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Abstract: Background: Parkinson’s disease (PD) is the second most prevalent neurodegen-
erative disorder worldwide. People suffering from PD exhibit motor symptoms that affect
the control of upper and lower limb movement. Among daily activities that depend on
proper upper limb control is the handwriting process, which has been studied in state-of-
the-art research, mainly considering non-semantic drawings like spirals, geometric figures,
cursive lines, and others. Objectives: This paper analyzes the suitability of modeling
the handwriting process of digits from 0 to 9 to automatically discriminate between PD
patients and healthy control subjects. The main hypothesis is that modeling these numbers
allows a more natural evaluation of upper limb control. Methods: Two approaches are
considered: modeling of the images resulting from the strokes collected by the digital
tablet and modeling of the time series yielded by the digital tablet while performing the
strokes, i.e., time-dependent signals. The first approach is implemented by fine-tuning
a CNN-based architecture, while the second approach is based on hand-crafted features
measured upon the time series, namely pressure and kinematic measurements. Features
extracted from time-dependent signals are represented following two strategies, one based
on statistical functionals and the other one based on creating Gaussian Mixture Mod-
els (GMMs). Results: The experiments indicate that pressure-based features modeled
with functionals are the ones that yield the highest accuracy, indicating that PD-related
symptoms are better modeled with dynamic approaches than those based on images. Con-
clusions: The dynamic approach outperformed the image-based model, indicating that the
writing process, modeled with signals collected over time, reveals motor symptoms more
clearly than images resulting from handwriting. This finding is in line with previous results
in the state-of-the-art research and constitutes a step forward to create more accurate and
informative methods to detect and monitor PD symptoms.

Keywords: Parkinson’s disease; handwriting; convolutional neural networks; dynamic
analysis; natural handwriting tasks

Diagnostics 2025, 15, 381 https://doi.org/10.3390/diagnostics15030381

https://doi.org/10.3390/diagnostics15030381
https://doi.org/10.3390/diagnostics15030381
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-3474-4166
https://orcid.org/0000-0002-3257-0134
https://orcid.org/0000-0003-0174-1452
https://orcid.org/0000-0001-8794-6429
https://orcid.org/0000-0002-6936-0114
https://orcid.org/0000-0002-8507-0782
https://doi.org/10.3390/diagnostics15030381
https://www.mdpi.com/article/10.3390/diagnostics15030381?type=check_update&version=1


Diagnostics 2025, 15, 381 2 of 13

1. Introduction
Parkinson’s disease (PD) is a neurodegenerative disorder that affects the central ner-

vous system, and it is characterized by the progressive loss of dopaminergic neurons in
the midbrain [1]. These neurons are mainly responsible for the production of dopamine,
which is a neurotransmitter in charge of keeping operational neural pathways associated
with mood, motor control, and other functions [2]. Among motor symptoms derived from
PD are muscular rigidity, resting tremor, postural instability, and bradykinesia [3]. Motor
symptoms negatively impact activities that require highly coordinated movements like
handwriting [4]. Anomalies in handwriting include micrographia (abnormal reduction
in writing size) and dysgraphia (deficits in graphomotor production) [5]. Other neurode-
generative disorders also affect the handwriting process, for instance, Alzheimer’s disease
patients are known for producing abnormal strokes in different handwriting tasks [6,7]
Handwriting analyses are carried out via online data or offline data. Online data refer to
handwriting signals acquired using digital devices, such as tablets or smart pens; offline data
consist of traditional methods like writing with an ink pen on paper. Handwriting using
conventional methods could be more natural for elderly patients; however, online data allow
dynamic analyses of the handwriting process and enable sensing-relevant bio-signals such
as pressure, in-air movements, dynamic horizontal and vertical positions, pen inclinations,
and other relevant information [8,9]. For a comprehensive review of methods used to evaluate
neurodegenerative disorders considering handwriting biosignals, please see [10].

Online and offline handwriting studies typically consider geometric-based tasks,
namely, drawings that involve figures like spirals, meanders, geometric figures, and oth-
ers [11]. Studies have explored the use of different features including kinematic [12–14],
geometric, and pressure [15]. One of the main advantages of online handwriting is that
it provides the sensor-based signals and also the resulting image, i.e., the drawing. This
characteristic has motivated researchers to use image processing methods, mainly based
on Convolutional Neural Networks (CNNs), to model those images. For instance, in [16],
the authors used time series-based images from drawing tasks. Raw signals collected from
the tablet were transformed into matrices to form images which were further processed
by a CNN architecture pre-trained on the ImageNet dataset. In another study presented
in [17], the authors created spectral representations from tablet signals to model tremor and
other symptoms. These signal representations were stacked to form an image and then feed
a CNN model with kernel sizes of 1 × 5 and 1 × 3. In [18], authors analyzed drawings from
three datasets (PaHaW [19], HandPD [20], and NewHandPD [11]) to increase sample-size.
They used an AlexNet model pre-trained on ImageNet and data augmentation techniques.
Finally, in [21], authors implemented a CNN with two blocks containing three convolu-
tional layers and one pooling layer. Similarly, in [22], the authors used pre-trained models
based on ImageNet to improve the model’s generalization capability. Other datasets like
MNIST and UJIpenchars2, which are semantically similar to writing tasks, have also been
used to pre-train models [23].

Regarding modeling dynamic information from raw tablet signals, previous studies
suggest that dynamic analysis of online handwriting provides suitable information to detect
PD motor symptoms such as tremor and bradykinesia [9]. Regarding the offline approach,
deep learning architectures mainly based on CNNs have been used to analyze handwritten
drawings. On the one hand, the majority of handwriting-related studies consider drawings
of geometric figures and spirals. On the other hand, writing tasks that request the patient to
write numbers, letters, words, or sentences [19] are more natural and closer to activities of
daily living, which is what expert neurologists usually focus on during clinical check-ups.
Models focused on these kinds of tasks eventually produce better systems to perform
accurate monitoring of patients. Additionally, these semantic writing tasks may have a
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higher cognitive load to patients, therefore providing information about motor planning
(e.g., between-letter or word transitions), which is affected due to lack of coordination in
PD [10]. Dynamic signals extracted from writing tasks have been modeled using different
dimensions such as kinematic [24,25], spectro-temporal [26], and non-linear [27].

State-of-the-art research shows that deep learning architectures (mainly based on CNN
architectures) have been used to model images resulting either from offline handwriting
images or from images created by considering online signals. Most studies with promising
results are based on drawing tasks [22,28,29]. However, these approaches are not as
natural as those based on regular writing tasks, i.e., writing of letters, numbers, words,
or sentences, making those models not suitable for performing non-intrusive monitoring of
the neurological state of patients.

This paper introduces and compares two different approaches based on online hand-
writing signals collected from PD patients and healthy controls (HCs). One approach
considers resulting images of the tablet handwriting to feed a CNN architecture pre-trained
with adapted samples of the MNIST corpus and fine-tuned with Parkinson’s data. The
second approach consists of considering online signals and extracting different features,
including those related to the pressure and movements of the pen (namely, kinematic).
The resulting features are compressed and represented with two statistical approaches:
statistical functionals and Gaussian Mixture Models (GMMs). Statistical representations
are used as input to a Support Vector Machine (SVM) classifier, the parameters of which
are optimized following a k-fold cross-validation strategy. Results show that image-based
features are outperformed by dynamic analyses with the pressure feature set using sta-
tistical functionals. This likely indicates that vertical control of hand movement is more
challenging for PD patients.

The rest of the paper is organized as follows. Section 2 introduces the data considered
for this study, Section 3 explains the methodology followed in the paper, Section 4 shows
experiments and results, Section 5 elaborates a discussion about findings reported in the
study, and finally, Section 6 presents the conclusions derived from this work.

2. Data Acquisition and Participants
Our handwriting database (Hw-DB) consists of 104 participants, including 51 PD

patients and 53 HC subjects. Forty-seven of the patients were evaluated by an expert
neurologist according to the MDS-UPDRS-III scale. The remaining four patients could not
come to the clinic for their neurological evaluation because they live in the countryside and
were not available for these clinical screenings. Subjects were asked to write the numbers
from 0 to 9 using a Wacom Cintiq 13 HD tablet, with a sampling frequency of 180 Hz.
This tablet provides six signals: x and y position, z (distance from the tablet surface to
the pen tip), azimuth and altitude angles, and pen pressure. Additional details about the
participants are shown in Table 1.

Table 1. Demographic and clinical information of the participants.

PD Patients HC

Male Female Male Female

Number of subjects 24 27 32 21
Age (µ ± σ) ⋆ 69.2 ± 10.0 62.1 ± 12.0 67.1 ± 10.6 58.8 ± 10.8
Age range 50–90 29–84 49–85 43–83
MDS-UPDRS-III (µ ± σ) 39.2 ± 17.0 32.3 ± 15.9
Range of MDS-UPDRS-III 16–82 14–77

⋆ Indicates that there is no statistical difference between the two groups according to a t-test with p-value = 0.45.
Gender bias was discarded through a Chi-squared test with p-value = 0.2439.
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3. Methodology
Figure 1 summarizes the methodology addressed in this paper. The information from

the sequence of numbers is analyzed following two approaches: image-based and dynamic.
The first approach only uses the data of the image generated by the position information
of the tablet, making this task similar to offline handwriting. This approach considers a
Convolutional Neural Network (CNN) pre-trained using sequences created with numbers
from the MNIST database. Sizes of digits in the MNIST corpus are changed to artificially
create the effect of micrographia. Then, the CNN model is fine-tuned using the handwriting
digits of PD and HC subjects. The second approach constitutes a dynamic analysis where
we use all information available when data are captured using a digital tablet. Two sets
of classical handwriting features are computed from the 6 time-series signals available in
online handwriting (x and y position, z (distance from the tablet surface to the pen tip),
azimuth and altitude angles, and pen pressure). Finally, feature vectors obtained from the
image-based and dynamic analyses are used independently to train two Support Vector
Machine (SVM) classifiers to discriminate between PD patients and HC subjects.
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Figure 1. General methodology proposed in this study.

3.1. Feature Extraction
3.1.1. Image-Based Analysis

This model is based on a CNN architecture, a widely used modeling strategy in image
processing [30]. In each layer, different filters are trained to detect patterns while the
spatial dimensions of the image are reduced to obtain a compressed image representation.
The CNN model training requires many samples to generalize patterns and avoid model
overfitting; this represents a limitation in the study of medical data, where only a few
samples are available. Transfer Learning (TL) and Data Augmentation (DA) techniques
have emerged to address the problem of data scarcity [28,31–33].

In this study, we created 7000 synthetic sequences of numbers from 0 to 9 using the
digits of the MNIST database [34]. Half of the sequences contain concatenated digits, while
the rest are modified to model micrographia, which is a distinct symptom of handwriting
in PD patients. The idea behind this approach is to pre-train the architecture to recognize
non-modified sequences (synthetic samples of HC subjects, i.e., without micrographia)
vs. modified sequences (synthetic samples of PD patients, i.e., with micrographia), which
implicitly means having an architecture properly trained to detect micrographia. The
starting digit for the modified sequence is randomly chosen from 0 to 5. Once the first



Diagnostics 2025, 15, 381 5 of 13

modified digit is chosen, the rest of the sequence, until 9, is progressively reduced until the
last digit (9) results in half of its original size. Examples of the modified and non-modified
sequences of digits from MNIST are shown in Figure 2. In addition, given the fact that
several sequences in the Hw-DB exhibited slight rotations resulting from the writing process
of participants, all the synthetic sequences (modified and non-modified) were randomly
rotated at angles of −15◦,−5◦, 0◦, 5◦, 15◦. From the set of generated sequences, a subset of
6000 synthetic sequences was used to train a CNN architecture to classify between modified
and non-modified sequences. The remaining synthetic sequences were used as a test set.
The CNN model employed in this experiment is based on a LeNet architecture because it
constitutes a simple model appropriate for the size of the corpus that we could access to
develop this study. Additionally, this architecture showed as good results as in a previous
work where we modeled digits [35]. This network consists of 3 convolutional layers with
16, 8, and 4 filters, employing a (5 × 5) kernel. Max-pooling layers were used to reduce the
size of each feature map by half. The output feature map was flattened to feed three fully
connected layers with 512, 64, and 2 neurons, respectively. The first two fully connected
layers employed a rectified linear unit (ReLU) activation function, and the last one made
the final decision using a Softmax activation function. The shape of input images is 144 in
height and 216 in width.

The pre-trained architecture and its weights are used as the starting point to fine-tune a
specific architecture for the automatic discrimination between PD and HC subjects. The fine-
tuning process is performed with data from the Hw-DB corpus. Once the architecture is
fine-tuned, we take the embedding of the flattened feature map as a feature vector to feed
the SVM classifier.

(a) (b)

Figure 2. Sequences created by MNIST database. (a) Non-modified sequence. (b) Modified sequence.

3.1.2. Dynamic Analysis

Although the image-based representation method has the advantage of being suitable
for online and offline handwriting, it does not allow modeling motor problems such as
rigidity, bradykinesia, or freezing of the upper limbs. These motor problems affect the
dynamics of handwriting, leading to changes in velocity, acceleration, and fluency, which
cannot be captured from the resulting image. In contrast, the dynamic approach leverages
all the available data from online handwriting, where different feature sets are computed
using the time series signals provided by the digital tablet. Table 2 shows a summary of all
computed features, the details of which are described below.
Pressure-based features: Pressure features describe the mechanical force exerted on the pen
tip during on-surface movements produced along the writing process. Common pressure
features are based on statistical functionals computed over (1) the raw pressure signal (p[n]),
(2) changes in pressure signal (∆p = p[n + 1]− p[n]), (3) the rate of pressure changes

over time
(

p′[n] = ∆p
∆t

)
, (4) the rate of pressure variability

(
p′′[n] = ∆2 p

∆t2

)
, and (5) the
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pressure jerk
(

p′′′[n] = ∆3 p
∆t3

)
. Additionally, we can measure the number of changes in

pressure (NCP) and the relative number of changes in pressure
(

RNCP = NCP
time

)
, using

(∆p, p′[n], and p′′[n]). The resulting feature set includes a total of 26 pressure features.
Kinematic features: According to the status of the z-axis signal, handwriting signals can be
grouped into on-surface and in-air movements. On-surface samples correspond to digits’
strokes; conversely, in-air samples correspond to hand movements during the transition
between digits. To compute kinematic features from on-surface and in-air movements, we
employed the set of signals {x, y, azimuth, altitud}. Notice that features computed from the
z-axis signal contain samples of in-air movements only. Furthermore, we employ the x and
y axes to compute the pen trajectory r[n] defined in Equation (1), and the pen displacement
Di[n] defined in Equation (2). Then, the set of kinematic features contains (1) movement
descriptors as {∆x, ∆y, ∆azimuth, ∆altitud, ∆z, r[n], Di[n]}, (2) velocity descriptors
computed as changes of the previous signals over time

(
sigvel [n] =

∆sig
∆t

)
, (3) acceleration

descriptors as changes of velocity over time
(

sigacc[n] =
∆sigvel

∆t

)
, (4) jerk as the changes

of acceleration over time
(

sigjerk[n] =
∆sigacc

∆t

)
, and (5) number of changes of velocity

and acceleration, NCV and NCA, respectively. Finally, we extracted a total of 120 and
140 kinematic features from on-surface and in-air movements, respectively. Table 2 presents
a comprehensive summary of the features extracted in this work.

r[n] =
√

x[n]2 + y[n]2 (1)

Di[n] =
√
(x[n + 1]− x[n])2 + (y[n + 1]− y[n])2 (2)

Table 2. Summary of the computed feature in each set. s = scalar value, and v = vector of elements.

Set Feature s/v Description

Pressure p[n], ∆p, p′ [n], p′′ [n], and p′′′ [n] v
Raw pressure, pressure
changes, first, second and
third derivatives

NCP, and RNCP s Number of local extrema of
pressure

r[n], Di[n], ∆x, ∆y, ∆azimuth, ∆altitud, ∆z v Trajectory, displacements,
and signal changes.

Velocity v Velocity computed as
changes in signals w.r.t. time

Kinematic Acceleration v
Acceleration computed as
changes in signal velocity
w.r.t. time

Jerk v
Jerk computed as changes in
signal acceleration w.r.t.
time

NCV and RNCV s Number of local extrema for
velocity

NCA and RNCA s Number of local extrema for
acceleration

3.2. Statistical Modeling

The feature computation process introduced above can result in either a scalar value
or a vector (see the third column in Table 2). The resulting vectors generate a feature
matrix per subject. To obtain a static vector representation per subject, we consider two
statistical modeling strategies, one based on statistical functionals and the other one based
on Gaussian Mixture Models (GMMs). Scalar values are concatenated with resulting
statistical representations.

Dynamic feature vectors that change over time are commonly represented using
statistical functionals to describe their statistical distribution. However, there exist other
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robust methods like the GMM that can be applied to represent dynamic phenomena. In this
section, we compare classical statistical modeling based on functionals vs. GMM modeling.

3.2.1. Statistical Functionals

Statistical functionals are used to describe properties of data distributions. These
functionals capture specific characteristics such as central tendency, variability, or higher-
order moments. This strategy is commonly used to obtain fixed representations from
time- dependent signals. We consider 4 statistical fuctionals, namely, mean, standard
deviation, skewness, and kurtosis, forming a static representation per feature vector. The
dimensionality of the kinematic feature vector is now 4× 52 = 208, while the dimensionality
of of the pressure feature vector is 4 × 5 = 20.

3.2.2. Gaussian Mixture Models (GMMs)

GMM representations enable modeling complex dynamics of time-dependent sig-
nals. GMM is a probabilistic model that combines multiple Gaussian distributions to
obtain a tighter representation of the data distribution. Equation (3) defines a GMM
with M Gaussians, where each Gaussian’s contribution is weighted by the parameter c.
The parameters µm and Σm represent the mean vector and covariance matrix of the m-th
Gaussian, respectively.

f (x) =
M

∑
m=1

cmN (x; µm, Σm), (3)

The idea behind the GMM model is that each Gaussian in the mixture models a
sub-population along the temporal dynamics. Once the GMM is calculated, a fixed rep-
resentation is obtained by combining the mean vectors and covariance matrices of all the
Gaussians in the mixture. This representation is known as the GMM supervector (λ) [36].
The dimension of the supervector depends on the number of features in the input ma-
trix and the number of Gaussians, where λdimension = M × F × 2. M is the number of
Gaussian components, and F is the number of vector measurements in the feature matrix.
We optimized the number of Gaussians based on the obtained accuracy during training.
The dimensionality of the supervector that results to represent a given phenomenon or
feature vector is computed as follows: optimal number of Gaussians × number of feature
vectors × 2. This last number appears because the supervector is formed with the entries
of the mean vector and the diagonal of the covariance matrix. For instance, when the
optimal number of Gaussians is GMM with M = 4, the cardinality of the resulting λ is
416-dimensional (4 × 52 × 2).

4. Experiments and Results
4.1. Experimental Setup

We conducted two experiments in this work: image-based analysis and dynamic anal-
ysis. The image-based analysis involved fine-tuning a pre-trained CNN model, described
in Section 3.1.1. The dynamic analysis is based on two feature sets: pressure and kinematic.
Each feature set was modeled considering two approaches for comparison purposes, statis-
tical funtionals and GMMs. All models were trained, fine-tuned, and tested following the
same partitions according to a 5-fold cross-validation strategy. The hyperparameters of the
SVM classifier, namely C, γ, and the kernel, were optimized using a grid-search, where C
and γ ∈ {1e−3, 1e−2, · · · , 1e3}, and kernel ∈ {linear, rbf}). Notice that we evaluated two
more classification methods, namely Random Forest and Gradient Boosting (GB); however,
we decided to report only the ones obtained with the SVM because all accuracies with that
classifier were higher.
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4.2. Experiment 1: Image-Based Analysis

The pre-trained CNN architecture used to discriminate between non-modified and
modified sequences was further used as a feature extractor for images in the Hw-DB corpus.
We took the flattened output of the last convolutional layer as a feature vector to feed
an SVM classifier to distinguish between PD patients and HC subjects. To improve the
characterization capability of the pre-trained CNN, we considered four fine-tuning schemes
over the base model using data from Hw-DB: fully frozen, partially frozen, semi-frozen,
and unfrozen. In the fully frozen schema, the weights and biases of all layers in the
CNN were fixed during the training process; therefore, the pre-trained CNN only used
the weights and biases obtained with the synthetic data. In the partially frozen schema,
the first convolutional layer is unfrozen; thus, only the weights and biases of this layer
can be fine-tuned with the Hw-DB data. In the semi-frozen schema, the first and second
convolutional layers were fine-tuned. Finally, in the unfrozen schema, the weights and bias
of all convolutional layers were fine-tuned. Results of the image-based experiments are
shown in Table 3.

Table 3. Results from the image-based analysis of the digit sequences using a pre-trained CNN.
Values reported in terms of (µ ± σ).

Fine-Tuning Accuracy (%) Specificity (%) Sensitivity (%) F1-Score (%)

Fully frozen 55.7 ± 9.3 59.6 ± 19.9 50.7 ± 13.3 0.52 ± 0.10
Partially frozen 57.6 ± 8.4 61.5 ± 19.8 52.9 ± 13.3 0.54 ± 0.09
Semi-frozen 62.3 ± 11.8 65.5 ± 18.2 58.7 ± 18.5 0.60 ± 0.13
Unfrozen 61.4 ± 9.4 63.6 ± 17.8 58.7 ± 13.5 0.59 ± 0.09

Results indicate a progressive improvement in terms of accuracy when more convolu-
tional layers are unfrozen. This suggests that the pre-trained model needs more knowledge
from Parkinson’s data (i.e., the Hw-DB corpus). However, a slight decrease in the model’s
accuracy is observed when the three convolutional layers are unfrozen. This could be
attributed to the limited amount of data in the Hw-DB, which may not be sufficient to
properly fine-tune all filters in the layers. The semi-frozen schema shows the best results,
with an accuracy of up to 62.3%.

4.3. Experiment 2: Dynamic Analysis

Pressure and kinematics features, extracted from the time series provided by the
digital tablet, are used in this experiment. An early fusion of these two feature sets was also
considered. We consider two strategies to obtain a fixed representation from these time-
dependent characterization strategies, namely statistical functionals and GMMs. Although
the first strategy is simple, it constitutes a well-established approach to statically represent
phenomena that originate from time-dependent feature sets. Concerning the GMM-based
strategy, the number of Gaussians was optimized according to the accuracy obtained in
training such that M = 2, 4, 6, . . . , 30. Figure 3 shows the results obtained in the training
process with each number of Gaussians per feature set. Notice that they are sorted from
the lowest to the highest accuracy. Therefore, the optimal number of Gaussians is the one
indicated at the right-hand side of each figure.

Table 4 summarizes the results obtained in this experiment with both strategies (statis-
tical functionals and GMMs). Results indicate that pressure is the feature set with the best
performance, achieving an accuracy of 75% when using the statistical functionals. Notice
that results based on statistical functionals outperformed those obtained with GMMs when
the pressure feature set was considered. In contrast, when only kinematic features were
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considered, both strategies showed similar results. Finally, results with the early fusion
strategy did not show improvement.
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Figure 3. Accuracy mean obtained in training folds with different feature sets when changing the
number of Gaussians in the GMM models.

Table 4. Values are reported as (µ ± σ).

Features Accuracy (%) Specificity (%) Sensitivity (%) F1-Score (%)

Statistical fuctionals

Pressure 75.0 ± 5.2 79.3 ± 12.1 70.5 ± 7.2 73.4 ± 5.1
Kinematic 71.3 ± 12.4 73.8 ± 21.4 68.5 ± 15.0 69.9 ± 11.7
Kinematic + Pressure 71.3 ± 14.1 70.1 ± 19.2 72.5 ± 13.0 71.4 ± 12.7

GMMs

Pressure (with 28 Gaussians) 65.5 ± 8.2 62.2 ± 15.7 68.5 ± 4.9 66.3 ± 3.3
Kinematic with 28 Gaussians 71.1 ± 7.1 73.5 ± 15.5 68.4 ± 13.5 69.5 ± 8.3
Kinematic + Pressure (with 28
Gaussians) 70.2 ± 15.6 69.5 ± 17.4 71.1 ± 21.8 69.5 ± 17.1

5. Discussion
Three different approaches were presented in this paper: one based on images resulting

from the handwriting process and two based on time-dependent signals collected from
a digital tablet. This discussion includes remarkable aspects of each approach and a
comparison among them.

Our experiments show that classification results with the image-based features im-
prove as the architecture adjusts more weights. The best result is obtained in the semi-frozen
schema, where we allowed the fine-tuning of weights in two convolutional layers. The un-
frozen schema shows slightly less accuracy. This behavior suggests that the CNN needs
more real samples from the database to obtain better classification results.

The dynamic analysis yields the best results when considering features extracted from
the pressure signal. These results outperform those obtained with the kinematic feature set,
suggesting that vertical control of hand movement while writing is more challenging for
PD patients than the horizontal ones.

When comparing models based on statistical functionals vs. GMMs, we found that
the first approach is more accurate when considering the pressure feature set. Kinematic
features yielded similar results with both statistical modeling strategies.

Figure 4 shows the ROC curves and their corresponding distribution of scores for
the best results achieved with each modeling approach. The AUC values confirm the
aforementioned claims. Image-based features are outperformed by the dynamic analyses
with the pressure feature set using statistical functionals. This result is in line with the
findings reported in Tables 3 and 4, where the best accuracy obtained with the dynamic
approach outperformed by up to 13% the best accuracy obtained with the image-based
approach. We believe that the low performance of the imaged-based approach is because,
although micrographia is a key feature in handwriting deficiencies, the writing process
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itself (i.e., the dynamic of handwriting over time) is the one that reveals motor symptoms
more clearly.
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Figure 4. Results of the image-based analysis and the two dynamic analyses (modeled with statistical
functionals and GMMs). The first row presents the ROC curves for (a) semi-frozen scheme, (b) pres-
sure features modeled by statistical functionals, and (c) kinematic features modeled by two GMM
components. The second row (d–f) depicts the distribution of the corresponding SVM decision scores
resulting from the classification with the three feature sets.

We believe that this study constitutes a step forward in the development of automated
systems that could be used to diagnose and monitor PD progression. For future work, we
will focus on modeling transitions that occur while writing because our previous works
show promising results [37] and because other studies have recently reported interesting
insights towards this direction in neurodegenerative and immune diseases [38].

6. Conclusions
The present study showed that time-dependent feature sets extracted from digital

tablets (namely, pressure and kinematic) are more accurate than those features extracted
from images resulting from the writing process, when discriminating between PD patients
and HC subjects. Additionally, our results show that the fusion of pressure and kinematic
features does not improve the accuracy. Time-dependent features are represented following
two strategies, one based on statistical functionals and another one based on GMMs. The
comparison between using statistical functionals and using GMMs showed that the first
is more suitable and yields higher accuracies. The main advantage of using statistical
functionals is their direct interpretability, while the use of GMMs requires more sophis-
ticated computations and their interpretation is not as easy, therefore limiting their use
in clinical practice. This paper only considered the writing of numbers from 0 to 9; we
believe that the results will stay the same when considering other tasks, like those based
on words or sentences, because all these tasks are natural and belong to the set of daily
living activities. Therefore, findings reported in this paper constitute a step forward in the
process of creating clinically informative methods to model Parkinson’s symptoms. Further
research is required considering more writing tasks and also a larger number of patients to
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make it possible to create more sophisticated models like those based on recurrent neural
networks or long short-term memory (LSTM) models.
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