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Abstract

Background: To report a deep learning-based algorithm for automated segmentation of
geographic atrophy (GA) among patients with age-related macular degeneration (AMD).
Methods: Validation of a deep learning algorithm was performed using optical coherence
tomography (OCT) images from patients in routine clinical care diagnosed with GA,
with and without concurrent nAMD. For model construction, a 3D U-Net architecture
was used with the output modified to generate a 2D mask. Accuracy of the model was
assessed relative to the manual labeling of GA with the Dice similarity coefficient (DSC)

and correlation r2

scores. Results: The OCT data set included 367 scans from the Spectralis
(Heidelberg, Germany) from 55 eyes in 33 subjects; 267 (73%) scans had concurrent nAMD.
In parallel, 348 scans were collected using the Cirrus (Zeiss), from 348 eyes in 326 subjects;
101 (29%) scans had concurrent nAMD. For Spectralis data, the mean DSC score was
0.83 and r? was 0.91. For Cirrus data, the mean DSC score was 0.82 and r? was 0.88.
Conclusions: The reported deep learning algorithm demonstrated strong agreement with
manual grading of GA secondary to AMD on the OCT data set from routine clinical practice.
The model performed well across two OCT devices as well as amongst patients with GA

with concurrent nAMD, suggesting applicability in the clinical space.

Keywords: artificial intelligence; age-related macular degeneration; deep learning; geo-
graphic atrophy; retina

1. Introduction

Geographic atrophy (GA) is an advanced stage manifestation of non-exudative age-
related macular degeneration (AMD), representing one of the leading causes of vision loss
in adults over 50 years of age [1]. GA is characterized by the progressive degeneration
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of the choriocapillaris, retinal pigment epithelium (RPE), and overlying photoreceptors,
resulting in irreversible central vision loss [2].

Recently, two intravitreal anti-complement therapies, pegcetacoplan and avacincaptad
pegol, were introduced in the United States for the treatment of GA [3,4]. These therapies
were approved by the Food and Drug Administration based on structural endpoints.
Both therapies demonstrated a slower rate of progression of GA relative to sham-treated
populations, although neither demonstrated any prespecified visual benefit. Given the
introduction of these therapies, the accurate measurement of GA area and its progression is
of heightened importance to support the clinical management of patients being considered
for or receiving pharmacotherapy in routine clinical practice.

GA is typically diagnosed using non-invasive imaging techniques including optical co-
herence tomography (OCT), fundus autofluorescence (FAF), and fundus photography [5,6].
OCT is particularly useful for identifying GA due to its widespread availability in clinical
practice, ability to identify subtle morphological changes in early disease, and ease of
capture. In 2018, OCT was proposed as the gold standard to diagnose GA by the inter-
national expert Consensus Definition for Atrophy Associated with Age-Related Macular
Degeneration on OCT group [7]. Specific OCT criteria to diagnose complete RPE and
outer retinal atrophy (CRORA) were proposed. While these criteria may accurately define
GA, they are challenging for ophthalmologists to methodically apply across thousands of
B-scans in routine clinical practice. Toward this end, artificial intelligence (Al) can serve to
simplify the process by automating the identification of GA [8,9].

Different approaches to segmenting GA in image data have been developed by device
manufacturers and research groups. For OCT, the only software with clinical approval is the
advanced retinal pigment epithelial (RPE) analysis tool (ARPET; Carl Zeiss Meditec, Dublin,
CA, USA). The method proceeds by segmenting 3D OCT data and using the segmentation
to create a 2D en face slab image based only on image data extending from 65 pum to 400 um
below a fit to the RPE [10]. Relying on an accurate layer segmentation and performing the
segmentation only in 2D are detrimental to this approach’s performance.

The advent of deep learning has resulted in several fully automated applications.
Methods based on segmenting each B-scan individually using a 2D U-Net architecture and
compiling these results across the slices has been previously reported [11,12]. Researchers
have overcome the limitations of the aforementioned approaches by working directly with
the 3D data based on a novel architecture that modifies a U-Net to encode in 3D and decode
in 2D [13]. In this approach, the skip connections, common to the U-Net architecture, drop
one dimension from the data and go from 3D to 2D. Our extension to that method adds
residual blocks to allow for better feature representations [14]. In the following, we examine
the ability of this 3D U-Net-type architecture to identify GA on OCT data from real-world
patient data.

2. Methods
2.1. Data Collection and Grading

Data was collected from two sites retrospectively, the Retina Consultants of Texas
(RCTX, Houston, TX, USA) and Retina-Vitreous Associates (RVA, Los Angeles, CA, USA),
from 2016 and 2022. Inclusion criteria were a clinical diagnosis of GA with accompanying
OCT imaging; eyes with concurrent nAMD were also included. Institutional review board
approval was obtained from Advarra. The present study was conducted in accordance
with the Declaration of Helsinki.
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Optical coherence tomography imaging was performed on the Heidelberg Spectralis
(Heidelberg Engineering, Heidelberg, Germany) at RCTX and the Zeiss Cirrus (Carl Zeiss
Meditec, Dublin, CA, USA) at RVA as part of routine clinical care. Both used similar
protocols for capturing data at the macula using a 20 degree (~6 mm?) lateral field of
view (FOV).

For Spectralis, the macular scan protocol was used with an ART setting of up to
10 averaged frames. The volumes comprised 49 slices, where each B-scan was 512 by
496 pixels. The Spectralis data included near-infrared (nIR) images, which were across a
30-degree FOV and used 100-frame averaging. A quality index of at least 25 was required
for inclusion; this guidance came from the manufacturer.

For Cirrus data, the macular protocol included 200 B-scans, each with 200 by 1024 pix-
els. The Zeiss macular protocol does not use frame averaging. A minimal signal score of
five was required for inclusion. No associated nIR data was collected by the device.

2.2. Grading

Manual grading was performed by two expert graders who delineated areas of cRORA
on OCT based on the Classification of Atrophy Meetings (CAM) criteria as previously
described [7]. Graders marked areas of cRORA using the Orion (Voxeleron Inc., Austin,
TX, USA) application [15]. Specifically, graders marked the bounds of atrophy on the
B-scan cross-sections (Figure 1). The delineated areas are subsequently represented two-
dimensionally on the OCT en face view for confirmation of the correct demarcation. Graders
were masked to the nIR images collected in the Spectralis data set for consistency with the
Cirrus labeling, which had no nIR data. As the scans had already been filtered based on
quality, all volumes were gradable. No repeat grading was performed.

ID: S0132 - SCAN DATE: May-05-2023 - EYE: OD - QUALITY: 30.7/40 3.2 Fundus LSO
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Figure 1. Representation of the Orion application used for the grading of geographic atrophy (GA).
Graders placed landmarks (white dots) at the boundaries of GA on the B-scans. The resulting 2D
mask (GA area) is shown in the en face view (top right).
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2.3. Deep Learning Architecture

A 3D U-Net architecture was used for deep learning with the output modified to
generate a 2D mask (Figure 2). It extends the approach of Lachinov by adding attention
blocks to the architecture in an effort to better localize the region in which the atrophy is im-
aged [13]. Explicit localization has previously been implemented using layer segmentation,
but here we do this in 3D and in a single architecture with the localization learned [10,11].

1 Inputlayer 'cmu 'Dvrm:t 'Ealmumahzam 'Maxvm\mglb *”Shummambﬁa '[onv?DTranspow 'Can(atenate
'EMVZD 'MamehngZD | Reshape 'Amvatm

Figure 2. Schematic of the convolutional neural network-based 3D to 2D network used for geo-
graphic atrophy segmentation. Once trained, an input 3D optical coherence tomography volume
(left) will generate an output 2D mask (right) based on the learned weights and parameters of the
network (middle).

To alleviate memory management issues caused by large 3D volumes, for the Spectralis
data, the volume was sub-sampled to 128-by-128-by-64 pixels (i.e., to 64 B-scans each of
1282 pixels). The Cirrus data, due to the more isotropic distribution, was sub-sampled
instead to 128-by-128-by-128 pixels (i.e., to 128 B-scans each of 1282 pixels). The output was
a 2D mask of GA at a resolution of 128-by-64 pixels and 128-by-128 pixels for Spectralis and
Cirrus, respectively. For the Spectralis implementation, the architecture was also capable of
receiving the 2D nIR images in a second input channel to see if this additional information
would improve the algorithm’s performance.

Training each of the models used 450 epochs with a batch size of 32. A patience
parameter was set to 70 meaning that, if after 70 iterations no improvement was seen in
the performance relative to the validation split (a part of the training set), the learning
stopped. The AdamW optimizer was used with an initial learning rate of 5 x 10~°. The loss
function weighed both the cross entropy and the DICE coefficient. All training was run on
a Dell Precision 7920 Workstation (Dell Technologies, Round Rock, TX, USA), housing two
NVIDIA A6000s connected via the NVLINK system (NVIDIA Corportation, Santa Clara,
CA, USA). On average, each training fold took 90 min using both GPUs using distributed
learning. The implementation used TensorFlow version 2.15.

2.4. Analysis Methods

N-fold cross-validation was performed. In this scenario, data is split N times, where at
each of the N-folds, 1/Nth of the entire data set is set aside for testing and the remaining for
training. Training further splits the data into train and validate groups, where the latter is
used to determine when the training iterations stop. For the present study, five folds were
used. For repeat cases from the same subject, the folds were structured such that at no time
was data from a single subject represented both in the train and test sets. Dice Similarity
Scores (DSC) and correlation (r?) between manual and automated areas of atrophy were
calculated. Student t-test was used to compare scores in the GA-only and GA-with-nAMD
data subsets. A p-value of <0.05 was considered statistically significant. All final analyses
were performed using Matlab and its Statistics Toolbox (Mathworks, Natick, MA, USA).
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3. Results

For the Spectralis data, 367 scans were used from 55 subject eyes in 33 subjects. The
data was collected over a period of eight years. All 367 scans had clinically diagnosed GA,
which was confirmed during the grading process. Of the 367 scans, 267 (73%) had been
clinically diagnosed with concurrent nAMD, while the remaining 100 (27%) did not have
concurrent nAMD.

The Cirrus data subset comprised 348 subject eyes from 326 subjects representing
348 total scans. All clinically diagnosed cases of GA were confirmed during the grading
process. Of the 348 scans, 101 (29%) had presumed nAMD, while 247 (70.1%) did not have
concurrent nAMD.

For the Spectralis data, the mean DSC score was 0.83 and r?> was 0.91 (Table 1). With
the addition of nIR data, there was no significant change in the mean DSC score (0.83) and
12 (0.91). For the Cirrus data, the mean DSC score was 0.82 and r? was 0.88.

Table 1. Geographic atrophy automated segmentation algorithm performance across devices.

Average DSC
p-Values

Correlation (2)

p-Values *

Cirrus Spectralis OCT Only Spectralis OCT + nIR
GA only GA + Treatment GA only GA + nAMD GA only GA + nAMD
N =247 N =101 N =100 N =267 N =100 N =267
0.82 0.83 0.83
0.82 0.84 0.80 0.83 0.82 0.83
0.18 0.08 0.77
0.88 091 0.91
0.89 0.87 0.97 0.85 0.98 0.84
0.26 p <0.05 p <0.05

* p-values are for comparisons between geographic atrophy (GA) only data and GA with concurrent neovascu-
lar AMD.

Stratification of the Spectralis data based on the presence of concurrent nAMD did
not demonstrate a significant difference in the mean DSC score. However, there was a
statistically significant decrease in correlation scores when comparing eyes without (0.97)
with those with concurrent nAMD (0.85, p < 0.05). For the Cirrus data, there was no
significant difference in the DSC scores or correlations when stratifying based on the
presence of nAMD.

Figure 3 shows the scatter plot and Bland—Altman plot for automated and manual
measurements for the Spectralis and Cirrus data sets. Supplementary Figure S1 shows
the same plots using OCT and nIR data together in the Spectralis data set. Figures 4-6
show example segmentations in cases of GA, multifocal GA with many loci, and a case of
concurrent atrophy and neovascular AMD. Finally, Figure 7 shows an example longitudinal
analysis of how the tool may be employed in the clinical setting.



Diagnostics 2025, 15, 2580 60f 13

A B

35
I < 15 LOA: 4.8 mm?
30 e i
o
| E 10 i oo o,
£ E, . q g :%] 5.2 (+1.96SD)
£ 20} g g iy
= S o e 0.33 [p=0.01]
§ 15+ < g o ©
® 1 =B . -4.5 (-1.96SD)
=10} g e
c -10
e
S§ = .15
0o ' . : 0 10 20 30
0 10 20 30
Mean Automated & Mannual (mm2)

Automated ( mm2)

C D

40
20 2
i LOA: 5.5 mm
£ o =
I S
N =0 ; 10 = o®
E_ é Hmug,,qu?g,.” DB 55 (+1.96SD)
—_ (o] - =
g 20 < 0 o 0.01 [p=0.95]
c < n
c - o 55 (-1.96SD)
= 10, 2 10 0
3
2 a
-20 : , :
01 0 10 20 30 40

0 10 20 30 40

2 Mean Automated & Mannual (mmz)
Automated (mm®)

Figure 3. Correlation of area measurements for the Spectralis (A,B) and Cirrus (C,D) data sets.
(A,Q): Scatter plot showing the manual area measurements (y-axis) versus the automated mea-
surements (x-axis) and their resulting correlation for the Spectralis (A) and Cirrus (C) data sets.
(B,D): Bland-Altman plots showing the limits of agreement (LOA) between automated and manual
measurements for the Spectralis (B) and Cirrus (D) data sets. The y-axis shows the difference between
the manual and automated measurements and the x-axis their average.
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Figure 4. Example segmentation of geographic atrophy (GA) from optical coherence tomography (OCT).
Blue indicates manual delineation; red indicates automated segmentation. (A): Input near-infrared en
face image. (B,E): 2D GA segmentation maps from manual and automated delineation, respectively.
(CF): Representative B-scans (through horizontal lines in (B,E)) with GA delineated (vertical lines).
(D): En face near-infrared with manual (blue) and automated (red) segmentations of GA overlain.

Unet_2024-07-28_01-45_run_3 - 128 Labeled - 6.5582mm? Bscan 102
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Figure 5. Example segmentation of multifocal geographic atrophy (GA) from optical coherence tomog-
raphy (OCT). Blue indicates manual delineation; red indicates automated segmentation. (A): Input
near-infrared en face image. (B,E): 2D GA segmentation maps from manual and automated delineation,
respectively, demonstrating a tendency for the automated segmentation to coalesce smaller GA lesions
relative to the manual grading. (C,F): Representative B-scans (through horizontal lines in (B,E)) with
GA delineated (vertical lines). (D): En face near-infrared with manual (blue) and automated (red)
segmentations of GA overlain.
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Figure 6. Example segmentation of geographic atrophy (GA) from optical coherence tomography
(OCT) in a patient with concurrent neovascular age-related macular degeneration and subretinal
fibrosis. Blue indicates manual delineation; red indicates automated segmentation. (A): Input near-
infrared en face image. (B,E): 2D GA segmentation maps from manual and automated delineation,
respectively, demonstrating high agreement. (CF): Representative B-scans (through horizontal
lines in (B,E)) demonstrating subretinal fibrosis with GA delineated (vertical lines). (D): En face
near-infrared with manual (blue) and automated (red) segmentations of GA overlain.
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Figure 7. Representative longitudinal analysis of a fixed geographic atrophy (GA) segmentation
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0

model applied to data from a single patient over 14 visits. While this data was not used as part of the
reported analysis, it demonstrates the intended use case for the reported GA algorithm. The plots on
the right side of the image demonstrate the growth of GA (in mm?) over each visit.

4. Discussion

The current study demonstrates the ability of a deep learning algorithm to segment
GA using OCT from a real-world clinical cohort using two different hardware OCT devices.
Unlike many prior studies, which excluded patients with nAMD and many of which
are based on clinical trial data, the present investigation included data from patients
with GA secondary to AMD both with and without concurrent nAMD in routine clinical
practice settings [16-20]. Overall, the algorithm demonstrated strong agreement with
manual grading as reflected by mean Dice scores and correlation > 0.8 across devices and
disease states.
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Validation studies of GA segmentation algorithms using patient cohorts with concur-
rent nAMD are rare [21]. Yet patients with GA are at relatively high risk of developing
concurrent exudative disease. In a study of more than 23,000 patients with GA and no
exudative disease at baseline, 25% of eyes developed nAMD during at least 3 years of
follow up [22]. Furthermore, clinical trials leading to the approval of complement inhibitors
for GA and subsequent post-approval studies have demonstrated higher risk of choroidal
neovascular membrane formation with treatment [23,24]. Therefore, in order to be more
broadly clinically useful, deep learning algorithms for automated GA segmentation should
be able to perform well among patients without and with concurrent neovascular disease.

In the current study, the results are encouraging with respect to the performance
of the algorithm for GA in the presence of concurrent nAMD, with DSC and correlation
scores > 0.8 for both the Cirrus and Spectralis data. Comparatively, one prior study assess-
ing atrophy among patients with nAMD reported a DSC score of 0.706 [21]. Another study
by Liefers investigated the ability of a deep learning algorithm to detect multiple OCT
features including RPE loss in nAMD [25]. The reported DSC score for the detection of RPE
loss in that study was 0.471. The results of the present study represent the highest DSC and
correlation scores reported for the automated detection of GA in patients with nAMD by a
deep learning algorithm to date.

In the current sub-analysis comparing patients with and without concurrent nAMD,
the DSC and correlation scores did not significantly differ within the Cirrus data. For
the Spectralis data, however, while the DSC scores did not significantly differ with and
without concurrent nAMD, the correlation scores decreased significantly in the presence
of nAMD. This suggests that the Al’s correct identification of GA is not diminished in the
presence of neovascular AMD but that the Al is less accurate in estimating the total size
of the GA. The reasons driving this difference and its presence only in the Spectralis data
subset warrants further study. While fluid on OCT reflects very little light, nAMD can lead
to features like subretinal fibrosis that may be more difficult to distinguish from GA on
OCT [26]. Additionally, updated analysis with higher-density line scans would be useful to
determine if greater OCT resolution would lead to higher scores.

Importantly, data was derived from two widely used OCT devices from two different
manufacturers. Device agnostic algorithms are more likely to have broad clinical utility,
given the usage of different devices in retina clinics globally [27]. Another strength of the
current work is the incorporation of real-world data from retina clinics rather than use
of data derived from a clinical trial. A challenge with many Al-based algorithms is their
generalizability outside of the curated data on which they are trained [28]. Clinical trials for
GA often have robust exclusion criteria based on the size and morphology of the GA lesion,
presence of nAMD, prior intravitreal therapy, and other factors that may make results less
generalizable [29]. The present study is likely to be more generalizable given the inclusion
of data from two devices from two independent retina clinics with different patient popula-
tions. Relative to ground truth assessment, we have shown excellent correlation for both
devices along with narrow limits of agreement and very high DSC scores.

GA area, as measured using imaging, is relevant and clinically meaningful, and its
progression, in general, is more predictable than our current ability to measure change in
progressive visual dysfunction among affected patients. The FDA has designated the area
of GA as an approvable-endpoint in the development of treatments for GA [30]. To data,
FDA-approved pharmacotherapies for GA have utilized FAF as the primary tool to assess
GA lesion growth over time. FAF relies on the detection of natural fluorescence emitted by
lipofuscin, a pigment that accumulates in the RPE and has several factors limiting its routine,
longitudinal clinical use. FAF imaging is two-dimensional and offers no cross-sectional
information. Furthermore, FAF imaging is time-intensive and unpleasant for patients. In
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comparison, OCT imaging is rapid, extremely well tolerated by patients, and universally
utilized in retina clinics. Furthermore, OCT allows detailed and quantitative assessment of
individual retinal layers including the ellipsoid zone (EZ) [31]. The importance of OCT in
the assessment of GA is reflected both in the acceptance of OCT-based metrics as a new
FDA-approvable endpoint and in the definition of GA published by the CAM group, which
uses OCT rather than FAF [7,32].

While OCT is a critical tool in the assessment of GA, grading GA based on OCT
is exceptionally time-intensive and completely impractical at the volume needed within
the flow of a routine retina clinic. The current work represents a practical approach for
achieving this in an automated fashion, considering how well the automated approach
compared with expertly labeled data. Outside of use in clinical practice, the automated
and quantitative assessment of GA lesions by OCT will also be useful for applications such
as consideration of patients for ongoing clinical trials; such automated methods offer the
opportunity for more efficient and accelerated clinical trial recruitment.

There are limitations that must be considered in interpreting these results. Unlike
clinical trial data, which is independently reviewed by a reading center, diagnosis of GA
and nAMD in the current data set were based on physician clinical judgment. Additionally,
while the Spectralis volumes utilized in the current work had 49-line scans, the algorithm
may have demonstrated better performance if a higher-density scan pattern had been
utilized such as 97-line scans. Furthermore, the Spectralis data was collected from a smaller
number of patients followed longitudinally compared to the Cirrus data, which was more
cross-sectional in nature. Finally, Spectralis data with a noise score below the manufacturers’
recommendations were excluded from this study; data with increased noise causes a drop
in algorithm performance and results in data that is harder to grade. It is an open question
as to whether or not such data should be included in the training data given, and one that
is not addressed in this study.

5. Conclusions

In summary, the reported deep learning-based algorithm demonstrated excellent
performance relative to manual grading of GA in patients with AMD, with correlations and
mean DSC values of >0.8 across both devices. The data used to train and test the model is
representative of real-world clinical data, consisting of eyes with and without concurrent
nAMD and images from two devices.

With the advent of therapeutics designed to slow the progression of GA, such auto-
mated analysis tools will have wide applicability in clinical management, trial recruitment,
and endpoint analysis. Future work is needed to validate these automated analysis tools to
ensure that they perform well across a diverse set of patients and imaging platforms.

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/diagnostics15202580/s1, Figure S1: Correlation of area mea-
surements for the Spectralis OCT data set with inclusion of near-infrared images as input to the
neural network. Left: scatter plot showing the manual area measurements (y-axis) versus the auto-
mated measurements (x-axis) and their resulting correlation (r? = 0.91). Right: Bland-Altman plot
showing the limits of agreement (LOA) between automated and manual measurements. The y-axis
shows the difference between the manual and automated measurements and the x-axis their average.
The correlation is the same, but the limits of agreement are slightly narrower. Table 1 summarizes
overall findings.
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Abbreviations

GA geographic atrophy

OCT optical coherence tomography
AMD age-related macular degeneration
DSC Dice similarity coefficient

FAF Fundus autofluorescence

Al artificial intelligence



Diagnostics 2025, 15, 2580 12 of 13

RPE retinal pigment epithelium
RCTX retina consultants of Texas
RVA retina-vitreous associates
ART automatic real-time tracking

cRORA  complete RPE and outer retinal atrophy
CAM classification of atrophy meetings

GPU graphics processing unit

LOA limits of agreement

FDA Food and Drug Administration

EZ ellipsoid zone
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