robustness of results. Given all these
technical and methodological hurdles, there are nevertheless a number of metabolites and pathways
repeatedly reported across various technical approaches, cohorts and sample types that appear to
play a predominant role in PCa tumour biology, progression and recurrence. Although encouraging,
it also demonstrates the enormous challenges faced by metabolomics, which the field is just started to
address. Therefore, caution must be taken until a more holistic picture of the strength and weaknesses
of novel candidates is available to ensure that they simply are not the most abundant, easy to measure
or stable analytes. When clinical metabolomics learns these critical lessons and the field matures,
it will benefit patients. However, expectations should not be raised erroneously high, and so key



Diagnostics 2019, 9, 21 39 of 44

evidence-based standards are essential. When a critical mass of evidence supports a metabolite as
having clinical efficacy in initial validation studies, the next stage in the development should be
its application in larger prospective studies to demonstrate its clinical utility. In conclusion, the
study of the prostate cancer metabolome is still at an early stage, but it may be an important tool for
understanding the development and progression of prostate cancer and for developing biomarkers to
support its treatment.
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Abbreviations

The following abbreviations are used in this manuscript:

PCa Prostate cancer
BPH Benign prstate hyperplasia
DRE Digital rectal exam
GS Gleason score
HC Healthy controls
NEM No evidence of malignancy
PSA Prostate specific antigen
TNM Tumour-lymphnode-metastasis classification
SP Seminal plasma
EV Extracellular vesicles
ADT Androgen deprivation therapy
AJCC American Joint Committee on Cancer
CRPC Castration-resistant prostate cancer
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
MS Mass spectrometry
GC-MS Gas chromatography mass spectrometry
MRIS Magnetic resonance imaging spectroscopy
NMR Nuclear magnetic resonance
LC-MS Liquid chromatography mass spectrometry
LC-QTOF-MS Liquid chromatography quadrupole time-of-flight mass spectrometry
GC-TOF-MS Gas chromatography time-of-flight mass spectrometry
HPLC-ESI+QTOF-sMS High performance liquid chromatography electrospray ionization quadrupole

time-of-flight mass spectrometry
UHPLC-MS Ultra high performance liquid chromatography mass spectrometry
HR-MAS-1H-MRS High resolution magic angle spinning proton magnetic resonance spectroscopy
LC-ESI-MS Liquid chromatography electrospray ionization mass spectrometry
PCA Principal component analysis
PLS-DA Partial least squares-discriminant analysis
RF Random forest
OSC-PLS Orthogonal signal correction for partial least square analysis
OPLS-DA Orthogonal projections to latent structures-discriminant analysis
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ROC Receiver operator characteristics
SVM Support vector machine
VIP Variable importance of projection
LDA Linear discrimination analysis
DFA Discriminant function analysis
ANOVA One-way analysis of variance
AUC Area under the curve
DRW-GM Directed random walk on gene metabolite pathway graph
(CCP/C) Choline+creatine+polyamines over citrate
Cho Choline
Cit Citrate
Cr Creatinine
GPC Glycerophosphocholine
GPE Glycerophospho-ethanolamine
LCFA Long chain fatty acid
mI Myo-inositol
NAD Nicotinamide adenine dinucleotide (NAD+)
PC Phosphocholine
PE Phosphoethanolamine
Spm Spermine
TMAO Trimethylamine N-oxide
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