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Abstract: It can be difficult for clinicians to accurately discriminate among histological classifications
of breast lesions on ultrasonographic images. The purpose of this study was to develop
a computer-aided diagnosis (CADx) scheme for determining histological classifications of breast
lesions using a convolutional neural network (CNN). Our database consisted of 578 breast
ultrasonographic images. It included 287 malignant (217 invasive carcinomas and 70 noninvasive
carcinomas) and 291 benign lesions (111 cysts and 180 fibroadenomas). In this study, the CNN
constructed from four convolutional layers, three batch-normalization layers, four pooling layers,
and two fully connected layers was employed for distinguishing between the four different types
of histological classifications for lesions. The classification accuracies for histological classifications
with our CNN model were 83.9–87.6%, which were substantially higher than those with our previous
method (55.7–79.3%) using hand-crafted features and a classifier. The area under the curve with our
CNN model was 0.976, whereas that with our previous method was 0.939 (p = 0.0001). Our CNN
model would be useful in differential diagnoses of breast lesions as a diagnostic aid.

Keywords: convolutional neural network; histological classification; computer-aided diagnosis;
breast lesion; ultrasonographic image

1. Introduction

Breast lesions, shown as hypoechoic masses on ultrasonographic images, are important indicators
of breast cancer. However, it can be difficult for clinicians to accurately distinguish between benign
and malignant lesions—and unusual ones, such as malignant-looking benign lesions or benign-looking
malignant lesions, often appear at clinical practice. Some studies have found that a positive predictive
value, i.e., the ratio of the number of breast cancers found to the number of biopsies, is rather low [1,2].

To improve the number of positive predictive values found at breast ultrasonographies,
many investigators have developed a computer-aided diagnosis (CADx) scheme for distinguishing
malignant lesions from benign ones [3–5], and in these studies, high sensitivity and specificity
for the CADx schemes were shown. At clinical practice, experienced clinicians evaluate not only
the likelihood of malignancy, but also the likelihood of histological classification for determining
patient managements.

Thus, in our previous study [6] we developed a CADx scheme for determining histological
classifications of breast lesions on ultrasonographic images using hand-crafted features and a classifier.
Nine objective features were extracted from lesions by considering specific features of images
commonly used by clinicians for describing lesions. A multiple-discriminant analysis with the nine
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features was employed to distinguish among the four different types of histological classifications.
We also confirmed the clinicians’ classification performances were substantially improved by using
our CADx scheme in an observer study [7]. However, the unsatisfactory classification accuracy of our
CADx scheme made it unfit to apply in clinical practice.

Many studies have reported that convolutional neural networks (CNN) have achieved outstanding
performance in applying segmentation, detection, and classification of lesions in medical images [8–16].
In lesion classification, the CNN which can extract complex multi-level features from input images
due to its self-learning ability significantly improved classification accuracy when compared with
the use of the conventional methods, as it uses a combination of hand-crafted features and
a classifier [16]. Therefore, we considered that classification accuracies of the CADx scheme for
histological classifications could be improved by the use of CNN.

In this study, we developed the CADx scheme for determining histological classifications of
breast lesions using a CNN. Our CNN model was constructed from four convolutional layers,
three batch-normalization layers, four pooling layers, and two fully connected layers. We then
evaluated the classification accuracy by applying our CNN model to 578 breast lesions on
ultrasonographic images.

2. Materials and Methods

The use of the following database was approved by the institutional review board at Mie
University Hospital. Informed consent was obtained from all observers, and the database was stripped
of all patient identifiers.

2.1. Materials

Our database consisted of 578 breast ultrasonographic images. The lesion sizes in our database
were 4–25 mm. These images were obtained from 566 patients using an ultrasound diagnostic
system (APLIO™ XG SSA-790A, Toshiba Medical Systems Corp., Otawara, Tochigi Prefecture, Japan)
with a 12 MHz linear-array transducer (PLT-1204AT) at Mie University Hospital in 2010. All cases had
already been pathologically proven. After the diagnosis of benign cases was confirmed by fine-needle
aspiration, the patients were examined again at 6 to 12 months after the initial diagnosis. To avoid
the influence of artifacts in the CNN analysis, cases that had undergone a vacuum-assisted needle
biopsy, excisional biopsy, or received medication were excluded in this study. The sizes of the images
were 716 × 537 pixels with 8-bit grayscale. The database included 287 malignant lesions (217 invasive
carcinomas and 70 noninvasive carcinomas) and 291 benign lesions (111 cysts and 180 fibroadenomas).
The histological classifications for all lesions were proved by pathologic diagnosis. Regions of interest
(ROIs) which included a whole lesion were selected from ultrasonographic images by experienced
clinicians. Those ROIs were used for the input of our CNN model. Figure 1 shows an example of
lesions with four different types of histological classifications.
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2.2. Data Augmentation

Although training of the CNN needs a sufficient amount of training data, the number of training
data in this study was limited. Because a small number of training data can sometimes diverge learning
or cause overfitting in the CNN, we decided to augment the training data by transforming it, using
a horizontal flip, parallel translation, and a gamma correction to do so [17].

2.3. Architecture of Convolutional Neural Networks Model

Figure 2 shows the architecture of our CNN model which was used in this study. Our CNN
model was constructed from four convolutional layers, three batch-normalization layers, four pooling
layers, and two fully connected layers. Each convolutional layer was followed by a rectified linear
unit (ReLU). ROIs with lesions were first resized to 224 × 224 pixels and then given to the input layer
of our CNN model. The first convolutional layer generated 64 feature maps with 112 × 112 pixels,
using 64 filters with 7 × 7 kernels at stride 2. Once the generated feature maps passed through the
normalization layer of the first batch, it then passed the first max pooling layer with a window size
of 3 × 3 at stride 2. The second convolutional layer used 192 filters with 5 × 5 kernels at stride 2,
and generated 192 feature maps with 55 × 55 pixels. The generated feature maps also passed through
the normalization layer of the second batch, then the second max pooling layer with a window
size of 3 × 3 at stride 2. Subsequently, the third and fourth convolutional layers with 256 filters of
3 × 3 kernels at stride 2 generated 256 feature maps, with 27 × 27 pixels and 13 × 13 pixels. The batch
normalization layer was applied only after the third convolutional layer. The max pooling layers
with window sizes of 3 × 3 at stride 2 were employed after both the third and fourth convolutional
layers. The generated feature maps from the fourth convolutional layer was merged at two fully
connected layers. Finally, the output layer using the softmax function outputted the likelihoods of the
four histological classifications (invasive carcinoma, noninvasive carcinoma, fibroadenoma, and cyst).
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Figure 2. Architecture of our convolutional neural networks (CNN) model.

2.4. Training of Convolutional Neural Networks Model

Our CNN model was developed based on the open-source library Keras [18] on Windows 7
Professional (Intel Core i7-6700k processor with RAM 32 GB) and accelerated by a graphic processing
unit (NVIDIA GeForce 1070 with 8 GB of memory).

A k-fold cross validation method [19] with k = 3 was used for the training and testing of
our CNN model. In the validation method, the 566 patients were randomly divided into three
groups so that the number of each histological classification was approximately equal in each
group (73 patients for invasive carcinoma, 24 patients for noninvasive carcinoma, 60 patients for
fibroadenoma, and 37 patients for cyst). One group was used as a test dataset. To assess the possibility
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of an overfitting of parameters in our CNN model, the remaining two groups were divided into
a training dataset and validation dataset of a 90%:10% ratio. This process was repeated three times
until every group had been used as test dataset. In this study, the number of ROIs for each histological
classification in each training dataset was unified to about 2000 by using data augmentation. Table 1
shows the number of training images before and after augmentation in each dataset.

Table 1. Number of training images before and after augmentation in each dataset.

Pathological Diagnosis
k = 1 k = 2 k = 3

Before After Before After Before After

Invasive carcinoma 144 2017 145 2030 145 2030
Noninvasive carcinoma 48 2160 46 2070 46 2070

Fibroadenoma 120 2160 120 2160 120 2160
Cyst 74 2220 74 2220 74 2220

To select appropriate hyper-parameters, twelve different combinations of hyper-parameters such
as the learning rate, mini-batch size, epoch number, and dropout rate were used in our CNN model.
We employed the combination of hyper-parameters with the highest classification accuracy in the
12 combinations.

2.5. Evaluation of Classification Performance

The classification accuracy of our CNN model was evaluated by using the ensemble average
from the testing datasets over the 3-fold cross validation method. The sensitivity [20], specificity [20],
positive predictive value (PPV) [20], and negative predictive value (NPV) [20] were defined as:

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

PPV =
TP

TP + FP
(3)

NPV =
TN

TN + FN
(4)

Here, TP (true positive) was the number of malignant lesions (invasive and noninvasive carcinomas)
correctly identified as positive, whereas TN (true negative) was the number of benign lesions (cysts and
fibroadenomas) correctly identified as negative. FP (false positive) was the number of benign lesions
incorrectly identified as positive, and FN (false negative) was the number of malignant lesions
incorrectly identified as negative. It is noted that the denominators in sensitivity and PPV were
coincidentally the same (TP + FN = TP + FP), and the denominators for specificity and NPV (TN + FP
= TN + FN) were also the same.

Receiver operating characteristic (ROC) analysis [21] was used for analysis of classification
performance. In the ROC analysis, the likelihood of malignancy for each lesion was determined
by adding the output values regarding probabilities for invasive and noninvasive carcinomas in
a computerized method. We also calculated the area under the curve (AUC) value. The statistical
significance of the difference in the AUC value between two computerized methods was tested by
using the Dorfman–Berbaum–Metz method [22].
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3. Results

The classification accuracy was highest when the mini-batch size was 128 ROIs, the learning rate
was 10−3, the max epoch number was 15, and the drop rate was 0.5. Therefore, these hyper-parameters
were used in our CNN model.

Table 2 shows the classification results of the four histological classifications using our CNN
model. The classification accuracy of our CNN model was 87.6% (190/217) for invasive carcinomas,
85.7% (60/70) for noninvasive carcinomas, 83.9% (151/180) for fibroadenomas, and 85.6% (95/111)
for cysts, respectively. The sensitivity, specificity, positive predictive values (PPV), and negative
predictive values (NPV) were 93.0% (267/287), 93.1% (271/291), 93.0% (267/287), and 93.1% (271/291),
respectively. The classification accuracies for histological classifications with our CNN model were
substantially higher than those with our previous method (71.2% for invasive carcinomas, 55.7% for
noninvasive carcinomas, 70.0% for fibroadenomas, and 79.3% for cysts) using hand-crafted features and
a classifier [6]. This result indicates the usefulness of CNN in determining histological classifications.
Figure 3 shows the comparison between the ROC curves of our CNN model and our previous method.
The AUC value of our CNN model was 0.976 (standard error = 0.0052), showing to be greater than
that of our previous method (AUC = 0.939, standard error = 0.0094, p = 0.0001).

Table 2. Classification results of four histological classifications.

Pathological Diagnosis
Output of Our CNN Model

Invasive Carcinoma Noninvasive Carcinoma Fibroadenoma Cyst

Invasive carcinoma (217) 190 (87.6%) 10 (4.6%) 13 (6.0%) 4 (1.8%)
Noninvasive carcinoma (70) 7 (10.0%) 60 (85.7%) 2 (2.9%) 1 (1.4%)

Fibroadenoma (180) 13 (7.2%) 6 (3.3%) 151 (83.9%) 10 (5.6%)
Cyst (111) 1 (0.9%) 0 (0.0%) 15 (13.5%) 95 (85.6%)
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Figure 3. Comparison of the receiver operating characteristic (ROC) curves between our CNN model
and our previous method.

4. Discussion

Figure 4 shows the training curves of our CNN model for each dataset. The loss curves between
the training dataset and the validation dataset tended to similar in the three training phases. Because in
the case of overfitting the loss in the validation dataset would be much larger than that for the training
dataset [23], we believe that the possibility that there was overfitting in our CNN model was low.
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Figure 4. Training curves of our CNN model in each dataset.

To clarify the usefulness of our CNN architecture, we also evaluated the classification
performances for an AlexNet without pre-training [24] and an AlexNet with pre-training [23].
The AlexNet with pre-training had been trained with ImageNet. The hyper-parameters of both
AlexNets were given based on a previous study [23]. Both AlexNets consisted of the same architecture
and had 5 convolutions, 2 normalizations, and 3 max pooling layers. Each convolution layer was
followed by an ReLU [24]. In the last layers, all units were fully connected to output probabilities for
4 classes using the softmax function. The AlexNet without pre-training was trained with our database,
whereas the AlexNet with pre-training was fine-tuned for our database. The classification accuracy
of the AlexNet without pre-training was 76.5% (166/217) for invasive carcinomas, 64.3% (45/70) for
noninvasive carcinomas, 76.7% (138/180) for fibroadenomas, and 76.6% (85/111) for cysts. On the
other hand, the classification accuracy of the AlexNet with pre-training was 82.9% (180/217) for
invasive carcinomas, 64.3% (45/70) for noninvasive carcinomas, 76.7% (138/180) for fibroadenomas,
and 86.5% (96/111) for cysts. The classification performance of the AlexNet with pre-training was
higher than that of the AlexNet without pre-training. Because those results were improved substantially
by using our CNN architecture, we believe that our CNN architecture was more appropriate for
distinguishing between the four different types of histological classifications on breast lesions. The ROC
analysis was also employed to compare our CNN model with the AlexNet without pre-training
and the AlexNet with pre-training. Figure 5 shows the comparison of the ROC curves for our
CNN model, the AlexNet without pre-training, and the AlexNet with pre-training. The AUC for
our CNN model was 0.976 (standard error = 0.0052), showing to be greater than both that for the
AlexNet without pre-training (AUC = 0.925, standard error = 0.011, p < 0.0001) and the AlexNet with
pre-training (AUC = 0.958, standard error = 0.007, p = 0.0019).
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To investigate the adequacy of the number of convolutional layers used for our CNN model,
we compared the classification performances when the number of convolutional layers was changed
from 3 to 5. Figure 6 shows the architecture of two different types of CNN models with three
or five convolutional layers. Table 3 also shows the classification results when the number of
convolutional layers was set to 3, 4, and 5. Our proposed CNN model with four convolutional
layers showed the highest classification accuracy among three different CNN models. Although the
number of convolutional layers tended to increase in the classification problem, we believed that four
convolutional layers was appropriate in determining the histological classification.

To evaluate the validity of the number of filters in each convolutional layer, we compared the
classification performances when the number of filters was changed from 0.5 to 1.5 times in our CNN
model. Table 4 shows the classification results when the number of filters in each convolutional layer
was set to 0.5 times, 1 time, and 1.5 times. The classification accuracy of the CNN model with the
combination of the number of filters given in our CADx scheme was higher than those with the other
combinations of filters. However, there was no significant change in the classification accuracies due
to the combination of the number of filters.

Diagnostics 2018, 8, x FOR PEER REVIEW  7 of 9 

 

combination of the number of filters given in our CADx scheme was higher than those with the other 
combinations of filters. However, there was no significant change in the classification accuracies due 
to the combination of the number of filters. 

 

Figure 6. Architecture of two CNN models with three convolutional layers or five convolutional 
layers. 

Table 3. Comparison of results when the number of convolutional layers was set to 3, 4, and 5. 

Pathological Diagnosis 
Num. of Convolutional Layers in CNN 

3 4 5 
Invasive carcinoma (217) 189 (87.1%) 190 (87.6%) 195 (89.9%) 

Noninvasive carcinoma (70) 58 (82.9%) 60 (85.7%) 51 (72.9%) 
Fibroadenoma (180) 143 (79.4%) 151 (83.9%) 151 (83.9%) 

Cyst (111) 96 (86.5%) 95 (85.6%) 89 (80.2%) 
Total (578) 486 (84.1%) 496 (85.8%) 486 (84.1%) 

Table 4. Comparison of results when the number of filters in each convolutional layer was set to 0.5 
times, 1 time, and 1.5 times. 

Pathological Diagnosis 
Change Ratio of the Number of Filters  

in Each Convolutional Layer of Our CNN Model 
0.5 Times 1.0 Time 1.5 Times 

Invasive carcinoma (217) 190 (87.6%) 190 (87.6%) 196 (90.3%) 
Noninvasive carcinoma (70) 52 (74.3%) 60 (85.7%) 50 (71.4%) 

Fibroadenoma (180) 146 (81.1%) 151 (83.9%) 150 (83.3%) 
Cyst (111) 102 (91.9%) 95 (85.6%) 97 (87.4%) 
Total (578) 490 (84.8%) 496 (85.8%) 493 (85.3%) 

This study has some limitations. One limitation is the that hyper-parameters, such as the number 
of layers, the number of filters, learning rate, mini-batch size, epoch number, and drop rate in our 
CNN model, may not have been the best combination for determining histological classifications of 
breast lesions. Because the number of combinations of hyper-parameters in the CNN is infinite, we 
evaluated the classification accuracy by using some different combinations of hyper-parameters in 
our CNN model. The results in this study could be improved by using more optimal combinations 
of hyper-parameters. We considered that a shallow CNN architecture would achieve a higher 

C
onv. + ReLU

Batch N
orm

alization

M
ax pooling

C
onv. + ReLU

Batch N
orm

alization

M
ax pooling

C
onv. + ReLU

M
ax pooling

Output：
Likelihood of each 
histological classification

Conv.
Filter size: 7×7
Num. of filters: 64
Stride: 2

Max pooling
Filter size: 3×3
Stride: 2

Conv.
Filter size: 5×5
Num. of filters: 192
Stride: 1

Max pooling
Filter size: 3×3
Stride: 2

Conv.
Filter size: 3×3
Num.

of filters: 256
Stride: 1
Max pooling
Filter size: 3×3
Stride: 2

Fully connected 1

Fully connected 2

Soft-m
ax

Fully connected1: 4096

Fully connected2: 4096

Soft-max: 4

C
onv. + ReLU

Batch N
orm

alization

M
ax pooling

C
onv. + ReLU

Batch N
orm

alization

M
ax pooling

C
onv. + ReLU

Batch N
orm

alization

M
ax pooling

C
onv. + ReLU

M
ax pooling

Output：
Likelihood
of each 
histological 
classification

Conv.
Filter size: 7×7
Num. of filters: 64
Stride: 2

Max pooling
Filter size: 3×3
Stride: 2

Conv.
Filter size: 5×5
Num. of filters: 192
Stride: 1

Max pooling
Filter size: 3×3
Stride: 2

Conv.
Filter size: 3×3
Num. of filters: 256
Stride: 1

Max pooling
Filter size: 3×3
Stride: 2

Conv.
Filter size: 3×3
Num. 

of filters: 256
Stride: 1
Max pooling
Filter size: 3×3
Stride: 2

Fully connected 1

Fully connected 2

Soft-m
ax

Fully connected1: 4096

Fully connected2: 4096

Soft-max: 4

C
onv. + ReLU

Batch N
orm

alization

M
ax pooling

Conv.
Filter size: 3×3
Num. of filters: 256
Stride: 1

Max pooling
Filter size: 3×3
Stride: 2

Input
Input

Figure 6. Architecture of two CNN models with three convolutional layers or five convolutional layers.

This study has some limitations. One limitation is the that hyper-parameters, such as the number
of layers, the number of filters, learning rate, mini-batch size, epoch number, and drop rate in our
CNN model, may not have been the best combination for determining histological classifications
of breast lesions. Because the number of combinations of hyper-parameters in the CNN is infinite,
we evaluated the classification accuracy by using some different combinations of hyper-parameters in
our CNN model. The results in this study could be improved by using more optimal combinations
of hyper-parameters. We considered that a shallow CNN architecture would achieve a higher
classification accuracy than a deep CNN architecture, because the amount of clinical data available for
training the model in this study was limited. To clarify the usefulness of the shallow CNN architecture,
we compared our CNN with an AlexNet, which is a deep CNN architecture. Although the classification
performance for our CNN architecture was greater than that for AlexNet, a deeper CNN architecture
might be able to achieve a higher classification accuracy than our proposed one when a larger database
is available for training the model in the future. A third limitation is that the size of the ROI was
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dependent on the size of the breast mass. Because its size and location were given subjectively by
experienced clinicians, we can expect there to be some variation among the size and the location of such
ROIs, and the classification performance of our CNN model might vary as the ROI is altered. A final
limitation is that our CNN model evaluates the likelihood of only four histological classifications,
meaning that we would need to make our CNN model applicable to a wider variety of histological
classifications in the future.

Table 3. Comparison of results when the number of convolutional layers was set to 3, 4, and 5.

Pathological Diagnosis
Num. of Convolutional Layers in CNN

3 4 5

Invasive carcinoma (217) 189 (87.1%) 190 (87.6%) 195 (89.9%)
Noninvasive carcinoma (70) 58 (82.9%) 60 (85.7%) 51 (72.9%)

Fibroadenoma (180) 143 (79.4%) 151 (83.9%) 151 (83.9%)
Cyst (111) 96 (86.5%) 95 (85.6%) 89 (80.2%)
Total (578) 486 (84.1%) 496 (85.8%) 486 (84.1%)

Table 4. Comparison of results when the number of filters in each convolutional layer was set to
0.5 times, 1 time, and 1.5 times.

Pathological Diagnosis
Change Ratio of the Number of Filters in Each

Convolutional Layer of Our CNN Model

0.5 Times 1.0 Time 1.5 Times

Invasive carcinoma (217) 190 (87.6%) 190 (87.6%) 196 (90.3%)
Noninvasive carcinoma (70) 52 (74.3%) 60 (85.7%) 50 (71.4%)

Fibroadenoma (180) 146 (81.1%) 151 (83.9%) 150 (83.3%)
Cyst (111) 102 (91.9%) 95 (85.6%) 97 (87.4%)
Total (578) 490 (84.8%) 496 (85.8%) 493 (85.3%)

5. Conclusions

In this study, we developed the CADx scheme for determining histological classifications of
breast lesions on ultrasonographic images using CNN. Our CNN model was shown to have a high
classification accuracy for histological classification, and may be useful in differential diagnoses of
breast lesions on ultrasonographic images when used as a diagnostic aid.
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11. Dalmış, M.U.; Litjens, G.; Holland, K.; Setio, A.; Mann, R.; Karssemeijer, N.; Gubern-Mérida, A. Using
deep learning to segment breast and fibroglandular tissue in MRI volumes. Med. Phys. 2017, 44, 533–546.
[CrossRef] [PubMed]

12. Mohamed, A.A.; Berg, W.A.; Peng, H.; Luo, Y.; Jankowitz, R.C.; Wu, S. A deep learning method for classifying
mammographic breast density categories. Med. Phys. 2018, 45, 314–321. [CrossRef] [PubMed]

13. Suzuki, K. Overview of deep learning in medical imaging. Radiol. Phys. Technol. 2017, 10, 257–273. [CrossRef]
[PubMed]

14. Tajbakhsh, N.; Suzuki, K. Comparing two classes of end-to-end machine-learning models in lung nodule
detection and classification: MTANNs vs. CNNs. Pattern Recognit. 2017, 63, 476–486. [CrossRef]

15. Shi, Z.; Hao, H.; Zhao, M.; Feng, Y.; He, L.; Wang, Y.; Suzuki, K. A deep CNN based transfer learning method
for false positive reduction. Multimed. Tools Appl. 2018, 1–17. [CrossRef]

16. Ginneken, B.V. Fifty years of computer analysis in chest imaging: Rule-based, machine learning,
deep learning. Radiol. Phys. Technol. 2017, 10, 23–32. [CrossRef] [PubMed]

17. Gonzales, R.C.; Woods, R.E. Digital Image Processing, 2nd ed.; Addison-Wesley: Boston, MA, USA, 1992;
pp. 567–643.

18. Chollet, F. Deep Learning with Python; Manning Pubns Co.: New York, NY, USA, 2017.
19. Wernick, M.N.; Yang, Y.; Brankov, J.G.; Yourganov, G.; Strother, S.C. Machine learning in medical imaging.

IEEE Signal Process. Mag. 2010, 27, 25–38. [CrossRef] [PubMed]
20. Langlotz, C.P. Fundamental measures of diagnostic examination performance: Usefulness for clinical

decision making and research. Radiology 2003, 228, 3–9. [CrossRef] [PubMed]
21. Metz, C.E. ROC methodology in radiologic imaging. Investig. Radiol. 1986, 21, 720–733. [CrossRef]
22. Dorfman, D.D.; Berbaum, K.S.; Metz, C.E. ROC rating analysis: Generalization to the population of readers

and cases with jackknife method. Investig. Radiol. 1992, 27, 723–731. [CrossRef]
23. Lakhani, P.; Sundaram, B. Deep Learning at chest radiography: Automated classification of pulmonary

tuberculosis by using convolutional neural networks. Radiology 2017, 284, 574–582. [CrossRef] [PubMed]
24. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.

In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe,
NV, USA, 3–6 December 2012; pp. 1097–1105.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TMI.2004.834617
http://www.ncbi.nlm.nih.gov/pubmed/15493696
http://dx.doi.org/10.1007/s10278-013-9594-7
http://www.ncbi.nlm.nih.gov/pubmed/23546774
http://dx.doi.org/10.1016/j.acra.2012.11.007
http://www.ncbi.nlm.nih.gov/pubmed/23498989
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1109/TMI.2016.2553401
http://dx.doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28778026
http://dx.doi.org/10.1002/mp.12079
http://www.ncbi.nlm.nih.gov/pubmed/28035663
http://dx.doi.org/10.1002/mp.12683
http://www.ncbi.nlm.nih.gov/pubmed/29159811
http://dx.doi.org/10.1007/s12194-017-0406-5
http://www.ncbi.nlm.nih.gov/pubmed/28689314
http://dx.doi.org/10.1016/j.patcog.2016.09.029
http://dx.doi.org/10.1007/s11042-018-6082-6
http://dx.doi.org/10.1007/s12194-017-0394-5
http://www.ncbi.nlm.nih.gov/pubmed/28211015
http://dx.doi.org/10.1109/MSP.2010.936730
http://www.ncbi.nlm.nih.gov/pubmed/25382956
http://dx.doi.org/10.1148/radiol.2281011106
http://www.ncbi.nlm.nih.gov/pubmed/12832567
http://dx.doi.org/10.1097/00004424-198609000-00009
http://dx.doi.org/10.1097/00004424-199209000-00015
http://dx.doi.org/10.1148/radiol.2017162326
http://www.ncbi.nlm.nih.gov/pubmed/28436741
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Data Augmentation 
	Architecture of Convolutional Neural Networks Model 
	Training of Convolutional Neural Networks Model 
	Evaluation of Classification Performance 

	Results 
	Discussion 
	Conclusions 
	References

