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Abstract: Several breast pathologies can affect the skin, and clinical pathways might differ signif-
icantly depending on the underlying diagnosis. This study investigates the feasibility of using
diffusion-weighted imaging (DWI) to differentiate skin pathologies in breast MRIs. This retrospective
study included 88 female patients who underwent diagnostic breast MRI (1.5 or 3T), including DWI.
Skin areas were manually segmented, and the apparent diffusion coefficients (ADCs) were compared
between different pathologies: inflammatory breast cancer (IBC; n = 5), benign skin inflammation
(BSI; n = 11), Paget’s disease (PD; n = 3), and skin-involved breast cancer (SIBC; n = 11). Fifty-eight
women had healthy skin (H; n = 58). The SIBC group had a significantly lower mean ADC than
the BSI and IBC groups. These differences persisted for the first-order features of the ADC (mean,
median, maximum, and minimum) only between the SIBC and BSI groups. The mean ADC did not
differ significantly between the BSI and IBC groups. Quantitative DWI assessments demonstrated
differences between various skin-affecting pathologies, but did not distinguish clearly between all of
them. More extensive studies are needed to assess the utility of quantitative DWI in supplementing
the diagnostic assessment of skin pathologies in breast imaging.

Keywords: magnetic resonance imaging; diffusion-weighted imaging; skin cancer; breast cancer;
apparent diffusion coefficient

1. Introduction

Breast magnetic resonance imaging (MRI) provides high-resolution morphological
information, facilitating the detection and characterisation of suspicious lesions [1]. Among
the routine sequences, diffusion-weighted imaging (DWI)—a contrast agent-free MRI
technique based on the Brownian motion of water—has gained an increasingly important
role. DWI measures the diffusion of water molecules in tissue, whose motion is correlated
to tissue microstructure [2–4]. Amongst several quantitative assessment approaches, the
apparent diffusion coefficient (ADC) derived from diffusion-weighted images has been
reported to support lesion characterisation [5–17], since malignant tumours frequently
demonstrate lower ADCs than benign lesions or normal tissue [18]. Therefore, DWI
commonly complements multiparametric dynamic contrast-enhanced MRI protocols and
has been reported to improve specificity in clinical reading [19–21], aiding in the reduction
of false positives or indeterminate assessments. Thus, although not mandatory, DWI
sequences are increasingly incorporated into multiparametric breast MRI protocols.

Pathologies in the female breast can affect or originate from the fibroglandular tissue
(FGT) components and, in relatively rare cases, from the skin [22,23]. The spectrum of
skin pathologies includes benign processes such as, e.g., benign skin inflammation (BSI),
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associated with mastitis. However, it can also indicate the presence of other pathologies of
the skin, like Paget’s disease (PD), which represents 1–3% of all breast cancers and mostly
occurs in postmenopausal women [24]. Secondary skin-involvement in non-specific breast
cancer (SIBCs) or the primarily highly aggressive inflammatory breast cancer (IBC) are
further rare pathologies, with the latter accounting for 2–4% of all breast cancers [25,26].
Symptoms associated with skin involvement in IBC can show an overlap with the spectrum
of symptoms in skin affection of benign mastitis [23,27,28], presenting with symptoms such
as redness, swelling, warmth, and tenderness [28]. In case of such symptoms, antibiotics
and observation of success are potential initial pathways which, depending on therapeutic
success, might then be followed or accompanied by the decision about a potential invasive
work-up, such as a biopsy.

Whilst MR imaging can help by differentiating pathologies, there is limited data on
whether MR imaging might provide specific aid for assessing skin involvement in diseases,
e.g., differentiating between benign inflammation and skin infiltration in breast cancer.

DWI’s technical characteristics suggest its potential for assessing lesions in breast MRI
beyond the skin tissue. It may also support the evaluation of the skin itself by providing
microstructural correlates of the alterations, determining the extent of cancer spread and
assessing the extent of skin thickening [18,29–31].

Our study aimed to gain the first insight into the capability of DWI and first-order
ADC statistics to support the characterisation of breast skin pathologies. Due to the rarity of
such clinical cases, this study serves as an initial exploration and evaluation of the potential
of this approach.

2. Materials and Methods
2.1. Study Population

This institutional review board-approved retrospective study included breast MRI
examinations performed at the University Hospital Erlangen (Germany) between 2015
and 2020. All breast MRI examinations were conducted as part of the clinical routine.
This cohort was part of previously published works by Liebert et al. [32] and Kapsner
et al. [33,34], in which image quality assessment and artifact detection were investigated.
The inclusion criteria were female patients with clinically indicated (e.g., preoperative or
postoperative evaluations, assessment of multifocal disease or unclear findings, screening
in cases of elevated breast cancer risk) breast MRI examination. The MRI protocol consisted
of multiparametric imaging, including multi-b-value DWI. Further, the examinations
were stratified into five subgroups based on the clinical reports regarding the presence
of one of the considered diseases: Paget’s disease, skin-involved breast cancer of no
special type, inflammatory breast cancer, or benign skin inflammation. The BSI category
comprised mastitis, chronic inflammation, and lymphedema. Identifying patients eligible
for inclusion in this study involved a keyword search of our in-house structured database
(see Supplementary Materials—text document Supplemental Digital Content 1: Keyword
List, which contains the keywords used for patient identification). It included terms
characteristic of breast skin pathologies, such as “benign skin inflammation”, “Paget”,
“skin”, “thickened skin”, “flush”, “redness”, and “oedematous”. Since the medical reports
were in German, the keywords were chosen accordingly. Fifty-eight women with healthy
breast skin (i.e., patients with a Breast Imaging Data and Reporting System [BI-RADS] 1
or BI-RADS 2 assessment) were included. Besides these 58 cases, the search identified
52 patients with target findings for inclusion. The following exclusion criteria were applied:
image artifacts affecting diagnostic image quality (e.g., insufficient fat saturation in DWI
data; n = 2), the presence of silicone implants within the breast (n = 3), a lack of histology
results with only radiologic suspicion (n = 9), intermediate risk lesion in histology (n = 1), no
visual suspicion of the skin lesion (n = 2), missing DWI images (n = 1), and insufficient signal-
to-noise ratio (SNR; n = 3). Furthermore, one case initially assigned to the Paget’s disease
group had a histologically confirmed benign finding. Nevertheless, we opted to exclude the
case because it was the sole benign finding in the nipple region. Figure 1 presents the total
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number of breast MRI examinations performed within the 2015–2000 period, as well as the
exclusion processes of patients. The reference was either the radiologic report (e.g., health
skin cohort) or/and the histopathological reporting in the radiology information system.
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Figure 1. Selection of the population. Among women examined between 2015 and 2020, 30 patients
with skin pathologies met the inclusion and exclusion criteria. Additionally, fifty-eight women with
healthy skin (n = 58) have been included.

2.2. MRI Protocol

Since this study was retrospective, patient examinations were conducted with multiple
scanners and sequence settings reflecting the clinical routine examination process. MRI
examinations were performed using either a 1.5 Tesla (Avanto [n = 55] or Aera [n = 8];
Siemens Healthineers, Erlangen, Germany) or 3 Tesla (Skyra Fit [n = 13] or Magnetom Vida
[n = 12]; Siemens Healthineers, Erlangen, Germany) system using a dedicated multi-channel
breast coil. The multiparametric breast MRI protocol included a T1-weighted sequence
before and dynamically acquired after the injection of gadolinium-based contrast agents, a
T2-weighted sequence, and a diffusion-weighted sequence acquired in axial orientation
with echo-planar readout and b-values of 50 s/mm2, 750 or 800 s/mm2, and sometimes 400
and 1500 s/mm2. Since our study focuses on quantitative DWI assessment, the imaging
parameters for the diffusion-weighted sequences are detailed in Table 1.

Table 1. Diffusion-weighted imaging acquisition parameters.

Parameters Diffusion-Weighted Imaging Sequences

Total scan time 1 min 44 s–4 min 43 s
Magnetic field strength 72% 1.5 T, 28% 3 T

Slices, no. 24–62
Slice thickness (mm) 2.5–5

Spacing between slices (mm) 2.75–6
Repetition time (ms) 4100–9750

Echo time (ms) 54–106
Inversion Time (ms) 0–250

b-values (s/mm2), [averages]
50, 400, 800 [2, 3, 4 or 3, 4, 5 or 9, 12, 15];

50, 750, 1500 [3, 8, 15]
Matrix 128 × 80–220 × 168

Percent phase field of view 48.98–76.36
Pixel spacing (mm) 1.37–2.50

Pixel bandwidth (Hz/Px) 1263–2300
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2.3. Data Processing

All imaging data relevant to this study were transferred from the routine clinical
Picture Archiving and Communication System (PACS) to a dedicated research workstation.
Then, manual segmentations were performed by a physicist (D.S., one year of experience in
breast DWI) supervised by a board-certified radiologist controlling all segmentations in con-
sensus (S.B., nine years of experience in breast DWI). Skin pathologies were identified per
the radiologists’ report using all available multiparametric breast MRI protocol sequences.

Then, segmentations were conducted as follows: The segmentations were defined man-
ually on diffusion-weighted images (b-value 750–800 s/mm2) using the Medical Imaging
Interaction Toolkit (MITK; v2018.04; German Cancer Research Center (DKFZ), Heidelberg,
Germany). The segmentations were contoured carefully, avoiding necrotic parts of the
lesion, major artifacts (e.g., due to folding skin), and cystic or calcified structures within
the affected breast region. The boundaries were specified to be smaller than the actual
visual volume of the affected area of the skin to minimise partial volume effects (a rim
of roughly one voxel was kept), which is particularly important in the skin. While the
segmentations did not always cover the entire volume of the lesions or area affected by
tissue alterations, they commonly included several slices, so in most cases, the volume of
interest (VOI) included in this study was three-dimensional. In cases with multiple skin
pathologies (uni- or bi-lateral), only one VOI per patient was evaluated and included in
this study. One representative slice of the breast MRI examination, with a clearly visible
healthy skin region, was selected for the control group, and segmentations were performed
by visually delineating skin regions (mean nr of voxels = 29). In the healthy control group,
the delineation process was performed using the b = 50 s/mm2 images, since the visibility
of the skin often decreased rapidly at higher b-values. Segmentation masks were stored as
.nii files and further processed as described below.

2.4. ADC Calculation

The ADC was calculated using two methods. The first method involved calculating
the diffusion coefficient using the mean signal value, S(b), within the VOI:

ADC =
ln( S(b2)

S(b1)
)

b1 − b2
, (1)

where S(b1) and S(b2) are the mean signal intensities of the VOI for b-values b1 and b2.
In our calculations, we determined the ADC using two different b-values: one at 750
or 800 s/mm2 and the other close to zero, at 50 s/mm2. Additionally, ADC maps were
generated from these ADC values.

In the second method, the ADC was calculated for each voxel in the same manner.
Then, the mean, minimal, maximal, and median ADC values were calculated.

An internal reference of healthy skin was used to establish ADC values for the non-
affected skin, which were later used to assess how much the value of these pathologies
differed from normal values in healthy skin.

2.5. SNR Estimation

To ensure that the obtained ADC values were correctly computed and not corrupted
by an insufficient SNR [35], the SNR was estimated using the following formula:

SNR =
S
σ

, (2)

A 2D region was drawn in a signal-free region outside the body, and the mean signal,
|Snoise|, of the region was calculated. Then, σ was estimated using the following formula:

σ =

√
2
π

· |Snoise|, (3)
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For a single-channel coil, this would be a reasonable estimate for the size of the noise
floor. However, since we used a multi-channel setup, σ can only be approximated in this
manner. The signal, S, (e.g., of the breast’s skin) was estimated using the following formula,
considering the correction for Rician distributed noise [36]:

Stissue,corrected ≈
√

S2
tissue − σ2, (4)

An SNR value of two was used as a cut-off for images in patient groups with breast
skin pathologies. Upon visual inspection, we found this SNR threshold to be appropriate.
The SNR of healthy skin was regularly very low, and we used no cut-off for these cases.
Therefore, the stated healthy skin ADC values are biased. Nonetheless, we state them
because our values are presumably representative of those that would be obtained in a
routine clinical workflow.

2.6. Statistical Analysis

The mean, maximum, minimum, and median ADCs of five independent groups were
tested for normality using the Kolmogorov–Smirnov test. Since these tests indicated non-
normality in most cases, the groups were compared using Wilcoxon rank sum tests. Due
to the limited number of Paget’s disease cases (n = 3) included in this study, assessment
of the Paget’s disease samples is only provided as a descriptive analysis. All calculations
and statistical analysis were performed using MATLAB (v2020a; MathWorks, Natick, MA,
USA). All results with p-values < 0.05 were considered statistically significant.

3. Results
3.1. Demographics

The study population included 88 women, of whom 58 (66%) were control cases with
healthy skin (mean age: 51 ± 2 years) and 30 (34%) were cases with skin pathologies (mean
age: 59 ± 2 years; 10% (3/30) with PD, 16% (5/30) with IBC, 36% (11/30) with BSI, and
36% (11/30) with SIBC). Further details are provided in Table 2.

Table 2. Descriptive statistics of the study cohort, scan parameters, and segmentations.

Type No.
Mean Nr of

Voxels in
VOI 1

Magnetic Field
Strength

b-Values
(s/mm2)

Occurrence and
VOI Placement

Age (Years)
1.5 T 3 T 750 800 Right

Breast
Left

Breast

Paget’s disease of the nipple 3 35 1 2 1 2 1 2 54 ± 8
Inflammatory breast cancer 5 258 1 4 3 2 2 3 55 ± 5

Benign skin inflammation or enhancement 11 197 5 6 5 6 3 8 59 ± 4
Skin infiltration breast cancer 11 46 4 7 6 5 7 4 61 ± 5

Healthy skin 58 29 52 6 6 52 30 28 51 ± 2

1 VOI: volume of interest.

Figures 2–5 show representative images of all the skin-involving diseases included in
this study (PD, IBC, BSI, and SIBC). The used VOIs are shown as overlays on the diffusion-
weighted images (top left subfigures) and were used to infer the ADC values from the ADC
maps shown in the top right subfigures. Additionally, T1- and T2-weighted images are
shown. Figure 2 shows a case of PD of the nipple. The lesion appears relatively solitary in
the diffusion-weighted image and ADC map, with a fainter appearance than the respective
regions of interest in Figures 3–5. None of the cases shown in Figures 3–5 shows a similar
solitary appearance of the region of interest. Figure 3 shows a case of infiltrating mammary
carcinoma. It does not appear as singular in the diffusion-weighted image or ADC map
as the PD case. Little contrast is visible on the ADC map between the cancer region and
the skin region surrounding it. Figure 4 shows an IBC case. Unlike in Figure 3, the bright
skin regions in the diffusion-weighted image and ADC map match relatively well with the
hyperintense skin region in the contrast-enhanced T1-weighted image. Figure 5 shows a
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BSI case. The skin’s visual appearance is relatively similar to that in Figure 4 in all four
subfigures, and differentiation might be difficult.
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tion; (d) T1-weighted subtraction image after contrast administration. 

Figure 2. Breast magnetic resonance imaging of a woman with Paget’s disease of the nipple. (a) Man-
ual segmentation overlaid on the diffusion-weighted image (b = 800 s/mm2), with segmentation
highlighted in green; (b) apparent diffusion coefficient map; (c) T2-weighted image with fat saturation;
(d) T1-weighted subtraction image after contrast administration.
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saturation; (d) T1-weighted subtraction image after contrast administration.
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Figure 4. Breast magnetic resonance images of a woman with inflammatory breast carcinoma.
(a) Manual segmentation overlaid on the diffusion-weighted image (b = 800 s/mm2), with segmen-
tation highlighted in green; (b) apparent diffusion coefficient map; (c) T2-weighted image with fat
saturation; (d) T1-weighted subtraction image after contrast administration.
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Figure 5. Breast magnetic resonance imaging of a woman with benign skin inflammation (mastitis).
(a) Manual segmentation overlaid on the diffusion-weighted image (b = 800 s/mm2), with segmen-
tation highlighted in green; (b) apparent diffusion coefficient map; (c) T2-weighted image with fat
saturation; (d) T1-weighted subtraction image after contrast administration.
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3.2. Analyses of First-Order Statistics Using the ADC

Table 3 and Figure 6 present the ADCs for PD, IBC, BSI, SIBC, and healthy skin. The
different first-order descriptive statistics (minimum, maximum, mean, and median) of the
ADCs in all evaluated groups with skin pathologies differed significantly from those in
the healthy control group (p < 0.05). Unlike in the groups with skin pathologies, the signal
in the healthy skin was often too low to ensure a proper ADC computation. The highest
ADCs in the skin pathology groups were in the BSI (1.88 ± 0.11 [1.04–2.30] µm2/s) and
IBC (1.86 ± 0.17 [1.28–2.18] µm2/s) groups, which did not differ significantly (p > 0.05).
The mean ADC was significantly lower in the SIBC group (1.38 ± 0.13 [0.73–1.98] µm2/s)
compared to the BSI (p = 0.005) and IBC (p = 0.027) groups.

Table 3. Overview of the investigated apparent diffusion coefficients in the breast skin (means ± stan-
dard deviation).

Median ADC 1

Value
(µm2/s)

Max. ADC 1

Value
(µm2/s)

Min. ADC 1

Value
(µm2/s)

ADC 1 of Mean
Signal within VOI 2

(µm2/s)

Mean of ADC 1

Values within VOI 2

(µm2/s)

Paget’s disease of the nipple 0.90 ± 0.26
(0.49–1.38)

1.43 ± 0.13
(1.18–1.59)

0.54 ± 0.23
(0.12–0.89)

0.95 ± 0.23
(0.59–1.37)

0.92 ± 0.24
(0.52–1.36)

Inflammatory breast cancer 1.85 ± 0.17
(1.26–2.18)

2.23 ± 0.15
(1.74–2.71)

1.2 ± 0.21
(0.76–1.93)

1.86 ± 0.17
(1.28–2.18)

1.84 ± 0.16
(1.27–2.16)

Benign skin inflammation or
enhancement

1.88 ± 0.11
(1.03–2.31)

2.22 ± 0.13
(1.27–2.63)

1.46 ± 0.11
(0.73–2.06)

1.88 ± 0.11
(1.04–2.3)

1.87 ± 0.11
(1.03–2.3)

Skin infiltration breast cancer 1.36 ± 0.13
(0.74–2.01)

1.86 ± 0.14
(0.83–2.43)

0.87 ± 0.14
(0.06–1.52)

1.38 ± 0.13
(0.73–1.98)

1.37 ± 0.13
(0.73–1.95)

Healthy skin 0.48 ± 0.02
(0.22–0.84)

0.86 ± 0.03
(0.42–1.47)

0.18 ± 0.02
(0.01–0.63)

0.49 ± 0.02
(0.23–0.85)

0.48 ± 0.02
(0.23–0.84)

1 ADC: apparent diffusion coefficient; 2 VOI: volume of interest.
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Figure 7 shows the Receiver Operating Characteristic (ROC) for ADCs calculated from
the mean signal within the region of interest. The accuracy values, as measured by the area
under the curve (AUC), for SIBC and BSI, SIBC and IBC, and IBC and BSI were 0.818, 0.818,
and 0.545, respectively. The sensitivities were 81.82%, 80.00%, and 63.64%, respectively.
The specificities were 72.73%, 72.73%, and 60.00%.
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inflammation; IBC: inflammatory breast cancer.

3.3. Evaluation of SNR in the Skin for Assessing ADCs in Skin Pathologies

The results of the quantitative SNR analysis of the VOIs for all cases of different cancer
types and healthy skin included in this study are presented in Table 4. The mean and
range of the SNRs for diffusion-weighted images with higher diffusion-weighting factors
(b-value: 800/750 s/mm2) are predictably lower due to the diffusion weighting. Most SNRs
were well above the cut-off of two. The SNR in the diffusion-weighted images dropped
below the cut-off value in only two cases, which were excluded from this study.

Table 4. Quantitative results of signal-to-noise ratios of the diffusion-weighted magnetic resonance
images for all evaluated groups.

Type
Signal-to-Noise Ratio

50 s/mm2 800/750 s/mm2

Paget’s disease of the nipple 36 ± 27 (4.7–54) 14 ± 10 (2.4–22)
Inflammatory breast cancer 239 ± 218 (24–588) 59 ± 46 (4.6–117)

Benign skin inflammation or enhancement 199 ± 324 (23–870) 56 ± 101 (5.1–338)
Skin infiltration breast cancer 97 ± 113 (9.2–370) 37 ± 49 (2.9–168)

Healthy skin 3.09 ± 3.71 (0.95–20) 2.04 ± 2.97 (0.6–16)

4. Discussion

Here, we describe our initial experience deriving quantitative diffusion data for several
skin pathologies in breast MRI. Our study demonstrates the technical feasibility of deriving
quantitative first-order descriptive statistics of ADCs in skin pathologies and the significant
differences between some types of pathologies. However, as further outlined below, we did
not find statistically significant differences between the BSI and IBC groups, which might
reflect the underlying biological processes of those diseases or challenges associated with
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the assessment. In contrast, significant differences were observed between the BSI and SIBC
groups, potentially indicating usefulness as complementary information in diagnosing
such cases.

All pathologies showed ADCs that differed from healthy skin; however, this needs
to be thoroughly contextualised. A decrease in an ADC typically indicates reduced water
mobility associated with increased “cellularity” [2,3]. Such a decrease can be commonly
observed in cancer tissue, which has been suggested to correlate with more cellular restric-
tions in its architecture than healthy tissue in many malignancies. This limits diffusion
and results in a lower diffusion coefficient in abnormal tissue compared to healthy tissue.
For normal breast tissue, the reported mean ADC ranges between 1.7 and 2.0 µm2/s [37].
However, the ADC may be influenced slightly by the menstrual cycle and breast density
and vary between women given and not given hormone replacement therapy [38]. The
here-observed ADCs for healthy skin are not within the range of healthy breast tissue
because the skin had different water content and cellular structure, resulting in a much
lower ADC than in healthy tissue.

Regarding the skin region, Bittounet et al.’s statistically significant findings suggest
that the ADC is sensitive to skin ageing due to reduced water mobility in the young
compared to the ageing epidermis [39]. According to their study, mean ADCs may vary
in different skin layers, such as the epidermis (young [Y]: 2.81 ± 0.25 µm2/s; aged [A]:
3.17 ± 0.26 µm2/s), outer dermis (Y: 2.33 ± 0.29 µm2/s; A: 2.85 ± 0.34 µm2/s), or inner
dermis (Y: 0.90 ± 0.65 µm2/s; A: 1.40 ± 0.60 µm2/s), demonstrating a strong gradient
towards the subcutaneous fat region. In comparison, the mean ADC of the healthy skin
in our study was 0.48 ± 0.02 µm2/s, ranging from 0.23 to 0.84, which might reflect the
relatively low resolution causing a partial inclusion of fat-suppressed subcutaneous tissue
into the voxels. However, the dominant effect is presumably the low signal in higher
b-value acquisitions, limiting the SNR and biasing the ADC calculation.

Besides the visual inspection of suspicious skin lesions, various techniques are used to
image the skin [40]. These include molecular imaging techniques such as single-photon
emission computed tomography or positron electron tomography, as well as anatomical
methods like reflectance confocal microscopy, high-frequency ultrasound, optical coherence
tomography, near-infrared bioimaging, and magnetic resonance imaging (MRI). Frequently,
a combination of these techniques is used. In addition to routine MRI sequences, which pri-
marily facilitate visual assessment, DWI enables quantitative evaluation of tissue. Research
studies have demonstrated that this quantitative approach enhances the differentiation
between benign and malignant lesions, providing valuable insights into tissue characterisa-
tion [41]. Like in many previous studies, the here-observed ADCs indicate that it is possible
to distinguish malignant and benign tissue. Many studies have evaluated the diagnostic
efficacy of DWI and ADCs in distinguishing between malignant and benign breast lesions
and provided ADC ranges or thresholds for differentiating normal tissue, malignant lesions,
and benign lesions [31]. The EUSOBI working group provided preliminary ADC ranges for
the malignant (0.8–1.3 µm2/s) and benign (1.2–2.0 µm2/s) to help differentiate them [37].
However, it should be noted that they emphasise that the suggested features, such as ADC
ranges, are preliminary, depend on various circumstances, and may evolve with time.

The lesion types examined here were limited to the specific sub-compartment of the
skin in the patient’s breast. We found that within the skin, lesions tended to show slightly
higher ADCs for malignant pathologies than those reported for malignant and benign
tissues outside the skin, which might reflect the interposition of the lesions with skin and
the reported higher ADC values for skin [39] than for FGT. It could also be associated with
the inflammatory reaction of the skin observed in IBC and other malignant processes in
the skin.

In this study, statistical evaluation of the first-order ADC feature “mean” differed
significantly between two pairs of groups (IBC and SIBC, BSI and SIBC), while the “median”,
“maximum”, and “minimum” features only differed between one pair (see Figure 6). The
findings of Bickel et al. [42] suggest that the minimum and mean ADC show the best
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diagnostic performance. They also suggested that the minimum ADC might represent
the most malignant part of the lesion, potentially leading to better differentiation between
benign and malignant lesions. Some other studies [43,44] came to similar conclusions
and stated that the lowest ADC might be associated with the most malignant part of the
carcinoma. This conclusion is consistent with our finding that the comparisons of the
“mean” and “minimum” ADCs between the BSI and SIBC groups yielded the lowest p-
values among all group comparisons. This might be indicative that a significant difference
in ADC might be found between these groups with larger sample sizes.

Due to the limited sample size of Paget’s disease (n = 3) included in this study,
statistical comparison to the other entities was not conducted. However, we acknowledge
its relevance and still report descriptive results. The mean ADC in the PD group differed
from the BSI group but to a lesser extent than those of the SIBC and IBC groups. In general,
Paget’s disease potentially resulted in a lower ADC than the benign skin inflammation
findings due to the disease’s increased tissue cellularity and malignant nature. Additionally,
IBC and BSI could not be differentiated based solely on the DWI imaging and ADC
alone, which might be associated with similar microstructural features underlying the skin
thickening and subcutaneous reactive oedema.

This study has several limitations that should be addressed in future research. First,
our cohort’s sample size was relatively small, especially for patients with IBC or PD, placing
this study more in the range of a methodological study [45]. The inclusion of technically
insufficient examinations was inevitable in our retrospective study, which focused on
rare cases. It should be considered that the performed statistical tests might have had
low statistical power and a limited ability to detect relationships or effects due to the
limited sample size and our cohort. Consequently, it does not allow the drawing of any
clinical implications.

Second, by evaluating MRI data retrospectively, certain aspects of the examination
procedure that could impact ADC calculations were beyond the control of this study. These
factors include, i.a., selections of the b-values in clinically used protocols. Previous studies
have investigated the optimal b-values for various applications [46], their importance in
clinical applications and ADC calculations [47], and ADC thresholds for differentiating
between tissues and tumour types that should be defined considering data acquisition
parameters [6,48,49].

Another limiting factor beyond the composition of the study cohort is the magnetic
field strength of the scanners used. This study evaluated examinations conducted at
different magnetic field strengths. Although these examinations were collectively analysed,
it was generally observed that the influence of magnetic field strength (B0) on the diffusion
metrics was not large (effects in the roughly 20% range), especially when compared to the
impact on T1. However, the situation appears more subtle, and conflicting reports often
exist. No current guideline recommends the use of a certain B0 for achieving better contrast.
Regarding the field strengths of 1.5 T and 3 T, Hunsche et al., Brander et al., and Ding
et al. found little dependency of human white matter diffusion tensor imaging metrics
on B0 [50–52], while Huisman et al. and Fushimi et al. found lower mean diffusivity and
higher fractional anisotropy values at 3 T with a difference of roughly <10% in size [53,54].
Farhood et al. also showed no significant difference between the 1.5- and 3-T values for the
liver, gallbladder, kidneys, and pancreas [55].

Not many studies investigate the effects of echo time (TE) on the quantification of
diffusion characteristics. However, Feng et al. showed that there were no significant
differences (p > 0.05) in the ADC for different TEs in the central zone of the prostate [56].
Qin et al. revealed no correlation between mean diffusivity and TE [57]. Lemke et al.
further demonstrated that diffusion coefficients were also not significantly affected in
normal intravoxel incoherent motion pancreas imaging at low b-values [58].

Another limitation was that our patient cohort was examined over a relatively long
period, including various scanners and examination parameters, necessitating the inclu-
sion of ADC maps calculated from different b-values (66 cases used b-values of 50 and
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800 s/mm2, and 22 cases used b-values of 50 and 750 s/mm2). However, a systematic
review and meta-analysis by Ruo-Yang et al. [59] showed that the diagnostic performance
of DWI and the ADC in differentiating malignant and benign breast lesions does not differ
significantly between units with different field strengths, such as 1.5 T and 3.0 T.

Since the signal in the healthy skin was often too low to ensure a proper ADC compu-
tation, the healthy skin ADCs do not represent the correct ADCs due to a limited SNR in
the diffusion-weighted images. Nonetheless, we stated them because they should roughly
reflect the ADCs that other investigators might derive if a clinical setup is chosen and ADC
values are simply measured within an ADC map on the clinical routine PACS. Future stud-
ies could consider using a dedicated high-resolution MRI surface coil to achieve potential
advancement in this area, greater SNRs, and higher-quality images of every skin layer and
skin tumours with increased spatial resolution.

Last but not least, various factors may influence the diffusion of water molecules.
Therefore, it is essential to consider the limitations of the mono-exponential decay model
as more complex models, such as kurtosis and kurtosis-corrected diffusion models [60–63],
as well as bi-exponential or stretched-exponential models [64,65], which may represent
the diffusion in certain tissues differently or more accurately. It is important to note that
ADC is a scalar value and does not provide any information about diffusion orientation. To
obtain this information, it may be necessary to consider adding other MRI techniques in
future studies.

5. Conclusions

The skin pathologies of women undergoing breast MRI can be challenging to assess,
even with advanced imaging techniques such as DWI. Our results indicate that differences
in the quantitative ADC might exist between different breast skin pathologies. IBC and BSI
could not be differentiated based on the ADC alone in our cohort. However, supplementing
MRI with a quantified approach might partially support the diagnostic assessment of
skin pathologies in breast imaging. Further research is necessary to explore the potential
applications of DWI in assessing the skin in breast MRI.
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