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1. Technical details for the calculation of the Grey zone 
boundaries 

The clinically relevant diagnostic questions which have to be answered beforehand 
are the prevalence of the disease in the given clinical situation and what post-test 
probabilities are needed for a given disease to decide for or against starting the 
treatment of the disease 1. The idea is that these probabilities are easier clinically 
defined than likelihood ratios or odds 2.  

Combining pre-test probability (p1) or prevalence with the desired post-test probability 
(p2) in the given clinical situation, the likelihood ratio (LR) can be calculated, which is 
defined as the ratio between the post-test odds and the pre-test odds: 
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The positive post-test probability for accepting a positive diagnosis and treat the 
patient without further exploration, and the negative post-test-probability to reject the 
diagnosis and seek for another explanation of the symptoms, define the necessary levels 
of Se and Sp. In the specific clinical setting the prevalence of iron deficiency was set to 
.1. Consequently, with a positive post-test probability of .7, the desired positive likelihood 
ratio LR+ = ((1 - .1) * .7) / (.1 * (1 - .7)) = 21.  Similarly, with a negative post-test 
probability of .001, LR- = (.9 * .001) / (.1 * .999) = .009.  

With the minimum likelihoods known, the minimal required values for are also 
fixed as Se and Sp are closely related to LR+ and LR-: 
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2. Optimization procedure for the bi-normal Uncertain 
Interval method 

 

Balancing TP/FN and TN/FP 

Figure 1 shows the test scores of non-patients (0; left distribution) and patients (1; 
right distribution). The two distributions overlap, and as a result, there are both errors 
and correct decisions for the test scores between an upper (U) and a lower (L) 
boundaries within this range of overlap:  

 True Negatives (TN; patients with a test score that indicates health, while the 
true status of the patient is healthy);  

 False Negatives (FN; healthy patients while their test score indicates the 
targeted disease); 

 True Positives (diseased patients classified as diseased); and  
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 False Positives (healthy patients classified as diseased).  
 

The upper and lower boundaries are defined in relation to the intersection. 

Sensitivity (SE) and specificity (SP) of these test scores within the uncertain 
interval and around the intersection are defined as usual: 
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Let the distributions of the test scores of non-patients and patients be bi-normal 
distributed. We try to establish an uncertain interval around the intersection I of both 
curves, so that within this Uncertain Interval both ratios TP/FN and TN/FN are balanced 
and true decisions and false decisions are about equal. Figure 1 shows this: 

 

Figure 1: Density plots of normal distributions of Patients without (black) and with 
the disease (red). 

Let 0  be the pdf and 0  the cdf of 0 0( , )N   , while  1  is the pdf and 1  is the cdf 

of 1 1( , )N   , and I the point of intersection between the two distributions.  
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It is assumed that either there is only one intersection, or a second intersection 
concerns a negligible overlap. If this is not the case, that is, when there are two 
non-negligible areas of overlap, this means that the test is weak, has interpreational 
problems and is unfit for application of this method. Schisterman, Perkins, Liu, & Bondell 
3 showed that the Youden threshold (and thus the Youden index J) occurs at the 
intersection of both probability density functions, where the overlap is largest. Therefore, 
the Youden threshold and the uncertain interval are most closely connected. In practice, 
the estimate of the Youden threshold and the estimate of the main intersection can differ 
slightly (especially for ordinal test scores), as their calculation is different. In our 
experience, the intersection based on kernel estimation is slightly more often useful for 
the estimation of the uncertain interval than the Youden threshold is, but in theory both 
estimates can be used interchangeably. In most cases they will be the same. 

When U is the upper boundary and L is the lower boundary of the uncertain interval, and 
taking the intersection of both curves as preliminary cut-point, the ratios within the 
uncertain interval are: 
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The constants are provided by choosing a pre-selected value for Se and Sp (default .55). 
Maximizing the interval (U - L) when using  an optimization technique that allows for 
constraints such as the SLSQP algorithm for nonlinearly constrained gradient-based 
optimization 4,5, as implemented in R package nloptr 6,7: 
 

 2{ ( ) }min U L    

With gradients: 

  2( ) 2( )U L U L     

 

Subject to: 
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While the Jacobian matrix of the constraints is: 
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The SLSQP algorithm shows usually good convergence, resulting in a middle 
section for which both Se and Sp is very close to the pre-selected value. When this is not 
the case, the result can be rejected. The optimization fails when U or L are in the 
extreme tails of the distributions as a result of too demanding values chosen for Se or 
Sp. Normally, a single minimum exists. 

 

That only a single minimum exists can be shown by optimizing both constraints 
simultaneously. This leads to an equivalent single optimization function that can be used 
with general-purpose optimization based on the BFGS algorithm with gradient functions 
8.  
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And gradient functions: 
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Figure 2: Single minimum for optimization function (example with N(0, 1) and N(2, .6). 

 

This results in the same solutions as the nlopt optimization provides. Figure 2 shows that 
there is a single minimum for this optimization. However, optimizing in this way is more 
vulnerable to start values and therefore the nlopt implementation is preferred. 
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3. Default values of the Uncertain Interval method 

The default values for the Uncertain Interval are Se and Sp equal to .55. In that 
case, the diagnostic odds ratio (DOR) equals 1.49, smaller than a valid small difference 
between the test scores of subjects with and without the targeted disease 9. For these 
test scores, the differences between the pretest probability (prevalence) and posttest 
probabilities is systematically smaller than 5%, independent of prevalence. When using 
the default, the test scores within the UI are expected to be statistically insufficient to 
distinguish ‘healthy’ from ‘diseased’ patients in samples of 350 cases or less. The test 
scores within the uncertain interval are expected to have insufficient validity and 
reliability and are therefore considered as statistically insufficient for distinguishing 
patients.  A less stringent definition choosing a higher value for Se an Sp may define 
test scores that are less uncertain but still diagnostically insufficient. Table A shows 
results of various choices for Se and Sp, when normal distributions can be assumed.  

 
Table A. Pre-selected values and obtained values for the Uncertain Interval method. The obtained 
values are calculated for the selected patients for whom a decision is made, given various test 
strengths and various pre-selected values for Se and Sp. The reference distribution is N(0, 1), while the 
distribution of the patients with the targeted disease is N(mu, sd). 

Patient distribution 
Preselected 
values 

Obtained values 
uncertain interval 

Obtained values 
Outer sections 

mu sd C Se Sp Se.ui Sp.ui Se.mci Sp.mci 
1 0.5 0.814 0.55 0.55 0.55 0.55 0.733 0.905 
1 0.5 0.814 0.55 0.6 0.55 0.6 0.738 0.93 
1 0.5 0.814 0.55 0.65 0.55 0.65 0.741 0.953 
1 0.5 0.814 0.6 0.55 0.6 0.55 0.74 0.925 
1 0.5 0.814 0.6 0.6 0.6 0.6 0.744 0.948 
1 0.5 0.814 0.6 0.65 0.6 0.65 0.747 0.967 
1 0.5 0.814 0.65 0.55 0.65 0.55 0.747 0.943 
1 0.5 0.814 0.65 0.6 0.65 0.6 0.75 0.962 
1 0.5 0.814 0.65 0.65 0.65 0.65 0.752 0.979 
1 1 0.76 0.55 0.55 0.55 0.55 0.747 0.747 
1 1 0.76 0.55 0.6 0.55 0.6 0.771 0.78 
1 1 0.76 0.55 0.65 0.55 0.65 0.793 0.821 
1 1 0.76 0.6 0.55 0.6 0.55 0.78 0.771 
1 1 0.76 0.6 0.6 0.6 0.6 0.806 0.806 
1 1 0.76 0.6 0.65 0.6 0.65 0.828 0.848 
1 1 0.76 0.65 0.55 0.65 0.55 0.821 0.793 
1 1 0.76 0.65 0.6 0.65 0.6 0.848 0.828 
1 1 0.76 0.65 0.65 0.65 0.65 0.873 0.873 
1 2 0.673 0.55 0.55 0.55 0.55 0.87 0.63 
1 2 0.673 0.55 0.6 0.55 0.6 0.903 0.633 
1 2 0.673 0.55 0.65 0.55 0.65 0.933 0.633 
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Patient distribution 
Preselected 
values 

Obtained values 
uncertain interval 

Obtained values 
Outer sections 

mu sd C Se Sp Se.ui Sp.ui Se.mci Sp.mci 
1 2 0.673 0.6 0.55 0.6 0.55 0.91 0.632 
1 2 0.673 0.6 0.6 0.6 0.6 0.939 0.633 
1 2 0.673 0.6 0.65 0.6 0.65 0.963 0.632 
1 2 0.673 0.65 0.55 0.65 0.55 0.947 0.633 
1 2 0.673 0.65 0.6 0.65 0.6 0.969 0.633 
1 2 0.673 0.65 0.65 0.65 0.65 0.985 0.632 
2 0.5 0.963 0.55 0.55 0.55 0.55 0.899 0.964 
2 0.5 0.963 0.55 0.6 0.55 0.6 0.903 0.972 
2 0.5 0.963 0.55 0.65 0.55 0.65 0.907 0.979 
2 0.5 0.963 0.6 0.55 0.6 0.55 0.905 0.97 
2 0.5 0.963 0.6 0.6 0.6 0.6 0.909 0.977 
2 0.5 0.963 0.6 0.65 0.6 0.65 0.912 0.983 
2 0.5 0.963 0.65 0.55 0.65 0.55 0.911 0.975 
2 0.5 0.963 0.65 0.6 0.65 0.6 0.915 0.981 
2 0.5 0.963 0.65 0.65 0.65 0.65 0.917 0.987 
2 1 0.921 0.55 0.55 0.55 0.55 0.873 0.873 
2 1 0.921 0.55 0.6 0.55 0.6 0.885 0.89 
2 1 0.921 0.55 0.65 0.55 0.65 0.896 0.907 
2 1 0.921 0.6 0.55 0.6 0.55 0.89 0.885 
2 1 0.921 0.6 0.6 0.6 0.6 0.901 0.901 
2 1 0.921 0.6 0.65 0.6 0.65 0.911 0.918 
2 1 0.921 0.65 0.55 0.65 0.55 0.907 0.896 
2 1 0.921 0.65 0.6 0.65 0.6 0.918 0.911 
2 1 0.921 0.65 0.65 0.65 0.65 0.927 0.927 
2 2 0.814 0.55 0.55 0.55 0.55 0.905 0.733 
2 2 0.814 0.55 0.6 0.55 0.6 0.925 0.74 
2 2 0.814 0.55 0.65 0.55 0.65 0.943 0.747 
2 2 0.814 0.6 0.55 0.6 0.55 0.93 0.738 
2 2 0.814 0.6 0.6 0.6 0.6 0.948 0.744 
2 2 0.814 0.6 0.65 0.6 0.65 0.962 0.75 
2 2 0.814 0.65 0.55 0.65 0.55 0.953 0.741 
2 2 0.814 0.65 0.6 0.65 0.6 0.967 0.747 
2 2 0.814 0.65 0.65 0.65 0.65 0.979 0.752 

Se.mci, Sp.mci: Sensitivity and specificity for the test csores in the more certain nterval, the two outer ranges of the 
Uncertain Interval method 
Se.ui, Sp.ui: Sensitivity and specificity for the test csores in the uncertain interval, the middle range of the Uncertain 
Interval method 
 

In these cases, the obtained values for the uncertain interval (Se.ui and Sp.ui) are 
always equal to the preselected values. They may differ when thresholds come to close 
to the boundaries of the range of overlapping test scores. The obtained values for the 
outer sections (Se.mci and Sp.mci) vary, dependent on the pre-selected values and the 
variance of the patient distribution. 
 

4. A simulation of decision reliabilities 

Design of the simulation study 
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One thousand simulations are executed on an equal number of patients (200) 
with (d1) and without the targeted condition (d0), drawn from various bi-normal 
populations. For d0 the standard normal distribution is used, while in d1 both the mean 
and the standard deviation are varied, representing tests of varying strength as 
expressed by the population C (concordance or C-statistic) values.  The means for the 
d1 distribution are 2, 1.2 and .7 and the standard deviations are .7, 1 and 1.6, resulting in 
concordance values varying from .95 (representing a strong test) to .64 (representing a 
weak test).  

For the study of the reliabilities of the various tests, repeated measurements are 
simulated by assuming a within-group correlation of .6 between the first and the second 
measurement. The various cut-points are based on the first measurement and are 
applied to the second measurement. As the repeated measurements reliability is also 
dependent on the strength of the test (as indicated by their C-value), the resulting test 
reliabilities differ considerably (reliabilities ranging from .62 to .83). The reliabilities of the 
tests are expressed as Pearson’s Product Moment Correlations. The decisions 
reliabilities are evaluated after the various decision methods have been applied. The 
reliability of the medical decisions is evaluated using Pearson’s Phi-coefficient.  

 

Decision Reliability 

 The repeated measurement reliabilities of both the test and the diagnoses based 
on Youden, TG-ROC .9 and the bi-normal Uncertain Interval method are shown in table 
5. Given a prevalence of .5, the Grey zone method is equal to the TG-ROC approach 
when the positive post-test probability is .90 and the negative post-test probability is .10. 

Table 5. Reliabilities of the diagnoses (means of 1000 simulations) 

Populations values Reliability Decision Reliabilities 

μ1 σ1 C Test Youden TG-ROC MCI bi UI bi 

2 0.7 0.95 0.83 0.72 0.74 0.77 0.08 

1.2 0.7 0.84 0.73 0.56 0.63 0.64 0.1 

0.7 0.7 0.72 0.66 0.47 0.52 0.58 0.12 

2 1 0.92 0.8 0.65 0.72 0.72 0.09 

1.2 1 0.8 0.71 0.52 0.60 0.63 0.12 
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Populations values Reliability Decision Reliabilities 

μ1 σ1 C Test Youden TG-ROC MCI bi UI bi 

0.7 1 0.69 0.64 0.45 0.50 0.64 0.18 

2 1.6 0.86 0.74 0.59 0.65 0.66 0.1 

1.2 1.6 0.74 0.67 0.49 0.53 0.58 0.1 

0.7 1.6 0.64 0.62 0.44 0.47 0.54 0.13 

TG-ROC: the two outer ranges of the TG-ROC method 
MCI bi: More Certain Interval, bi-normal, the two outer ranges of the Uncertain Interval method 
UI bi: Uncertain Interval, bi-normal, the middle range of the Uncertain Interval method 

 

The test reliabilities vary from .83 to .62 and are closely related to the test quality 
as indicated by its C-value. The reliabilities of the diagnoses based on the maximized 
Youden Index for all test scores are lower and vary between .72 and .44. In comparison 
to Youden, TG-ROC reliabilities of the decisions based on its two outer ranges are 
better.  The reliabilities of the decisions based on the two outer ranges of the Uncertain 
Interval method (column MCI bi) are both better compared to those based on Youden 
and to those based on TG-ROC. They vary from .77 to .54.  

As the Youden threshold method and the Uncertain Interval method are closely 
related, it is possible to use the Youden threshold for calculating the reliabilities of the 
Uncertain Interval (column UI bi). As expected, the decisions reliabilities based on the 
test scores in the Uncertain Interval (column UI bi) are very low, with repeated 
measurements reliabilities varying from .09 to .18. 

 

 

5. The discrepancy between the pre-selected values for Se 
and Sp and the obtained values for TG-ROC and the 
Grey Zone method 

 

For both TG-ROC and the Grey Zone method, the values of Se and Sp define the small 
amount of errors (False Negatives and False Positives) that remain in the left and right 
outer section. However, these are percentages of all patients with (1 – Se) and without (1 
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– Sp) the targeted condition. These erroneously diagnosed patients remain in the group 
of patients who are selected in the outer sections. Because the selected group is smaller 
than the total group of all patients, the resulting percentages of correctly diagnosed 
patients (Sp and Se) in the outer ranges are usually smaller than their pre-selected 
value. Examples of the expected resulting sensitivity and specificity for the outer ranges 
of TG-ROC and the Grey Zone method are presented in the. From this table, it can be 
concluded that it is worthwhile to check the obtained values for the expected 
distributions, as they may differ considerably from their pre-selected values. The net 
values for Se and Sp are not only dependent on their pre-selected values, but also on 
the strength of the test, the difference of variance in the two distributions, and 
prevalence. 

Table B shows that the obtained values for Se and Sp are usually lower than the 
pre-selected values (exceptions are highlighted with yellow) and can be extremely low (< 
.5; highlighted with lila). Obtained LR+ shows most often smaller values (less restrictive), 
but can be higher because of the changed ratios. Obtained LR- has mostly higher values 
than the pre-selected values (less restrictive), but can be smaller. When the pre-selected 
values for Se and Sp differ from each other, the reverse obtained value varies (Sp and 
Se, respectively). That is because Se determines the lower threshold and Sp the upper 
threshold.  

 

Table B. Comparison of pre-selected values and obtained values for TG-ROC. The obtained values are 
calculated for the selected patients for whom a decision is made, given various test strengths and 
various pre-selected values for Se and Sp. The reference distribution is N(0, 1). 

Patient distribution Pre-selected values Obtained values 

mu sd C Se Sp LR+ LR- Se Sp LR+ LR- 
1 0.5 0.814 0.9 0.9 9 0.111 0.741 0.865 5.488 0.299 
1 0.5 0.814 0.9 0.95 18 0.105 0.663 0.865 4.912 0.389 
1 0.5 0.814 0.9 0.99 90 0.101 0.285 0.865 2.112 0.826 
1 0.5 0.814 0.95 0.9 9.5 0.056 0.741 0.919 9.2 0.281 
1 0.5 0.814 0.95 0.95 19 0.053 0.663 0.919 8.233 0.366 
1 0.5 0.814 0.95 0.99 95 0.051 0.285 0.919 3.541 0.777 
1 0.5 0.814 0.99 0.9 9.9 0.011 0.741 0.978 33.006 0.265 
1 0.5 0.814 0.99 0.95 19.8 0.011 0.663 0.978 29.537 0.344 
1 0.5 0.814 0.99 0.99 99 0.01 0.285 0.978 12.703 0.731 
1 1 0.76 0.9 0.9 9 0.111 0.796 0.796 3.891 0.257 
1 1 0.76 0.9 0.95 18 0.105 0.838 0.796 4.101 0.203 
1 1 0.76 0.9 0.99 90 0.101 0.902 0.796 4.414 0.123 
1 1 0.76 0.95 0.9 9.5 0.056 0.796 0.838 4.925 0.244 
1 1 0.76 0.95 0.95 19 0.053 0.838 0.838 5.19 0.193 
1 1 0.76 0.95 0.99 95 0.051 0.902 0.838 5.585 0.117 
1 1 0.76 0.99 0.9 9.9 0.011 0.796 0.902 8.144 0.227 
1 1 0.76 0.99 0.95 19.8 0.011 0.838 0.902 8.583 0.179 
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Patient distribution Pre-selected values Obtained values 

mu sd C Se Sp LR+ LR- Se Sp LR+ LR- 
1 1 0.76 0.99 0.99 99 0.01 0.902 0.902 9.236 0.108 
1 2 0.673 0.9 0.9 9 0.111 0.816 0.371 1.298 0.495 
1 2 0.673 0.9 0.95 18 0.105 0.882 0.371 1.402 0.318 
1 2 0.673 0.9 0.99 90 0.101 0.962 0.371 1.53 0.102 
1 2 0.673 0.95 0.9 9.5 0.056 0.816 0.181 0.996 1.018 
1 2 0.673 0.95 0.95 19 0.053 0.882 0.181 1.076 0.654 
1 2 0.673 0.95 0.99 95 0.051 0.962 0.181 1.174 0.21 
1 2 0.673 0.99 0.9 9.9 0.011 0.816 0.013 0.827 14.351 
1 2 0.673 0.99 0.95 19.8 0.011 0.882 0.013 0.893 9.216 
1 2 0.673 0.99 0.99 99 0.01 0.962 0.013 0.975 2.962 
2 0.5 0.963 0.9 0.9 9 0.111 #    
2 0.5 0.963 0.9 0.95 18 0.105 0.938 0.901 9.505 0.068 
2 0.5 0.963 0.9 0.99 90 0.101 0.963 0.901 9.75 0.042 
2 0.5 0.963 0.95 0.9 9.5 0.056 0.902 0.946 16.794 0.103 
2 0.5 0.963 0.95 0.95 19 0.053 0.938 0.946 17.463 0.065 
2 0.5 0.963 0.95 0.99 95 0.051 0.963 0.946 17.913 0.04 
2 0.5 0.963 0.99 0.9 9.9 0.011 0.902 0.988 72.973 0.099 
2 0.5 0.963 0.99 0.95 19.8 0.011 0.938 0.988 75.881 0.062 
2 0.5 0.963 0.99 0.99 99 0.01 0.963 0.988 77.837 0.038 
2 1 0.921 0.9 0.9 9 0.111 0.884 0.884 7.638 0.131 
2 1 0.921 0.9 0.95 18 0.105 0.927 0.884 8.011 0.082 
2 1 0.921 0.9 0.99 90 0.101 0.974 0.884 8.412 0.03 
2 1 0.921 0.95 0.9 9.5 0.056 0.884 0.927 12.18 0.125 
2 1 0.921 0.95 0.95 19 0.053 0.927 0.927 12.775 0.078 
2 1 0.921 0.95 0.99 95 0.051 0.974 0.927 13.415 0.028 
2 1 0.921 0.99 0.9 9.9 0.011 0.884 0.974 33.785 0.119 
2 1 0.921 0.99 0.95 19.8 0.011 0.927 0.974 35.434 0.075 
2 1 0.921 0.99 0.99 99 0.01 0.974 0.974 37.208 0.027 
2 2 0.814 0.9 0.9 9 0.111 0.865 0.741 3.344 0.182 
2 2 0.814 0.9 0.95 18 0.105 0.919 0.741 3.555 0.109 
2 2 0.814 0.9 0.99 90 0.101 0.978 0.741 3.78 0.03 
2 2 0.814 0.95 0.9 9.5 0.056 0.865 0.663 2.57 0.204 
2 2 0.814 0.95 0.95 19 0.053 0.919 0.663 2.732 0.121 
2 2 0.814 0.95 0.99 95 0.051 0.978 0.663 2.905 0.034 
2 2 0.814 0.99 0.9 9.9 0.011 0.865 0.285 1.21 0.473 
2 2 0.814 0.99 0.95 19.8 0.011 0.919 0.285 1.287 0.282 
2 2 0.814 0.99 0.99 99 0.01 0.978 0.285 1.368 0.079 

Note #: For distribution N(2, 0.5) with Se = Sp = .9, the lower threshold was higher than the upper 
threshold and the thresholds are therefore invalid. 

 

Prediction of the obtained values of Se and Sp is complicated, as it is dependent on their 
pre-selected values, the mean difference, and the difference between the variances. It is 
also dependent on the prevalence (not shown in this table). 
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6. Available software 

Software for TG-ROC is available in several statistical packages (R, Medcalc and 
Sigmaplot) 10–12. 

Specific software for the determination of the Grey Zone seems to be lacking, but an 
R function (nomogram) for the first step to calculate sensitivity, specificity, as well as 
positive and negative likelihood ratios on the basis of desired levels of positive and 
negative posttest probabilities and prevalence is available in the R package 
UncertainInterval 13. When an adequate level for Se and Sp is defined, commonly 
available ROC software can be used for the second step. An application based on SAS 
software 14 for creating different plots for the iron deficiency example is made available in 
section 7. 
 

An implementation of the Uncertain Interval method is available as the 
UncertainInterval package for the R language 13. This package contains two specialized 
functions for the non-parametric approach, one for the binomial model and a function 
that can be applied to various continuous distributions. 

 

7. SAS code for the determination of the Grey zone 

/* With thanks to Joel Coste, who made a basic version of the code available */ 

/* Generated Code (IMPORT) */ 
/* Source File: irondef.csv */ 
/* Source Path: ….. 
/* Code generated on: 17-10-17 10:47 */ 
 
%web_drop_table(WORK.IMPORT); 
FILENAME REFFILE '……/irondef.csv'; 
 
PROC IMPORT DATAFILE=REFFILE DBMS=CSV OUT=WORK.IMPORT; 
 GETNAMES=YES; 
RUN; 
 
PROC CONTENTS DATA=WORK.IMPORT; 
RUN; 
 
%web_open_table(WORK.IMPORT); 
* data totor; 
* set toto; 
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DATA IMPORT2; 
 SET IMPORT; 
 test1=-test; /* use negated values, to make iron deficient patients to have the higher score */ 
RUN; 
 
proc sort ; 
 by test1; 
run; 
 
proc freq data=IMPORT2 noprint; 
 table test1 /out=bobo; 
run; 
 
proc sgplot data=import2; 
 * vbar test /group=ref groupdisplay=cluster; 
 where ref in (0, 1); 
 
 /* restrict to two groups */ 
 histogram test1 / group=ref transparency=0.5; 
 
 /* SAS 9.4m2 */ 
 density test1 / type=kernel group=ref; 
 
 /* overlay density estimates */ 
run; 
 
proc logistic data=IMPORT2; 
 model ref=test1/outroc=bibi ROCEPS=1E-100; 
run; 
 
data baba; 
 merge bobo(keep=test1 COUNT) bibi (keep=_POS_ _NEG_ _FALPOS_ _FALNEG_ _SENSIT_  
  _1MSPEC_); 
run; 
 
 
data baba2; 
 set baba; 
 preprob=43/210; /* pretest probability = prevalence  */ 
 preodds=preprob/(1-preprob); * pretest odds 
 sp=1-_1MSPEC_; 
 se=_SENSIT_; 
 lrn=(1-se)/sp; 
 lrp=se/(1-sp); 
 pospostodds=preodds * lrp; 
 pospostprob=pospostodds / (pospostodds+1); 
 negpostodds=preodds * lrn; 
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 negpostprob = negpostodds / (negpostodds+1); 
run; 
 
symbol1 v=dot i=join; 
 
proc gplot data=bibi; 
 plot _sensit_*_1mspec_; 
 run; 
quit; 
 
symbol1 v=dot i=join; 
 
proc sgplot data=baba2; 
 series y=lrn x=test1 / lineattrs=(color=blue); 
 series y=lrp x=test1 / lineattrs=(color=red); 
run; 
 
quit; 
symbol1 v=dot i=join; 
 
proc sgplot data=baba2; 
 series y=se x=test1 / lineattrs=(color=blue); 
 series y=sp x=test1 / lineattrs=(color=red); 
run; 
 
quit; 
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