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Abstract: The rapid advancement of artificial intelligence (AI) has significantly impacted various
aspects of healthcare, particularly in the medical imaging field. This review focuses on recent devel-
opments in the application of deep learning (DL) techniques to breast cancer imaging. DL models, a
subset of AI algorithms inspired by human brain architecture, have demonstrated remarkable success
in analyzing complex medical images, enhancing diagnostic precision, and streamlining workflows.
DL models have been applied to breast cancer diagnosis via mammography, ultrasonography, and
magnetic resonance imaging. Furthermore, DL-based radiomic approaches may play a role in breast
cancer risk assessment, prognosis prediction, and therapeutic response monitoring. Nevertheless,
several challenges have limited the widespread adoption of AI techniques in clinical practice, em-
phasizing the importance of rigorous validation, interpretability, and technical considerations when
implementing DL solutions. By examining fundamental concepts in DL techniques applied to med-
ical imaging and synthesizing the latest advancements and trends, this narrative review aims to
provide valuable and up-to-date insights for radiologists seeking to harness the power of AI in breast
cancer care.
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1. Introduction

Breast cancer is the most common neoplastic disease in women, with over 2.3 million
diagnoses and 685,000 deaths registered globally in 2020 [1].

Screening programs play a pivotal role in recognizing breast cancer in preclinical
stages, allowing less invasive but radical treatment and therefore improving outcomes
in terms of overall survival and quality of life. Breast cancer screening programs rely on
radiological examinations, mainly mammography (MG) and ultrasonography (US), for
detecting early signs of neoplasm [2], such as microcalcifications, architectural distortions,
and solid masses. While these programs have greatly improved the detection and prognosis
of breast cancer, the ever-increasing workload and possibility of false positives and nega-
tives have prompted research for supporting tools able to improve diagnostic performance.
The challenge of this critical task lies in its severely attention- and time-consuming nature,
which is key to avoiding missing even the finest details in large amounts of high-resolution
images analyzed throughout each workday. Excellent focus and consistent performance
are paramount skills for medical imaging specialists, but even the best human operators
will ultimately be limited by factors such as fatigue, biases, and distractions. In this context,
appropriately trained AI algorithms can either be used as second or third independent
readers to provide failsafe mechanisms or as real-time assistants to enhance radiologists’
sensitivity and specificity, representing the ultimate advancement in computer-aided detec-
tion (CADe). Potentially, they could even be implemented as automated single readers to
increase reporting speed, reduce costs, and therefore enlarge screening audiences, but this
approach carries complex bioethical implications still to be addressed by regulators.
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After the tumor has been detected, staging and cancer burden monitoring with mag-
netic resonance imaging (MRI) might be required in selected cases [3]. Traditional staging
approaches include bi-dimensional lesion measurements and infiltration assessment, which
often rely on subjective judgment and therefore induce significant interobserver vari-
ability [4]. AI-based tools provide automated or semi-automated lesion identification,
potentially delivering more consistent and reproducible results, and therefore allowing
for more precise staging [5]. Moreover, they can significantly reduce the time required for
performing such measurements, making it much easier and faster to compare different
studies and evaluate treatment response or disease progression [6].

Finally, radiomics-based models have been used to predict key clinical information,
such as histopathological features, prognosis, and treatment response, from medical imag-
ing examinations [7], by analyzing quantitative image patterns hidden from human qual-
itative observation. Despite still being mostly confined to research applications, these
computer-aided diagnosis (CADx) approaches may radically accelerate and enhance the
implementation of personalized medicine in the near future.

CAD instruments based on image feature analysis and statistical classifiers have been
available in medical imaging software suites for several years, but issues such as low
specificity severely hindered their adoption. Automated image interpretation research,
also known as computer vision (CV), has recently been revolutionized by deep learning, a
new subset of artificial intelligence and machine learning techniques based on multi-layer
neural networks mimicking the human brain architecture. Demonstrating much higher
performance than previous solutions, convolutional neural networks (CNNs) have become
the most established DL-based approach for complex CV tasks and have been extensively
adopted in the medical imaging realm.

Several DL-based models for breast cancer imaging, both commercial and open source,
have thus become available in recent years and have been favorably tested in comparative
studies. However, their clinical usage is not yet widespread due to existing limitations and
challenges [8], such as reproducibility of results, costs, explainability, privacy, and liability.

2. Contribution, Novelty, and Motivation Statement

In this narrative review, we present fundamental concepts about deep learning in medi-
cal and breast cancer imaging and describe the latest advancements in this field. Specifically,
we will examine key studies published in recent years and delve into novel developments
regarding both technical elements and study design. Finally, we will summarize current
results, limitations, and challenges of AI-assisted breast cancer imaging.

We acknowledge that extensive research literature has already been produced on this
topic, both in terms of experimental studies and review articles. However, we have found
two partly unexplored themes that we would like to highlight and further develop.

Firstly, we observed that most existing reviews have focused on either clinical [9], or
technical aspects [10]. In our work, primarily geared towards radiologists, we strive to
achieve a middle ground by giving essential technical information regarding AI develop-
ment, along with up-to-date research and clinical results. We believe this approach will
stimulate medical imaging professionals’ interest in AI, helping them to better understand
AI-related literature and more effectively leverage final software applications.

Secondly, we noted that previous similar works mostly assessed deep learning appli-
cations for conventional imaging modalities, such as MG, US, and MRI, while few have
mentioned novel techniques, such as thermography and microwave-based imaging. We
aim to provide a comprehensive overview of the role of DL in both clinically consolidated
and investigational breast imaging examinations, to stimulate clinical interest as well as
technological progress towards new diagnostic approaches.

Moreover, we firmly believe in the added value of providing continuous updates on
this quickly evolving field. Recently published prospective studies conducted on large
cohorts have shed new light on the potential and criticalities of deep learning applied
to breast cancer screening, while technical advancements are constantly increasing deep
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learning performance and potential use cases in the biomedical realm. By briefly examining
these novelties, we hope to provide an up-to-date overview of the topic while outlining
existing limitations and challenges.

3. Deep Learning in Medical Imaging: Approaches and Techniques

DL is a subset of AI techniques that employs trained neural networks for completing
various tasks [11]. Unlike older machine learning approaches, which could only evaluate
a hard-coded collection of features in a certain object, deep learning neural networks
automatically select the most relevant features to extract and combine based on the training
data. This provides a more versatile and general-purpose applicability and simplifies the
creation of new models [12].

As highlighted in Figure 1, the most common applications of medical imaging deep
learning models involve processing images to either infer an output result, such as the
presence of abnormal findings, or manipulate their characteristics, e.g., reducing noise
and improving spatial resolution. Other ancillary uses include report generation and
information research. We will briefly examine common DL techniques used in medical
imaging and then explore in more detail current DL applications for breast cancer imaging.
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Figure 1. Schematic representation of deep learning applications in medical imaging. GANs: genera-
tive adversarial networks. CNNs: convolutional neural networks. LLMs: large language models.

A detailed discussion about neural network development is outside the scope of this
review and is largely researched by non-medical specialties. However, we believe that a
basic understanding of the main technical characteristics of deep learning models would
be beneficial to all medical imaging professionals, to better assess their performance and
limitations and help their adoption in clinical practice.

3.1. Convolutional Neural Networks

As illustrated in Figure 2, CNNs are feedforward neural networks that consist of
multiple convolutional layers followed by pooling layers and fully connected layers [13],
designed for processing grid-like structures such as images thanks to an architecture in-
spired by the animal visual cortex. Convolutional layers apply filters or kernels to extract
features from local regions of input images. These filters can detect edges, shapes, textures,
and patterns, which serve as building blocks for object recognition. After several convolu-
tion operations, the output feature maps undergo downsampling through max-pooling,
average-pooling, or min-pooling layers to reduce spatial resolution while retaining salient
information. Finally, fully connected layers perform high-level reasoning to produce classi-
fication results. In the medical imaging field, CNNs are mainly used for image classification,
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object detection, and segmentation. Figure 3 provides a simplified representation of these
tasks.
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Figure 3. Inference output for medical imaging-related computer vision tasks. Classification labels
the image under a specific category. Object detection draws bounding boxes containing abnormalities.
Segmentation identifies the exact area or volume occupied by abnormalities.

3.1.1. Classification and Object Detection

Classification models evaluate an image categorizing it under a labeled class, such
as normal or abnormal. Neural networks commonly used for image classification in-
clude Residual Networks (ResNet) [14], Densely Connected Convolutional Networks
(DenseNet) [15], MobileNets [16], EfficientNet [17], and ConvNeXt [18]. Object detection
models expand on the classification concept, not only recognizing whether an image is
abnormal or not, but also identifying the approximate location of the abnormality, usually
by outputting a rectangular bounding box. This information greatly increases the under-
standability of AI-proposed assessments for radiologists and clinicians. Neural networks
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commonly used for object detection include You-Only-Look-Once (YOLO) [19], region-
based convolutional neural network (R-CNN) [20], and single-shot multibox detection
(SSD) [21].

Classification and object detection have been effectively applied to several tasks in
screening and emergency settings, where they could help to select high risk patients that
warrant extended review by a human observer. They have particularly been used with bi-
dimensional imaging modalities, such as X-ray scans, automating detection of abnormalities
like bone fractures [22], pneumonia [23], pleural effusion [24], pneumothorax [25], and
neoplasms [26].

In recent years, classification models have also been used to analyze biomedical
images predicting histopathological features, prognosis, and treatment response [27]. We
will discuss the role of deep learning-based radiomics in more detail in later sections.

3.1.2. Segmentation

Segmentation models identify the exact boundary of an object in an image or vol-
ume [5], allowing precise calculation of physical properties such as diameters, surface area
and volume, X-ray attenuation, or signal intensity. These models are extremely useful for le-
sion burden estimation, surgical planning, and image-guided therapy. They are particularly
adept at volumetric imaging techniques such as CT and MRI, with whom precise manual
identification of multiple, variably shaped lesions would be extremely time-consuming.

Semantic segmentation aims to categorize pixels according to the classes they represent
without distinguishing instances of the same class [28]. In other words, all pixels belonging
to the same class are assigned the same label regardless of whether they correspond to
separate objects or overlapping regions, providing a global understanding of the image
content and distinguishing foreground from background. Semantic segmentation is partic-
ularly useful in applications where identifying the presence and location of specific classes
is sufficient, e.g., tumor detection in medical images [29].

Instance segmentation [30], on the other hand, seeks to identify and delineate individ-
ual objects of the same class separately, enabling item counting and individual properties
measurement. Applications requiring assessment of individual entities, such as teeth eval-
uation in panoramic X-ray images [31], can employ instance segmentation to perform more
advanced analyses on each detected object.

Radiomics relies on accurate image segmentation to define regions of interest (ROIs).
ROI selection determines the subsequent extraction of quantifiable attributes representing
tissue characteristics, such as shape, density, and texture [7]. Subsequently, modeling strate-
gies, like machine learning algorithms, link derived radiomic signatures to phenotypic
traits, therapeutic responses, or molecular profiles. Thus, precise and consistent segmenta-
tion constitutes a cornerstone in reliable radiomic studies. Enabling highly accurate and
fast automatic segmentations, deep learning has the potential to greatly reduce the time
required for retrieving radiomics data from imaging studies [27].

The most used neural network for biomedical image segmentation is U-Net [32], which
offers excellent support for three-dimensional datasets. No-New-U-Net (nnU-Net) is a
publicly available, fully automated pipeline for creating U-Net-based models which have
been successfully used for various tasks [33], such as whole-body segmentation from CT
scans [34], brain cancer segmentation from MRI scans [35], kidney tumor segmentation
from contrast-enhanced CT scans [36], and many more.

3.2. Generative Adversarial Networks

Generative adversarial networks (GANs) comprise a generator, which synthesizes
artificial samples mimicking the distribution of real data, and a discriminator, which
distinguishes between genuine and fake instances. During training, both components
engage in a minimax game where they alternatively optimize their objective functions until
equilibrium is reached. Once converged, the generator becomes proficient at generating
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realistic samples indistinguishable from actual ones, whereas the discriminator achieves
near-perfect accuracy in discerning true versus false examples [37].

In the realm of medical imaging, GANs have mainly been used for synthetic data
generation and image enhancement. GANs can generate plausible synthetic cases condi-
tioned on known pathologies or risk factors, augmenting existing datasets and alleviating
data scarcity issues [38]. Such augmented data can help train more accurate and robust
predictive models, particularly when dealing with imbalanced classes or rare events. GANs
can also refine noisy or suboptimal images, enhancing diagnostic visibility and reducing
ambiguity [39]. For instance, GANs can accentuate subtle details, suppress artifacts, and
harmonize inconsistent features across multi-center studies [40].

3.3. Large Language Models

Large language models (LLMs) have recently been explored for their potential ap-
plications in the field of medical imaging, specifically for tasks such as radiology report
generation and information retrieval. These models are trained on vast amounts of textual
data and can generate coherent and contextually relevant sentences [41], making them well
suited for natural language processing (NLP) tasks in the medical domain.

Radiology reports are detailed documents that summarize the findings of medical
imaging examinations. Producing these reports requires significant expertise and some-
times takes a lot of time. Large language models can automate this process by generating
written descriptions of the observed abnormalities based either on textual input from a
radiologist or directly on the analysis of medical images [42]. These generated reports
can assist radiologists in interpreting complex studies and increase efficiency by reducing
turnaround times [43].

Large language models are also able to provide quick access to relevant medical
literature, guidelines, or clinical trial information based on specific inputs [44]. For example,
when presented with certain imaging findings, a large language model could retrieve
relevant articles, studies, or treatment options that may aid in diagnosis and management.

Several general-purpose LLMs have become widely used in recent years, both com-
mercial, such as OpenAI’s GPT [45], and public, such as Meta’s LLaMA [46]. Basing on
them, multiple domain-specific LLMs have been trained to better perform in the medical
and radiology field, such as Med-PaLM [44], MedAlpaca [47], and LaVA-Med [48], some of
them even integrating image assessment capabilities and therefore fully automating the
reporting workflow.

3.4. Technical Considerations: Training, Inference and Deployment

As illustrated in Figure 4, the development of a deep learning model involves the
selection of an appropriate neural network pipeline and the collection of an adequate
training dataset. During the training phase, the neural network extracts and selects relevant
features based on provided ground truth data, developing weighted connections between
its neurons that eventually make it able to perform inference on new input data by itself.
In recent years, with the availability of general-purpose, efficient neural networks and
self-configuring pipelines [49], together with several medical imaging datasets [50], the
creation of performant models has been significantly simplified.

Datasets containing a sufficiently large number of validated images manually labeled
by radiologists as ground truth have become a precious asset for developers to train and
test the performance of their models [50]. However, the usage of large public datasets
poses challenges due to the heterogeneity of demographic characteristics and scanning
devices, possibly hampering their performance in local facilities [51]. Conversely, a model
trained to perform effectively on images acquired in a single institution for a specific
patient demographic might not fare well when tested on a large public dataset or on other
external datasets [52]. It is still debated which of the two solutions is the most suitable
to improve results in final applications, but local retraining by transfer learning seems to
be an effective approach [52]. Furthermore, persistent monitoring of AI efficacy through
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feedback collection and routine retraining might be required to guarantee adequate and
sustained performance [53].
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Advanced AI algorithms necessitate substantial computational capabilities, especially
in terms of high-performance GPUs or other accelerators for training and inference [54].
Having these resources on-site allows for performing DL tasks directly in healthcare
facilities. However, due to the high cost of such components, many commercial AI solutions
offload computations to external servers, significantly reducing hardware expenses and
local energy usage but introducing peculiar issues due to data transmission, namely privacy
concerns, needing appropriate management [55].

To increase ease of use, AI-based insights should be seamlessly integrated into Pic-
ture Archiving and Communication Systems (PACS) [56]. Indicators such as malignity
scores, heatmaps, and bounding boxes help radiologists understand inference results [57].
Commercial platforms for AI-based medical image interpretation provide graphical user
interfaces requiring little to no technical knowledge to be operated, while open-source
medical imaging models are often very difficult to use and implement in a clinical workflow.
To date, no open-source, unified interface for medical imaging inference has been released.
This is unlike other AI applications, where open platforms, such as llama.cpp for LLMs [58],
and ComfyUI for GANs [59], allow end-users to run pre-trained models locally with low
technical effort.

3.5. Performance Metrics for Medical Imaging Deep Learning Models

Accuracy measures the proportion of correct predictions out of all the predictions made.
While it can be a useful measure in certain cases, it may not always provide an adequate
representation of the model’s performance, especially if the dataset is imbalanced [60].

Precision measures the proportion of true positive predictions among all positive
predictions. High precision indicates that the model has a low false positive rate, meaning
that when it predicts a sample as positive, there is a high likelihood that it is indeed
positive [60].

Sensitivity, also known as recall, measures the proportion of actual positive samples
that were correctly identified by the model, calculated as the number of true positives
divided by the sum of true positives and false negatives. A high recall value suggests that
the model is good at identifying all relevant positive samples, even if it may generate more
false positives [60].

The F1 score is the harmonic mean of precision and recall, providing a single measure
that balances both these metrics [61]. Ranging from 0 to 1, with higher values indicating bet-
ter performance, the F1 score is particularly useful when dealing with imbalanced datasets
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where one class is significantly underrepresented compared to the other [60]. In cancer-
enriched medical imaging datasets, this can partly reduce the effect of underrepresenting
negative cases.

The receiver operating characteristic curve (ROC) plots the true positive rate against
the false positive rate for different classification thresholds [60]. The area under this curve
(AUC) represents the probability that a randomly chosen positive sample will be ranked
higher than a negative sample. An AUC = 1 implies perfect separation between positive
and negative classes, while a value closer to 0.5 indicates poor discrimination ability. The
AUC is often used to evaluate the performance of classification models [61].

The Dice Similarity Coefficient (DSC) is a measure of overlap between predicted
segmentation masks and ground truth masks, commonly used for evaluating segmentation
models [60]. It ranges from 0 to 1, with higher values indicating greater overlap and thus
better segmentation performance [61].

4. Deep Learning in Breast Cancer Imaging: Datasets

As described in the technical discussion, high-quality and sufficiently large datasets
have become crucial in the training and assessment of deep learning models for medical
imaging. Due to the extremely significant healthcare burden posed by breast cancer and
the large number of examinations performed for its screening, several datasets for breast
cancer imaging have been publicly released. Table 1 lists the principal ones, most of them
containing high-resolution screening mammograms [62], while only a few include US and
MRI examinations.

Table 1. Principal public datasets for breast cancer imaging examinations. SFM: screen-film mam-
mography. FFDM: full-field digital mammography. US: ultrasound. DCE-MRI: dynamic contrast-
enhanced magnetic resonance imaging. DDSM: Digital Database for Screening Mammography.
CBIS-DDSM: curated breast imaging subset of DDSM. ADMANI: Annotated Digital Mammograms
and Associated Non-Image.

Dataset Origin Release Year Number of Patients Modality

DDSM United States 1999 2620 SFM

INBreast Portugal 2011 115 FFDM

CBIS-DDSM United States 2017 1566 SFM (improved)

VinDr-Mammo Vietnam 2022 5000 FFDM

ADMANI Australia 2022 630,000 (40,000 public test images) FFDM

BrEaST Poland 2023 256 US

BUS-BRA Brazil 2023 1064 US

Duke-Breast-Cancer-MRI United States 2022 922 DCE-MRI

BreastDM China 2023 232 DCE-MRI

The Digital Database for Screening Mammography (DDSM) was the first publicly
available dataset developed to aid research in breast cancer computer-aided detection
(CAD) using single-field mammography (SFM) images [63]. Released in 1999, it paved
the way for pioneering works in analyzing and interpreting digital mammography scans.
Comprising roughly 10,000 digitized film mammography studies, DDSM covers a broad
spectrum of breast densities, ages, and health conditions. Each examination is categorized
as either normal or containing benign calcification, mass, or microcalcification clusters.
Associated reports detail diagnostic conclusions, radiologist interpretations, and follow-
ups. Despite being considered somewhat dated, DDSM retains historical significance
owing to its impactful contributions to the evolution of medical image analysis and CAD
systems. Nevertheless, limitations arise from the digitalization process, introducing incon-
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sistent resolution and signal-to-noise ratio issues significantly reduced in contemporary
FFDM datasets.

INBreast was the first publicly available, high-quality digital mammography dataset,
introduced in 2011 and consisting of 410 images from 115 subjects [64]. Compared to
older datasets, it offered standardized, uniform, and high-resolution FFDM images, with
detailed annotations of breast masses, microcalcifications, and benign/malignant catego-
rizations. It also included metadata such as breast composition, age, and invasiveness
indicators. Professional radiologists thoroughly examined each subject and annotated rele-
vant ROIs accompanied by descriptive attributes, and two independent experts validated
the annotations, reinforcing reliability. Importantly, INBreast reflects European populations,
diversifying regional representativeness and supplementing established American datasets.

The Curated Breast Imaging Subset of DDSM (CBIS-DDSM) is a carefully selected sub-
set derived from the DDSM [65]. It addresses shortcomings present in the original dataset,
namely inconsistent compression rates, varying resolutions, and ambiguous ground truth
annotations. The goal was to deliver a more coherent, standardized dataset compared to
its predecessor. Key highlights of CBIS-DDSM include improved image quality through
upscaling and sharpening techniques, uniform resolution and bit depth, and the absence
of overlapping patches. Initially published in 2017, the CBIS-DDSM dataset comprises
approximately 6700 studies drawn from the DDSM dataset, including 753 calcification
cases and 891 mass cases. Every study comes with expert-reviewed annotations and
accompanying metadata.

Introduced in 2022, VinDr-Mammo comprises 30,000 full-field digital mammography
RoIs extracted from Vietnamese women, covering a wide array of breast densities, ages,
and health conditions [66]. Each case was reviewed to identify suspicious findings, which
were subsequently marked with bounding boxes. Metadata about age, breast density,
acquisition view, and pathologic confirmation status, when available, was also included,
offering potential training material for prediction models, radiomics, and decision-support
tools. Not all included cases were confirmed with histopathological correlation; therefore,
data interpretation mostly relied on the radiologists’ judgment.

The Annotated Digital Mammograms and Associated Non-Image (ADMANI) datasets
are a curated collection containing more than 4.4 million screening mammography images
from 630,000 women [67], including both image and associated nonimage data, confirmed
by histopathological correlation. Introduced in late 2022, they constitute one of the largest
mammography collections currently available. Notably, a subset of 40,000 images from
10,000 screening episodes has been donated as a test set for the RSNA Screening Mammog-
raphy Breast Cancer Detection challenge [68].

Unlike screening mammography, only a few public datasets for ultrasound and mag-
netic resonance imaging examinations have been publicly released, and most of them
are limited by either small sample size or suboptimal image quality. This has probably
played a role in the slower development and assessment of deep learning models for
these techniques. Recently released non-mammographic datasets include BrEaST [69] and
BUS-BRA [70] for ultrasound and Duke Breast Cancer [71] and BreastDM [72] for dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI).

Larger, private datasets, such as those from the New York University (NYU) for breast
cancer screening [73], ultrasound [74], and magnetic resonance imaging [75], have also
been commercially released, but the entry costs constitute a significant adoption barrier for
worldwide researchers.

5. Deep Learning in Breast Cancer Imaging: Applications to Conventional Techniques

As illustrated in Figure 5, a rapidly increasing number of publications have explored
the role of deep learning in breast cancer imaging. Key studies involving this field have
been listed in Table 2 and will be explored in the next sections.
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Table 2. Key studies involving deep learning and conventional breast cancer imaging techniques.
dANN: deep artificial neural network. ML: machine learning. DL: deep learning. DLR: deep learning-
based radiomics. MG: mammography. DBT: digital breast tomosynthesis. CEM: contrast-enhanced
mammography. MRI: magnetic resonance imaging. DCE-MRI: dynamic contrast-enhanced MRI.

Authors Year Software/Model Modality Type Task

Becker et al. [76] 2017 dANN (ViDi 2.0) MG Retrospective Classification

Watanabe et al. [77] 2019 cmAssist® MG Retrospective Classification

Akselrod-Ballin et al. [78] 2019 Custom ML + DL MG Retrospective Classification

Schaftter et al. [79] 2020 Multiple (public
challenge) MG Retrospective Classification

Kim et al. [80] 2020 INSIGHT MMG MG Retrospective Classification

Dembrower et al. [81] 2020 INSIGHT MMG MG Retrospective Classification

Dembrower et al. [82] 2023 INSIGHT MMG 1.1.6 MG Prospective Classification

Ng et al. [83] 2023
Mia® 2.0 (Kheiron

Medical Technologies
Ltd., London, UK)

MG Prospective Classification

Romero-Martín et al. [84] 2021 Transpara® MG, DBT Retrospective Classification

Zheng et al. [85] 2023 RefineNet + Xception CEM Prospective Segmentation, Classification

Beuque et al. [86] 2023 DL + handcrafted
radiomics CEM Retrospective Segmentation, Classification

Qian et al. [87] 2023 Multi-feature fusion
network CEM Retrospective Classification

Gu et al. [88] 2022 VGG19 US Prospective Classification

Janse et al. [89] 2023 nnU-Net DCE-MRI Retrospective Segmentation

Li et al. [90] 2023 Custom DLR DCE-MRI Retrospective Treatment Response
Prediction

5.1. Conventional Mammography

Breast cancer detection with mammography has been one of the most prominent
applications of deep learning techniques in the medical imaging field. As illustrated in
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Table 3, several commercial products have been made available and received regulatory
certifications from the American Food and Drug Administration (FDA), becoming effec-
tively approved for clinical use, and multiple retrospective and prospective studies have
been conducted to assess their performance.

Table 3. Principal FDA-approved AI-based tools for breast cancer detection. MG: mammography.
DBT: digital breast tomosynthesis.

Product Vendor Country Modality

cmAssist® CureMetrix Inc., La Jolla, CA, USA United States MG

Genius AI Detection Hologic Inc., Marlborough, MA, USA United States MG and DBT

INSIGHT MMG Lunit Inc., Seoul, Republic of Korea South Korea MG

MammoScreen® 2.0 Therapixel SA, Nice, France France MG and DBT

ProFound AI® iCAD Inc., Nashua, NH, USA United States MG and DBT

Saige-Dx DeepHealth Inc., Somerville, MA, USA United States MG

Transpara® ScreenPoint Medical B.V., Nijmegen, The Netherlands Netherlands MG and DBT

In a 2017 retrospective study by Becker et al. [76], a deep artificial neural network
(dANN) from a commercial image analysis suite was used to aid in the detection of breast
cancer in mammograms from a total of 1144 patients, 143 of which had histology-proven
invasive breast cancer or another clinically significant lesion. The neural network was
trained on a dataset of mammograms manually marked by radiologists, augmented with
various transformations, and tested against an external dataset of patients with cancer and
a matched control cohort, demonstrating comparable performance to experienced radiolo-
gists. In a screening-like cohort, the sensitivity/specificity of the dANN was 73.7/72.0%,
with an overall diagnostic accuracy, expressed as AUC, of 0.82. The diagnostic accuracy
was highest in low-density breasts, with an AUC = 0.94. However, the study also noted
limitations of the dANN, including its lack of understanding of multiple views per patient
and time evolution.

In a 2019 retrospective study by Watanabe et al. [77], a set of 2D full-field digital
mammograms (FFDMs) was collected from a community healthcare facility in Southern
California and interpreted using an AI-CAD software. The cancer-enriched dataset in-
cluded examinations from 122 patients with 90 false-negative mammograms obtained up
to 5.8 years prior to diagnosis and 32 BIRADS 1 and 2 patients with a 2-year follow-up of
negative diagnosis. The study reported significant improvement in cancer detection rate
(CDR) for all radiologists who used the software. The overall mean reader CDR increased
from 51% without assistance to 62% with AI-CAD, with a less than 1% increase in the
readers’ false-positive recalls. However, the study also found that the sensitivity of all
readers appeared to be elevated due to the test setting and the enrichment of the dataset
with a high proportion of abnormal mammograms.

Another 2019 retrospective study by Akselrod-Ballin et al. evaluated the performance
of a combined machine learning–deep learning model for early breast cancer prediction
using a large, linked dataset of electronic health records and digital mammography exami-
nations from over 13,000 women [78]. The authors aimed to determine if the model could
achieve a level comparable to radiologists and be accepted in clinical practice as a second
reader. All available clinical features for each woman in the linked dataset, including
characteristics previously recognized as risk factors for breast cancer, were extracted and
evaluated by the algorithm. For the malignancy prediction task, the algorithm obtained an
AUC = 0.91 with 77.3% specificity at 87% sensitivity, demonstrating an assessment level
comparable to radiologists.

In 2020 Schaftter et al. published the results of a challenge that asked participants to
develop algorithms outputting a malignity likelihood score based on screening mammogra-
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phy data [79]. Examinations from over 85,000 US women (952 cancer positive ≤12 months
from screening) were used for training and internal validation, while a second independent
cohort, including data from 68,000 Swedish women (780 cancer positive), was used for
external validation. Thirty-one teams submitted their models for final validation, with the
top performer achieving an AUC = 0.858 and 0.903 on the internal and external validation
dataset, respectively. The standalone algorithm specificity measured at the radiologists’
sensitivity was 66.2% on the internal validation dataset and 81.2% on the external validation
dataset, worse than both American (90.5%) and Swedish (98.5%) radiologists. However,
combining top-performing algorithms and radiologists’ assessments resulted in a higher
AUC (0.942) and achieved a significantly improved specificity (92.0%) at the same sensitiv-
ity. Overall, despite no single AI algorithm being able to outperform imaging specialists in
this study, the collaboration between radiologists and an ensemble algorithm demonstrated
the potential to decrease the recall rate by 1.5%.

A retrospective, multi-reader study published in 2020 by Kim et al. compared the
diagnostic performance of humans, AI-aided humans, and standalone AI in detecting
breast cancer on mammograms [80]. A commercial AI-based software was used to interpret
320 mammograms (160 cancer-positive, 64 benign, 96 normal). The performance level
of AI measured as AUC was 0.940, significantly higher than radiologists without AI
assistance (0.810). With the assistance of AI, radiologists’ AUC was improved to 0.881.
Compared to radiologists, AI was more sensitive in detecting cancers with mass, distortion,
or asymmetry and T1 or node-negative neoplasms. Overall, this study found that AI can
potentially achieve similar or better performance to medical imaging experts. However, the
authors reported several limitations, primarily the use of a cancer-enriched dataset, which
has different cancer prevalence to real-world data.

In 2020, the results of another large retrospective study conducted on Swedish women
were published by Dembrower et al. [81], aiming to examine the use of an AI cancer
detector to triage mammograms and identify women at the highest risk of undetected
cancer. The final study sample included 547 diagnosed patients and 6817 healthy controls
from the Karolinska University Hospital uptake area. The AI-based software analyzed
each screening mammogram and generated a numerical score related to the likelihood of
cancer signs in the image. Women with a score below a rule-out threshold were triaged to
the no radiologist work stream, while those with a score above a rule-in threshold (after
negative double reading by radiologists) were triaged to an enhanced assessment work
stream. According to the authors, many women could be appropriately triaged by the
AI-based software alone without missing any cancer that would have been detected by
radiologists. Furthermore, by assigning suspicious cases to additional imaging evaluations
(e.g., MRI), AI pre-emptively recognized a significant proportion of subsequent interval
cancers and next-round screen-detected cancers. These results suggested that AI could
potentially halve human workload while also detecting a substantial amount of early
human-missed neoplasms.

Between 2021 and 2022, Dembrower et al. conducted a prospective, population-
based, non-inferiority study, whose results were published in 2023 [82]. The authors
evaluated double reading by two radiologists against double reading by one radiologist
plus AI, single reading by AI, and triple reading by two radiologists plus AI. The study
population consisted of more than 55,000 women examined at Capio Sankt Göran Hospital
in Stockholm, Sweden. Women with breast implants, a known genetic mutation, a very
high lifetime risk, or a personal history of breast cancer were excluded. Double reading with
AI plus one radiologist proved to be non-inferior to double reading with two radiologists
in detecting breast cancer. In fact, this reading combination resulted in a 4% increase in
screen-detected cancers. The study also found that the consensus discussion was effective
in ensuring that the higher abnormal interpretation rate for AI plus one radiologist did not
translate into an increased recall rate.

In 2023, the results of another prospective study evaluating the performance of a com-
mercially available AI software for breast cancer detection by Ng et al. were published [83].
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The AI system was used as an additional reader in a standard double-reading process.
According to this study, the AI-assisted reading process could increase the detection rate by
0.7–1.6 per 1000 cases, incrementing recalls by 0.16–0.30% with 0–0.23% extra unnecessary
recalls. Overall, subsequent human assessment of AI-flagged examinations allowed a
0.1–1.9% increase in positive predictive value (PPV). Notably, most detected neoplasms
were invasive and small-sized (≤10 mm), demonstrating the potential of AI-assisted read-
ing to improve the early detection of prognostically relevant breast lesions with a minimal
number of additional unnecessary recalls.

In late 2022, the Radiological Society of North America (RSNA) organized a public
breast cancer detection challenge attended by over 1600 teams [68]. Notably, participants
had to publicly release the source code of their model to allow external evaluators to
reproduce their achievements. The results of the challenge have been published in May
2023 [91]. The 1st place solution employed a multi-step pipeline [92], including a YOLOX-
nano detector to extract the breast ROI [93], several preprocessing operations to optimize
the input images, and a fourfold ConvNext-small network for final classification [18],
achieving an AUC = 0.93.

Design information, key results, and highlighted limitations of the main studies
evaluating deep learning applied to conventional mammography have been summarized
in Table 4.

Table 4. Summary of designs, results and limitations of the screening mammogram cancer detection
studies included in this review. AUC: area under the receiver operating characteristic curve.

Authors Study Design Key Results Highlighted Limitations

Becker et al. [76]

Standalone classifier for
breast cancer detection

versus experienced
radiologists

AUC = 0.81 on first training
dataset, 0.79 on external

testing cohort, 0.82 on second,
screening-like cohort

(statistically equivalent to
experienced radiologists)

Not true screening cohort and
retrospective design leading to
potential selection bias; worse
specificity than experienced

radiologists; no understanding of
laterality and time evolution, and
no inclusion of clinical and bioptic

data in the algorithm

Watanabe et al. [77]

Radiologist-paired classifier
for breast cancer detection

to improve radiologists’
sensitivity

Overall reader CDR increased
from mean of 51% to mean of

62% (mean of 27% relative
increase)

Cancer-enriched dataset and
retrospective design leading to
potential selection bias; lack of

comparison of prior
mammograms for radiologists,

funding by AI software company

Akselrod-Ballin et al. [78]
Standalone classifier for
breast cancer detection

(malignancy prediction)

AUC = 0.91 with specificity of
77.3% at a sensitivity of 87%

Selection bias; single
mammography scanner vendor

potentially limiting
generalizability; many patients
excluded after a single negative

examination; distinction between
screening and diagnostic studies

not well defined; no lesion
localization

Schaftter et al. [79]

Standalone and
radiologist-paired classifier
for breast cancer detection;

public challenge

Standalone: AUC = 0.858 and
0.903 on the internal and

external validation dataset,
respectively;

radiologist-paired: AUC =
0.942

Interaction between radiologists
and AI not well studied; larger
training and validation datasets

not available for challenge
participants; no cancer spatial
annotation; small number of

positive cases
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Table 4. Cont.

Authors Study Design Key Results Highlighted Limitations

Kim et al. [80]

Standalone classifier for
breast cancer detection
versus unassisted and

AI-assisted radiologists

AUC = 0.940 for standalone
AI versus 0.810 for unassisted

radiologists and 0.881 for
assisted radiologists, with

better performance in
detection of mass, distortion,

asymmetry, and T1 and
node-negative cancers

Cancer-enriched dataset and
retrospective design; clinical
factors not considered by the

algorithm; reading setting
potentially different from clinical
practice; funding by AI software

company

Dembrower et al. [81]
Standalone classifier for
screening mammograms

triage

Missed cancers: 0, 0.3%, or
2.6% for 60%, 70%, or

80%-lowest AI score rule-out,
respectively; additional

interval cancer detection: 12%
or 27% for 1% or 5%-high AI

score rule-in, respectively;
additional next-round cancer

detection: 14% or 35%,
respectively

Retrospective design; screening
cohort not fully examined;

previous mammogram within 30
months before diagnosis required

for inclusion; no cancer spatial
annotation; single demographic;

biennial screening program;
interaction between radiologists

and AI not well studied; arbitrary
triage cut-offs

Dembrower et al. (2023)
[82]

Radiologist-paired classifier
(assisted single reading) for

breast cancer detection
versus standalone classifier,
unassisted double reading,

and assisted double reading
(triple reading); prospective,

non-inferiority study

Non-inferiority of both
assisted single reading and

standalone classifier
compared to double reading

Availability of both AI and
radiologists results in the

consensus discussion, potentially
underestimating AI ability;

abnormality threshold based on
retrospective data; no quality

assurance mechanisms
implemented; single-arm paired
design preventing comparison of

differences in interval cancer
rates; no biopsy for negative

screening examinations; single
scanning machine vendor and AI
software used potentially limiting

generalizability, funding by AI
software company

Ng et al. [83]

Radiologist-paired classifier
(assisted double reading) for

breast cancer detection
versus unassisted double

reading; prospective study

Additional 0.7–1.6 cancer
detection per 1000 cases, with
0.16–0.30% additional recalls,
0–0.23% unnecessary recalls,

and 0.1–1.9% increase in
positive predictive value;
majority of extra detected

cancers featuring invasiveness
and small size

Data collected from a single breast
cancer institution; only one

commercial AI software
evaluated; short follow-up (2 to 9
months) preventing evaluation of

interval cancer rates; unclear
impact of inter-reader variation

when introducing AI in the
process, funding by AI software

company

5.2. Digital Breast Tomosynthesis

A 2023 review article by Magni et al. explored the role of AI and deep learning in the
interpretation of digital breast tomosynthesis (DBT) images [94]. According to the authors,
studies have shown that AI-assisted DBT interpretation can increase sensitivity, reduce
recall rates, and decrease overall double reading workload by producing selective synthetic
images. However, larger retrospective and prospective studies will be required to assess
the benefits of AI-based DBT interpretation when compared to AI-based FFDM reading, the
latter potentially able to reduce the diagnostic gap to tomosynthesis thanks to the higher
sensitivity of AI-assisted radiologists.
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One of the largest and most real-world-representative retrospective evaluations of
AI-based DBT interpretation was published in December 2021 by Romero-Martín et al. [84].
A total of 15,999 DBT and digital mammography (DM) examinations were retrospectively
collected and independently scored by an AI system. AI achieved an AUC = 0.93 for DM
and 0.94 for DBT. For DM, AI demonstrated noninferior sensitivity as a single or double
reader, with a reduction in recall rate of up to 2%. For DBT, AI demonstrated noninferior
sensitivity as a single or double reader but with a higher recall rate of up to 12.3%.

5.3. Contrast-Enhanced Mammography

The potential role of AI in the interpretation of contrast-enhanced mammography exami-
nations was recently pointed out in a commentary by Zhang et al. [95]. As mentioned in a
2024 review article by Kinkar et al. [96], several studies demonstrated good performance from
automatic segmentation and classification models for contrast-enhanced mammograms.

In April 2023, Zheng et al. published the results of a prospective, multicenter study
assessing deep learning-based breast cancer segmentation performed on contrast-enhanced
mammography (CEM) examinations [85]. A total of over 1900 Chinese women with single-
mass breast lesions on CEM images before biopsy or surgery were included in the study. A
fully automated pipeline system performed the segmentation and classification of breast
lesions, achieving a DSC = 0.837 ± 0.132 and an AUC = 0.891, respectively.

Another retrospective study published in June 2023 by Beuque et al. aimed to eval-
uate a machine learning-based tool able to identify, segment, and classify breast lesions
in CEM images from recalled patients [86]. Low-energy and recombined images were
preprocessed, manually segmented, and subsequently used to train deep learning models
for automatic detection, segmentation, and classification. The detection and segmentation
model achieved a mean DSC = 0.71 and 0.80 at the image and patient level, respectively. A
handcrafted radiomics classifier was also trained to assess both manually and automatically
segmented lesions. The two models combined achieved the best classification performance,
measured as an AUC = 0.88 when interpreting manual segmentations and 0.95 when using
automatically generated segmentations.

In a retrospective study published in August 2023 [87], Qian et al. trained and assessed
a classifier based on a multi-feature fusion network architecture, using both dual-energy
subtracted (DES) and low-energy (LE) bilateral, dual view images as input data. The classi-
fier achieved good diagnostic performance with an AUC = 0.92 on an external CEM dataset,
while retaining adequate performance when tested against an external FFDM dataset.

5.4. Ultrasound

A review article published in early 2024 by Dan et al. examined the applications
and performance of deep learning-based breast ultrasound (BUS) evaluation [97]. Overall,
when compared to screening mammography, studies were fewer, smaller-sampled, and
more heterogeneous in their methodology and results.

When considering diagnostic detection, segmentation, and classification tasks, both
standalone and human-assisting AI were evaluated, observing diverse results but mostly
without significant superiority when compared to human readers. Some studies reported
a slight improvement in diagnostic performance when pairing AI with inexperienced
radiologists. Overall, both standalone and assistive DL-based systems seemed slightly
more specific than average human readers, while their sensitivity remains unclear [97].

In a prospective study published in late 2022, Gu et al. developed a DL-based classifier
for BUS, assessing its performance on a large multicenter dataset comprising images from
over 5000 patients. The standalone model demonstrated good performance, achieving an
AUC = 0.913, comparable to experienced radiologists and significantly higher than inexpe-
rienced radiologists [88]. Moreover, AI assistance improved the accuracy and specificity of
radiologists without altering sensitivity.

A 2020 study by Zheng et al. assessed the performance of a deep learning-based
radiomics model for preoperative US classification of axillary lymph nodes (ALNs) in
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patients with early-stage breast cancer, achieving good diagnostic and metastatic burden
prediction performance with AUC = 0.902 and 0.905, respectively [98]. A subsequent study
with a public model implementation by Sun et al. achieved a lower performance, with an
AUC = 0.72 in the testing dataset [99].

Lyu et al. developed a segmentation model for breast lesions on ultrasound examina-
tions using an attention module to enhance edge and detail recognition [100]. The model
demonstrated promising performance with a DSC = 0.8 on external datasets, proving the
ability of DL-based models to automate lesion segmentation on ultrasound images.

5.5. Magnetic Resonance Imaging

A review article published in July 2023 by Adam et al. explored deep learning ap-
plications for breast cancer detection by MRI [101]. CNNs have been trained and used
for classification, object detection and segmentation tasks achieving good performance in
small-sampled studies. However, much like with ultrasound examinations, large prospec-
tive and retrospective studies properly assessing deep learning performance of AI-based
breast MRI interpretation in real world scenarios are still lacking.

Several recent studies explored AI-based automatic segmentation of breast cancer
on dynamic contrast-enhanced MRI (DCE-MRI) examinations. This technique allows
precise and almost effortless segmentation of neoplastic lesions, enabling complete volume
calculation for staging, treatment planning, and response evaluation while also offering an
optimal data source for radiomic analyses.

In a study published in February 2023 by Janse et al. [89], an nnU-Net segmenta-
tion pipeline was trained to segment locally advanced breast cancer (LABC), assessing
neoadjuvant chemotherapy response by residual cancer volume estimation. Manually
segmented ground-truth data from 102 LABC patients was used to train the model, and an
independent testing cohort consisting of 55 LABC patients from four institutions was used
for performance evaluation. Automated segmentation resulted in a median DSC = 0.87.
Automated volumetric measurements were significantly correlated with functional tumor
volume (FTV). Notably, pre-trained model weights were published by the authors to allow
local reproduction of the results [102].

Another notable subset of deep learning applications for breast MRI has been the
generation of synthetic post-contrast images from pre-contrast sequences using GANs.
While still in its infancy, this technique might prove crucial in future years to improve
breast cancer staging and treatment response evaluation in patients who are not eligible for
intravenous contrast administration.

In an article originally published in November 2022, Chung et al. investigated the
feasibility and accuracy of generating simulated contrast-enhanced T1-weighted breast MRI
scans from pre-contrast MRI sequences in biopsy-proven invasive breast cancer using a
deep neural network [103]. Synthetic images were qualitatively judged by four experienced
breast radiologists and quantitatively assessed using indexes such as the DSC. Most of the
simulated scans were considered diagnostic quality, and quantitative analysis demonstrated
strong enhancing tumor similarity with a DSC = 0.75 ± 0.25.

A late 2023 study published by Osuala et al. explored the feasibility of producing
synthetic contrast-enhanced images by translating pre-contrast T1-weighted fat-saturated
breast MRI to their corresponding first DCE-MRI sequence using a GAN [104]. The authors
subsequently used a nnU-Net pipeline to assess segmentation performance on synthetic
post-contrast images. While the cancer segmentation performance expressed as DSC was
indeed lower on synthetic post-contrast images when compared to actual DCE-MRI, this
study highlighted the potential of this technique, warranting further studies to improve
the GAN design and training approach. The complete source code for the deep learning
models used in the study was publicly released [105].

A recently developing field of deep learning applications employing breast magnetic
resonance imaging is the prediction of crucial prognostic information, such as neoadjuvant
chemotherapy response, through radiomic analyses. Older radiomic approaches exploited
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manual or semi-automated selection and extraction of hard-coded features from imaging,
pathology, and clinical data. Modern deep learning models effectively automate feature
extraction, significantly streamlining model development and potentially delivering better
results [27].

In early 2023, Li et al. published the results of a retrospective study evaluating the
performance of a deep learning-based radiomic (DLR) model for predicting pathological
complete response (pCR) to neoadjuvant chemotherapy in breast cancer [90]. Two con-
ventional, handcrafted feature extraction-based radiomic signature models from different
treatment periods were also prepared for comparison. The performance of the DLR model
combining pre- and early treatment information from DCE-MRI lesion segmentation was
better than both the radiomic signature models (AUC = 0.900 vs. 0.644 and 0.888, respec-
tively). The combined model, including pre- and early treatment information and clinical
characteristics, showed the best ability with an AUC = 0.925, demonstrating a valuable role
in predicting treatment response rates.

6. Deep Learning in Breast Cancer Imaging: Novel Techniques
6.1. Thermography

Thermography is a non-ionizing imaging modality that measures heat patterns on the
surface of the skin overlying the breast tissue to detect abnormal thermal areas potentially
indicating malignant lesions [106]. The idea behind thermography is that breast tumors
tend to generate different heat patterns when compared to surrounding normal tissue due
to altered blood vessel growth and metabolic activity.

A thermographic breast examination involves the acquisition of static and dynamic
images for each breast from multiple angles using an infrared camera. Images are then
analyzed for abnormalities such as focal hotspots, asymmetric temperature distributions,
and altered vascular patterns.

One of the main advantages of thermography is that it does not use ionizing radiation,
which can be a concern, particularly for women in younger age groups needing regular
screenings or undergoing pregnancy and lactation. Additionally, thermography is non-
contact; therefore, it does not require uncomfortable compression of the breast tissue.
Moreover, it is less expensive than MG, making it easily implementable in lower-income
regions and lower-level healthcare points.

Thermography may also be able to detect changes in the breast tissue at an earlier stage
than mammography by recognizing infra-radiological abnormalities related to increased
blood flow and metabolic activity [107].

Many research works have explored deep learning models to detect, segment, and
classify breast cancer in thermographic images with promising results.

In 2017, Mambou et al. developed a CNN classifier to detect the presence of breast can-
cer on thermograms coupled with a conventional ML classifier for assessing uncertain DL
outputs [108]. The model was trained and tested against a dataset of 67 subjects, including
43 normal subjects and 24 positive patients, achieving complete classification accuracy.

In a 2021 publication, Mohammed et al. compared the thermogram classification
performance of three models based on the popular Inception architecture, introducing a
modified variant of InceptionV4 (MV4) capable of 7% faster inference when compared
to the original [109]. Both the original and modified InceptionV4-based models achieved
almost complete classification accuracy.

In 2022, Alshehri et al. used attention mechanisms (AMs) to improve the detection
performance of a CNN-based thermogram classifier, achieving up to 99.46% accuracy
versus 92.3% for a CNN without AM [110]. In a subsequent early 2023 study, the same
authors achieved up to 99.8% accuracy by using a deeper CNN architecture coupled with
AMs [111].

In a 2022 article, Mohamed et al. described the development of a fully DL-based
pipeline for breast cancer detection on thermograms, combining a U-Net breast tissue seg-
mentation model from thermograms with a bespoke classifier [112]. The pipeline achieved
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99.3% accuracy. Notably, an adapted VGG16-based classifier included for comparison was
able to achieve complete accuracy.

In 2023, Civiliban et al. designed a Mask R-CNN-based model with a ResNet-50
backbone capable to detect and segment breast lesions on thermograms, delivering excellent
performance with a 0.921 mean average precision for detection and a 0.868 overlap score
for segmentation [113].

In early 2024, Khomsi et al. reported the implementation of a custom feed-forward
neural network for estimating tumor size based on thermographic data [114].

Despite promising research results, few studies have evaluated the role of DL models
for thermography in real-world clinical scenarios.

In late 2021, Singh et al. first published the results of a multicentric study conducted
on 258 symptomatic patients undergoing thermography followed by MG and/or US,
evaluating the performance of a commercial AI-based thermal breast screening device [115].
Promising results were observed, with the platform delivering an AUC = 0.845 with slightly
lower sensitivity (82.5% vs. 92%) when compared to MG.

In 2023, Bansal et al. reported the results of a prospective study conducted between
2018 and 2020 on 459 women, both symptomatic and asymptomatic, evaluating the same
device [116]. Thermography was followed by MG and other diagnostic modalities to
confirm the findings. The device demonstrated non-inferior performance when compared
to MG while delivering better sensitivity in women with dense breasts.

6.2. Microwave Breast Imaging

Microwave breast imaging (MBI) is a relatively new technology that is being explored
as an alternative or complement to traditional methods of breast cancer screening, such
as mammography. The basic idea behind microwave imaging is to use low-power radio
waves to create images of the breast tissue, identifying areas with different dielectric
properties [117].

During a microwave imaging examination, the patient sits with her breasts placed
on a desktop-like unit. A set of antennas emit and receive very low-power microwaves
that penetrate the breast tissue and measure the reflection and scattering of these waves by
the tissues inside. This information is then used to construct an image of the breast tissue,
which can be analyzed for signs of abnormalities such as tumors.

Unlike mammography and much like thermography, microwave imaging does not
use radiation and does not lose as much performance with dense breasts, making it possible
to extend screening programs to younger women and to increase examination frequency,
thereby potentially improving the diagnosis of early-onset breast cancer and reducing the
occurrence of interval cancers. Moreover, since there is no compression of the breast during
a microwave imaging exam, many women find it more comfortable than mammography.
Finally, microwave imaging systems are generally less expensive to build and maintain
than mammography equipment, which could make them a more accessible option in
underserved areas.

Overall, while microwave imaging shows promise as a tool for breast cancer screening,
further research is needed to establish its effectiveness and safety compared to mammog-
raphy. Currently, microwave imaging is not widely available and is primarily used in
clinical trials and research settings. Moreover, at present time microwave imaging seems to
have some performance limitations compared to mammography. A recent multicentric,
single-arm, prospective, stratified clinical investigation evaluated a commercial microwave
imaging system’s ability to detect breast lesions, demonstrating overall worse accuracy
when compared to a reference standard (73%) [118].

In early 2022, Moloney et al. published the results of the first clinical study inves-
tigating the performance of a commercial microwave breast imaging system capable of
automated lesion detection and characterization via physical lesion features [119]. Among
the 24 symptomatic patients included, the MBI system correctly detected and localized
12 of 13 benign lesions and 9 out of the 11 cancers, including a radiographically occult
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invasive lobular neoplasm. Further technical details regarding the automated classification
algorithm were published in a separate article [120].

At least two commercial solutions from Italy [121], and France [122], respectively, have
been made available and are undergoing evaluation in healthcare facilities. A larger scale,
European-funded prospective clinical study involving 10,000 patients across 10 centers is
currently ongoing and will end in November 2026 [123].

Despite initial research efforts with promising results [124], no studies have yet ex-
plored the role of deep learning applied to MBI in clinical and screening scenarios.

6.3. Other Techniques

Breast elastography is a non-invasive, ultrasound-based technique used to evaluate
the stiffness or elasticity of breast tissue. It can be used in conjunction with other modalities
to help distinguish between benign and malignant breast lesions, as cancerous tumors tend
to be stiffer than surrounding healthy tissue [125]. In 2015, Zhang et al. first developed a
simple two-layer deep neural network for feature extraction on shear-wave breast elastog-
raphy images, combined with a conventional machine learning algorithm for malignancy
prediction, showing better classification performance than models based on handcrafted
features [126]. Recent research works using fully deep learning-based models confirmed
the role of AI in automating evaluation, reducing inter-observer variability, and increasing
the interpretation accuracy of inexperienced radiologists [127].

Breast-specific gamma imaging (BSGI) is a nuclear medicine study that involves
injecting a patient with a radioactive tracer and then using a special camera to create images
of the breast tissue [128]. This technique can help detect small tumors that may not be
visible in other types of imaging studies [129]. Yu et al. recently assessed the performance
of a ResNet18-based classifier for BSGI images with positive results [130].

Positron emission mammography (PEM) is another nuclear medicine study that
involves injecting a patient with a radioactive tracer and then using a specialized scanner
to create detailed images of the breast tissue [131]. PEM can be helpful in identifying early-
stage breast cancers and determining whether a lump detected by other methods is benign
or malignant [132]. At present, no significant studies regarding DL-based classification or
segmentation of breast cancer on PEM have yet been conducted.

Optical imaging techniques use light to visualize the breast tissue, often by shining
near-infrared light through the skin [133]. These techniques can provide information about
blood flow and oxygenation levels within the breast tissue, which can help distinguish
between healthy and cancerous tissues in a screening setting [134]. Zhang et al. developed a
fusion optical tomography–ultrasound DL model for breast cancer classification, achieving
competitive performance with an AUC = 0.931 [135].

Key potential advantages and current challenges for novel breast cancer imaging
techniques have been summarized in Table 5, while the most prominent studies on this
topic have been listed In Table 6.

Table 5. Key potential advantages and current challenges of novel breast imaging techniques.

Potential Challenges

Non-ionizing radiation Limited availability of scan devices

No breast compression Lack of standardized protocols

Lower costs Limited availability of curated datasets

Lower performance loss in dense breasts Lack of studies in clinical and screening
settings
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Table 6. Key studies involving deep learning and novel breast cancer imaging techniques. CNN:
convolutional neural network. FNN: feed-forward neural network. DNN: deep neural network.
ML: machine learning. DL: deep learning. TG: thermography. USE: ultrasound elastography. AE:
autoencoder. DOT: diffuse optical tomography. US: ultrasound.

Authors Year Software/Model Modality Type Task

Mambou et al. [108] 2017 Custom ML + DL TG Retrospective Classification

Mohammed et al. [109] 2021 InceptionV4 TG Retrospective Classification

Alshehri et al. [110] 2022 Custom CNN + AM TG Retrospective Classification

Mohamed et al. [112] 2022 U-Net + bespoke classifier
and VGG16 TG Retrospective Segmentation,

Classification

Civiliban et al. [113] 2023 Mask R-CNN TG Retrospective Segmentation

Khomsi et al. [114] 2024 Custom FNN TG Retrospective Tumor size
estimation

Singh et al. [115] 2021 Thermalytix® TG Prospective Classification

Bansal et al. [116] 2023 Thermalytix® TG Prospective Classification

Zhang et al. [126] 2015 DNN feature extractor + ML
classifier USE Retrospective Classification

Fukuda et al. [127] 2023 GoogLeNet USE Retrospective Classification

Yu et al. [130] 2023 ResNet18 BSGI Retrospective Classification

Zhang et al. [135] 2023 Custom fusion model (VGG11
+ AE) DOT + US Retrospective Classification

7. Deep Learning in Breast Cancer Imaging: Recent Advancements and Trends

Figure 6 represents the principal novelties in deep learning applied to medical imaging
that have impacted recent AI-assisted breast cancer imaging research. Technical advance-
ments and new study design trends will be discussed separately in the next sections.
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7.1. Technical Advancements
7.1.1. Vision Transformers

Vision transformers (ViTs) are a type of neural network architecture that has recently
been used for CV tasks such as image classification as an alternative to CNNs. Introduced
in 2020 by Dosovitskiy et al. [136], they have been gaining popularity due to their strong
performance on various benchmarks.

ViTs treat an image as a sequence of non-overlapping patches and feed these patches
into a transformer model, an architecture originally developed for natural language pro-
cessing tasks. The transformer processes each patch independently and learns to attend
to different parts of the input sequence to make predictions. By treating the image as a
sequence rather than a grid of pixels, ViTs can capture long-range dependencies and global
context that may be missed by CNNs.

ViTs have been shown to achieve state-of-the-art performance on several image classifi-
cation datasets, including ImageNet [137]. However, they also require more computational
resources than CNNs, particularly when dealing with large image resolutions. Additionally,
because ViTs do not explicitly encode any notion of position or spatial relationship, they
may struggle to capture certain types of information that are easily captured by CNNs.
Nonetheless, ViTs represent an exciting new direction in computer vision research and have
opened many avenues for further investigation.

ViTs have recently started to gain attention in the medical imaging field, promising to
improve diagnostic accuracy and efficiency [138]. One potential advantage of using ViTs in
this realm is their ability to capture long-range dependencies and global context. Unlike
CNNs, which focus primarily on local patterns, transformers can identify correlations
across distant regions of an image, potentially revealing important clinical findings that
might otherwise go unnoticed. Moreover, transformers can handle variable-sized inputs,
allowing them to analyze medical images of varying shapes and sizes without requiring
preprocessing steps like cropping or resizing.

Several studies have demonstrated ViTs’ potential in medical imaging applications. For
example, a 2021 study showed that a vision transformer could accurately detect COVID-19
from chest computed tomography (CT) scans, outperforming established CNN architec-
tures [139]. Other recent works have explored the use of vision transformers in analyzing
mammograms [140], brain MRI scans [141], and many more medical images.

Despite the promising early results, vision transformers still face some challenges
in practical medical imaging scenarios. One issue is their relatively high computational
cost, which could limit their adoption in resource-constrained settings. Furthermore,
vision transformers usually require larger amounts of labeled data to train effectively, a
problematic factor given the relatively limited availability of annotated medical images.

To date, studies implementing ViTs for breast cancer classification are still relatively few
when compared to those evaluating CNNs. Recently, Ayana et al. developed a ViT-based
mammography classifier adapted by transfer learning from a pre-trained model, which
was able to achieve better performance than state-of-the-art CNN-based classifiers [142].
However, in a comparison study published in late 2023, Cantone et al. observed that ViT-
based models may deliver worse mammography classification performance than CNNs
when trained with small datasets [143].

7.1.2. Improved Convolutional Neural Networks: ConvNeXt

ConvNeXt is a neural network architecture that takes inspiration from traditional
ResNet models but introduces new components to improve their performance [18].

The key idea behind this architecture is to apply modern design principles used in
transformer-based architectures (such as Vision Transformers) to CNNs. This includes
features such as larger kernel sizes to improve contextual understanding, depthwise sep-
arable convolutions to reduce computational complexity, layer normalization instead of
batch normalization to improve training and generalizability, and spatial resolution re-
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duction via strided convolutions rather than pooling layers to reduce information loss
during downsampling.

One significant advantage of this architecture over other state-of-the-art models, espe-
cially when compared to Visual Transformers, is its simplicity and computational efficiency
while achieving comparable or even better accuracy on various benchmarks [18].

ConvNeXt v2 was designed to address several limitations of the original model [144].
Some of the changes include improved layer normalization, dynamic depth, better activa-
tion functions, and more efficient spatial reduction.

Overall, ConvNeXt has become one of the most competitive computer vision classi-
fication models currently available. However, despite being less complex than ViTs, it is
still more computationally expensive and harder to train than CNNs, while not always
delivering significantly better performance [143].

In a 2022 study by Hassanien et al., a ConvNeXt-based classifier was used to suc-
cessfully predict breast tumor malignancy on ultrasound images, outperforming other
popular CNN- and ViT-based models [145]. A ConvNeXt-based classifier was also used
in the winning entry for the RSNA Screening Mammography Breast Cancer Detection
Challenge [68], achieving an AUC = 0.93 for the malignancy classification task [92].

7.1.3. New Object Detectors: The YOLO Series

YOLO is a real-time object detection architecture that treats this task as a regression
problem rather than a typical two-step process of first identifying regions of interest and
then classifying those regions [19]. This approach makes it faster and more efficient than
traditional methods such as R-CNN or Fast R-CNN while retaining high accuracy with its
latest iterations.

Several variations of the YOLO architecture have been released by different developers,
each with incremental improvements or specific target applications. Notably, Wang et al.
have focused on overall detection accuracy rather than absolute speed, publishing YOLOv7
in 2022 [146], and YOLOv9 in early 2024 [147]. YOLOv8, a variation of the v7 model
developed by a third-party company, has also become widely popular in the computer
vision field due to its ease of implementation [148].

In early 2021, Aly et al. assessed the performance of a YOLO-based breast mass
detector and classifier for FFDMs, demonstrating superiority to other conventional CNN
architectures [149]. In a 2022 study, Su et al. combined a YOLOv5 model with a local-global
transformer architecture (LOGO) to detect and segment breast masses on mammograms,
achieving good performance on the CBIS-DDSM and INBreast datasets [150]. Hassan et al.
combined a YOLOv4 detector with a ViT classifier to recognize and characterize breast
lesions on FFDM and CEM images, demonstrating state-of-the-art performance [151]. Prinzi
et al. recently compared the performance of different YOLO-based models for breast cancer
detection in mammograms [152]. The authors analyzed not only bounding box results
but also saliency maps to evaluate model activation in local image areas, highlighting the
importance of AI explainability to provide radiologists and clinicians with better insights
about the model’s predictions.

7.1.4. Automated Segmentation Pipelines: nnU-Net

Automated segmentation pipelines are machine learning models that can automat-
ically identify and segment structures or regions of interest in medical images. These
pipelines have gained significant attention in recent years due to their potential to im-
prove the efficiency and accuracy of image analysis tasks in various clinical applications,
including tumor detection, organ segmentation, and disease diagnosis.

nnU-Net is a popular open-source automated segmentation pipeline that has shown
state-of-the-art performance in several medical imaging challenges [33].

The key advantage of nnU-Net over other segmentation workflows is its ability to
learn optimal network architectures for different datasets without requiring extensive
manual tuning. This is achieved through a nested and unified U-Net architecture, which
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allows the model to adaptively adjust its depth and width based on the complexity of
the input data. Additionally, nnU-Net includes pre-processing steps and post-processing
techniques to further enhance the quality of the predicted segmentation. Moreover, it
utilizes advanced augmentation techniques during training to increase the robustness of
the model to variations in image acquisition parameters.

Released in early 2023, nnU-Net V2 represents a complete overhaul of the pipeline [153].
Despite delivering the same segmentation performance, it features development and us-
ability improvements, compatibility with additional input file formats, hierarchical labels
support and optimizations for more hardware and software platforms.

Overall, nnU-Net represents a promising approach for automating medical image
segmentation tasks, delivering state-of-the-art segmentation performance and allowing
even non-technically experienced developers to create high quality models, thanks to its
accuracy and ease of implementation.

nnU-Net has been successfully used for a wide variety of medical imaging segmenta-
tion tasks, including breast imaging studies by Janse et al. [89], and Osuala at al. [104], and
many more applications can be expected in future researches.

7.1.5. Deep Learning-Based Radiomics Classifiers

Deep learning-based radiomics uses deep neural networks to analyze images, making
predictions about clinical features and outcomes, such as histopathological characteristics,
prognosis, or treatment response [27]. Deep learning algorithms are particularly well-suited
for analyzing large, high-dimensional datasets like those generated by medical imaging
techniques. This approach is opposed to conventional, handcrafted radiomics, which man-
ually extracts quantitative features from medical images using predefined mathematical
formulae and then evaluates them using statistical machine learning algorithms.

One key advantage of deep learning-based radiomics classifiers is their ability to
learn hierarchical representations of data, where lower-level features are combined to
form more abstract, higher-level features. This allows the models to automatically identify
complex patterns in the data that may not be apparent through manual feature engineering.
Additionally, deep learning models can handle noisy or missing data better than traditional
machine learning algorithms, making them more robust to variations in image quality or
acquisition protocols.

However, there are also several challenges associated with developing and implement-
ing deep learning-based radiomics classifiers in clinical practice. One major consideration is
the need for large, diverse training datasets that accurately represent the patient population
of interest. Another challenge is ensuring the reproducibility and generalizability of the
models across different imaging platforms, acquisition parameters, and patient cohorts.
Explainability of the models’ predictions is also an issue since neural networks effectively
behave like black boxes, outputting the result of the training and inference process but
providing little insight about the features they rely upon to make judgments [154]. Finally,
rigorous validation and testing of the models are needed to ensure their accuracy and
reliability in real-world settings.

Examples of DL-based radiomics classifiers applied to breast cancer imaging include al-
gorithms for tumor [145] and lymph node malignancy assessment [98], pathologic markers
evaluation [155], and treatment response prediction [90].

7.2. Study Design Trends
7.2.1. Prospective versus Retrospective Approach

Prospective studies and retrospective studies are two types of observational research
designs used in epidemiology and other fields to investigate the causes and outcomes of
diseases or health-related events [156].

In a prospective study, researchers collect data specifically for the purpose of the study,
which allows for more control over the variables being measured and reduces the risk
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of bias. By contrast, in a retrospective study, researchers rely on pre-existing records or
databases that may not have been collected with the same level of detail or consistency.

Because participants are enrolled at the beginning of a prospective study, there is
less chance of selection bias affecting the results. In contrast, retrospective studies may be
subject to selection bias if certain groups are more likely to be represented [157]. In the
cancer imaging field, selection bias may derive from using cancer-enriched datasets [77],
which do not reflect the true prevalence of neoplastic disease in the general population and
could therefore skew classification performance results.

Moreover, prospective studies typically involve longer follow-up periods, allowing
researchers to observe outcomes over a longer time and capture more detailed information
on delayed events, such as interval cancers or next-round screen-detected cancers.

Finally, prospective studies often include extensive assessments of participants’ clinical
and histopathological characteristics, helping to identify additional associations and trends,
while retrospective studies may have limited information on these factors.

However, prospective studies also have disadvantages, including higher costs, longer
timelines, and potential attrition bias [158].

Historically, most studies regarding deep learning in the cancer imaging field have
followed a retrospective approach to satisfy the need for quick evaluation of novel deep
learning-based models. However, with the increased availability of high-quality models
and regulatory-approved solutions, several prospective studies have also been conducted.

Recent prospective studies evaluating deep learning-based models applied to breast
cancer imaging include works by Dembrower et al. [82], Ng et al. [83], Zheng et al. [85],
and Gu et al. [88], whose key benefit lies in the ability to more closely reproduce a common
clinical scenario in terms of disease prevalence, information availability, and interpreta-
tion setting.

7.2.2. AI Integration Strategies

AI integration into medical imaging examinations takes various forms, each with
distinct benefits and drawbacks. One way is using standalone classification systems that
process raw data and generate reports independently. AI-based triage systems that only
trigger radiologist intervention when a critical predicted abnormality threshold is reached
have been tested with successful results [81]. Although this strategy offers quick turnaround
times, potential cost savings, and improved consistency, it may lack adaptability in non-
standard scenarios and, most importantly, raises ethical questions concerning explainability
and accountability [159].

Another approach employs AI as an assistant to a single radiologist during image
interpretation (AI-assisted single reading). This method combines the efficacy of deep
learning with human expertise, enhancing diagnostic performance while potentially re-
ducing cognitive strain on individual practitioners. It also provides educational value
for trainees and early career professionals, helping to minimize interobserver variability
among radiologists. However, successful implementation requires seamless integration
between AI systems and PACS, increased upfront costs, the establishment of trust between
radiologists and AI models, and avoidance of complacency or underestimation of residual
errors introduced by AI assistance [160].

A third strategy involves two radiologists reviewing the same case individually,
subsequently supported by an AI system (AI-assisted double reading, also defined as
triple reading). Following separate assessments, they compare conclusions, aiming to
achieve higher diagnostic precision in terms of sensitivity and specificity. This approach
detects additional inconsistencies that serve as learning opportunities, enables objective
evaluation of AI performance against human experts, and stimulates competition between
conventional techniques and novel technologies. Nevertheless, this method consumes
substantial resources due to added staffing needs, lengthens reporting times, necessitates
consistent collaboration across cases, and demands careful consideration when allocating
roles and responsibilities.
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The 2023 prospective study by Dembrower et al. represents the most complete com-
parative evaluation of the three strategies applied to breast screening examinations [82].
Predictably, AI-assisted double reading delivered the highest number of abnormal interpre-
tations, followed by assisted single reading and unassisted double reading, respectively.
Conversely, standalone AI reading produced the lowest number of abnormal interpreta-
tions and therefore the lowest recall rate. However, the cancer detection rate was similar
for all the strategies, demonstrating a potentially higher specificity for AI as a single reader
without significant sensitivity loss.

Despite AI single reading not being realistically implementable in the short term due
to ethics and liability issues with current regulations, its results highlight the diagnostic
accuracy achieved by modern breast cancer detectors and warrant future research both in
the clinical and bioethical field to assess its future possible applications.

On the other hand, when considering the implementation of AI-assisted human
reading strategies, more studies will be needed to estimate the impact of automation bias
on radiologists’ performance and develop strategies to address or reduce this issue [160].

7.2.3. Public Challenges

Public challenges constitute a recent trend in the deep learning research and develop-
ment scene and can play a critical role in driving innovation and progress in the field of deep
learning applied to medical imaging [161]. One key advantage of these challenges is that
they provide a standardized benchmark for comparing different methods and establishing
best practices. By using identical datasets and evaluation criteria, researchers can more
easily assess the relative strengths and weaknesses of various algorithms and techniques.

In addition to promoting benchmarking and comparison, public challenges can also
foster greater collaboration and community building among researchers. These events
attract participants from a wide range of academic and industrial backgrounds, creating op-
portunities for interdisciplinary dialogue and knowledge exchange. Moreover, by tackling
real-world problems and datasets, public challenges can help ensure that research remains
relevant and applicable to clinical settings.

Another benefit of public challenges is that they facilitate data sharing and access,
providing participants with high-quality curated datasets that may otherwise be difficult to
obtain. This not only enables fairer evaluations of competing methods but also encourages
further exploration and analysis of the data.

Furthermore, public challenges can promote transparency and reproducibility in
research through their emphasis on documentation and openness. Encouraging participants
to share their code and methodologies makes it easier for others to evaluate and build upon
their work, ultimately contributing to more robust and trustworthy scientific findings.

Finally, public challenges offer motivational benefits for researchers, who may be
drawn to compete for prizes, recognition, or simply the satisfaction of solving challeng-
ing problems.

Examples of public medical imaging challenges include initiatives from the Radiologi-
cal Society of North America [162], the Medical Image Computing and Computer-Assisted
Intervention (MICCAI) Society [163], and the Grand Challenge project [164].

Overall, public challenges have been and will represent a powerful tool for advancing
research in deep learning applied to medical imaging, offering numerous social, technical,
and intellectual benefits for all involved disciplines.

8. Discussion
8.1. State of the Art

The status of key DL applications for breast cancer imaging are highlighted in Figure 7.
Multiple neural network architectures have been applied in this field, but most of the

established implementations involve CNNs for image interpretation. CNNs have been
successfully used for medical imaging-related computer vision tasks such as classification,
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object detection, and segmentation. Investigational studies have employed GANs for
synthetic image generation and LLMs for automated report production.
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The creation of a deep learning model typically involves the development of a neural
network pipeline and the collection of an adequate dataset for its training. Either high-
performance hardware or external servers are required to perform training and inference
with reasonable speed. The quality of the model can be evaluated with standardized per-
formance metrics such as AUC for classification and DSC for segmentation. AI predictions
should be easily accessible and understandable by radiologists and clinicians via platforms
integrated into PACS.

Several curated datasets have been publicly released for different breast imaging
modalities, but most of them contain mammograms, while only a few include ultrasound
and magnetic resonance images. These datasets usually provide ground truth annotations
from experienced radiologists, either as image labeling or lesion identification, with some
of them also reporting relevant clinical and histopathological information. Larger and
higher quality datasets have also been made commercially available, but costs constitute a
significant adoption barrier.

Breast cancer screening using conventional mammography has been one of the most
researched and well-established applications of deep learning-based medical imaging
models. Several AI-based detection platforms have received approval from international
regulators during the last few years, and multiple studies have positively assessed their
performance in controlled environments. Overall, studies have shown remarkable perfor-
mance for many of these models, highlighting their potential to increase the accuracy and
efficiency of mammography interpretation while reducing false positive and false negative
rates, inter-observer variability, and radiologists’ workload. Common study limitations
include unknown reproducibility of results across different healthcare facilities due to
different demographics and scanning devices, use of retrospective designs, cancer-enriched
datasets, and other inclusion criteria potentially skewing results due to selection bias, and
funding by AI software companies. Recently published prospective studies including a
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larger number of patients have helped better represent AI performance and impact in real
screening scenarios.

Comparatively, fewer studies have involved other commonly used breast imaging
modalities such as digital breast tomosynthesis, contrast-enhanced mammography, ul-
trasound, and dynamic contrast-enhanced magnetic resonance imaging. Specifically, in
addition to study limitations previously cited with respect to mammography-applied AI
research, small training and testing sample sizes imply significant constraints in terms
of scalability and generalizability. Overall, results have been more heterogeneous and
inconsistent across studies, and current AI applications for these modalities mostly remain
in an investigational state. Still, interesting applications of deep learning based in this field
include automated segmentation for quick and precise cancer burden assessment, assis-
tance for inexperience radiologists to improve human accuracy and reduce inter-observer
variability, generation of synthetic images for artificial contrast-enhancement and long
studies summarization, and advanced characterization of the primary tumor and lymph
nodes for prognostic and predictive analyses.

To date, novel and ancillary techniques such as thermography, microwave-based
imaging, elastography, breast-specific gamma imaging, positron emission mammography,
and optical imaging have played a limited role in the diagnosis and management of
breast cancer patients. Deep learning might help to enhance the strengths and reduce the
weaknesses of these modalities, potentially paving the way for their future introduction in
clinical practice as alternative diagnostic approaches for specific contexts and subsets of
patients. Nevertheless, research in this area is still lacking, overall limited in numbers, and
mostly confined to investigational settings.

Multiple technical advancements have been made in the computer vision field dur-
ing the last few years. ViTs are novel neural networks for computer vision tasks that
have been proposed as an alternative to CNNs, adopting an LLM-like architecture and
achieving state-of-the-art performance on common CV benchmarks despite requiring big-
ger datasets and more potent computing resources for effective training. Modern CNNs,
such as ConvNeXt, represent a bridge between conventional CNNs and ViTs, providing
excellent performance with lower complexity than transformer-based models. New object
detection and segmentation pipelines, such as the YOLO family and nnU-Net, provide
developers with easy-to-use tools to create high-quality models. Radiomics, an emerging
field that traditionally involved the extraction of quantitative features from medical images
using conventional machine learning techniques to predict clinical and histopathological
information, has recently been revolutionized by DL-based models able to extrapolate
hidden properties and infer complex correlations, improving patient outcomes predic-
tion and tumor characteristics assessment, and ultimately increasing the potential for
treatment personalization.

New study designs recently adopted in the field, such as prospective approaches
comparing different integration strategies, have provided novel and more accurate in-
sights about the effects of AI implementation into clinical practice, including the complex
interaction between radiologists and software assistants and its impact on human perfor-
mance. Public challenges have greatly contributed to deep learning research by providing
a common ground for developers to train and test their models against and enforcing
transparency and reproducibility of experimental results.

8.2. Limitations, Challenges and Future Directions

Despite the milestones achieved throughout recent years, several critical limitations
and challenges remain to be addressed for the successful integration of AI-based systems
into clinical practice. Figure 8 provides a schematic representation of these issues.
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8.2.1. Generalizability

Medical imaging data comes with significant variability across different centers due
to factors such as imaging protocols, equipment specifications, and patient demographics.
These variations can introduce biases and hinder model generalizability [165]. Addressing
this challenge will require efforts to standardize data collection protocols and collaboration
across institutions to provide high-quality, representative datasets for DL training. More-
over, the affordability of these datasets should be promoted to extend their availability to
as many worldwide researchers as possible. Further studies will be needed to assess the
consistency of AI performance across different clinical settings and to evaluate the role of
personalized (re)training strategies.

8.2.2. Multimodal Interpretation

Experienced radiologists usually consider multiple elements when assessing imag-
ing examinations, such as previous studies, results from different modalities, lab tests,
pathological specimens, and clinical status. Currently, AI-based interpretation of multi-
modal healthcare data poses significant challenges due to the complexity of integrating
information from different sources in a single algorithm. DL models capable of handling
multimodal data effectively will be needed to fully leverage the complementary information
provided by various techniques [166].

8.2.3. Costs

Software costs and hardware requirements for deep learning inference and training
constitute a significant adoption barrier. High-performance computing resources are
essential for training complex models and processing large volumes of medical imaging
data. Access to such resources can be costly and may limit the scalability of deep learning
applications in clinical settings [167]. Development of open training and inference platforms
for medical imaging AI models, along with more efficient and cost-effective hardware
solutions, might prove key to extending clinical adoption [168].

8.2.4. Privacy

The use of external servers to offload inference operations presents concerns regarding
privacy and security. Transmitting sensitive medical information to external servers raises
potential risks of data breaches and compromised patient confidentiality. Implementing
secure and privacy-preserving solutions for data processing while maintaining computa-
tional efficiency will be essential for ensuring the widespread adoption of deep learning in
medical imaging [55].
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8.2.5. Human–AI Interaction

The introduction of deep learning-based assistance may induce excessive reliance
on AI models by radiologists, potentially leading to complacency or overconfidence in
automated diagnoses, also known as automation bias [160]. Radiologists must remain
vigilant and critically evaluate model outputs, integrating them with clinical expertise
to ensure accurate interpretations. The interaction between healthcare professionals and
AI-based algorithms is a new and relatively unexplored field warranting future research
for its complex implications on human performance.

8.2.6. Explainability, Ethics, and Liability

The architecture of deep neural networks effectively makes them black boxes that
convert input data into output predictions without providing direct insights as to why a
certain prediction was made. This element implies complex ethical and legal considerations
in hypothetical future scenarios where the diagnosis and management of diseases will
be strongly influenced by AI models, either with or without the direct involvement of
clinicians. Efforts to increase model explainability and interpretability, collectively defined
as Explainable Artificial Intelligence (XAI) [169], will therefore be of paramount importance
in establishing the feasibility and scope of AI implementation in clinical practice [154].

9. Conclusions

Deep learning stands at the forefront of advancements in breast cancer imaging, offer-
ing unparalleled potential to improve diagnostic accuracy and provide new opportunities
in terms of prognosis and response prediction. Despite remarkable progress made in recent
years, challenges remain on the path towards widespread clinical adoption.

The limitations surrounding generalizability and interpretability underscore the need
for continued research in algorithm development and AI integration strategies. Efforts
to address these challenges through the acquisition of diverse, high-quality datasets, the
development of more easily interpretable and explainable models, the implementation of
multimodal analysis techniques, and the enhancement of robustness and scalability will be
imperative for maximizing the utility of AI in clinical practice.

Concerns about availability, explainability, costs, and privacy highlight the need for
public datasets and open training and inference platforms for worldwide developers and
healthcare professionals.

Collaborative research from hardware and software vendors, clinicians, and policymakers
will also be required to improve computational infrastructures, enhance data security measures,
promote responsible use by radiologists, and confront complex bioethical implications.

Despite existing challenges, the role of AI in breast cancer imaging cannot be un-
derestimated. With ongoing interdisciplinary collaboration, rigorous validation studies,
and a commitment to addressing current limitations, deep learning holds the potential to
significantly improve diagnostic accuracy, personalize treatment strategies, and ultimately
enhance patient outcomes in the fight against breast cancer.
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