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Abstract: This study used artificial intelligence techniques to identify clinical cancer biomarkers
for recurrent gastric cancer survivors. From a hospital-based cancer registry database in Taiwan,
the datasets of the incidence of recurrence and clinical risk features were included in 2476 gastric
cancer survivors. We benchmarked Random Forest using MLP, C4.5, AdaBoost, and Bagging al-
gorithms on metrics and leveraged the synthetic minority oversampling technique (SMOTE) for
imbalanced dataset issues, cost-sensitive learning for risk assessment, and SHapley Additive ex-
Planations (SHAPs) for feature importance analysis in this study. Our proposed Random Forest
outperformed the other models with an accuracy of 87.9%, a recall rate of 90.5%, an accuracy rate
of 86%, and an F1 of 88.2% on the recurrent category by a 10-fold cross-validation in a balanced
dataset. We identified clinical features of recurrent gastric cancer, which are the top five features,
stage, number of regional lymph node involvement, Helicobacter pylori, BMI (body mass index),
and gender; these features significantly affect the prediction model’s output and are worth paying
attention to in the following causal effect analysis. Using an artificial intelligence model, the risk
factors for recurrent gastric cancer could be identified and cost-effectively ranked according to their
feature importance. In addition, they should be crucial clinical features to provide physicians with
the knowledge to screen high-risk patients in gastric cancer survivors as well.

Keywords: recurrent gastric cancer; random forest; SMOTE; SHAP; cost-sensitive learning

1. Introduction

Gastric cancer is the fourth leading cause of cancer-related mortality worldwide, and
its 5-year survival rate is less than 40%. H. pylori remains the leading cause of gastric cancer,
which could vary from lymphomas, sarcomas, gastrointestinal stromal, and neuroendocrine
tumors. With the development of biomarkers, more and more therapeutic strategies have
been designed to treat gastric cancer. However, early detection of recurrent gastric cancer
can fundamentally improve a patient’s survival, so it is essential to continue screening and
monitoring even after the patient is disease-free. Early detection will allow physicians to
provide early treatments for maximum benefit if cancer tumors recur in the stomach or
elsewhere. Meanwhile, doctors and patients have always given importance to the issue of
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how to observe cancer recurrence with caution. In Taiwan, early detection and diagnosis
have become feasible due to cancer screening promotion in recent years.

Artificial intelligence (AI), with the improvement of computing capacity, has been
paid attention to in the medical field. Machine learning (ML), which is part of AI, is critical
in helping diagnosis and prognosis. Zhang et al. [1] developed a multivariate logistic
regression analysis on a nomogram with radiomic signature and clinical risk factors to
predict early gastric cancer recurrence. Liu et al. [2] used the Support Vector Machine
classifier on the gene expression profiling dataset to predict gastric cancer recurrence and
identify correlated feature genes. Zhou et al. [3] benchmarked the algorithms of Random
Forest (RF), GBM, Gradient Boosting, decision trees, and Logistics. They concluded that
the first four factors affecting postoperative recurrence of gastric cancer were body mass
index (BMI), operation time, weight, and age.

We developed a risk prediction model for survivors of recurrent gastric cancer based
on the above trends. In our study, we propose Random Forest [4] to develop a classifier and
benchmark for Multilayer Perceptron (MLP) [5], C4.5 [6], AdaBoost [7], and Bootstrap [8]
and Aggregation (Bagging [9]) algorithms in metrics. Regarding data preprocessing, we
leverage Synthetic Minority Oversampling Technology (SMOTE) [10] oversampling against
imbalanced dataset issues. For strategic risk assessment, we use cost-sensitive learning as a
trade-off tool. Lastly, SHapley Additive exPlanations (SHAPs) [11–13] are used for feature
importance analysis from both global and local perspectives.

Finally, RF with SMOTE on this dataset can perform well, and SHAPs can show
reasonable interpretation and feature importance. Furthermore, the top five risk factors
for recurrent gastric cancer were identified as stage, number of regional lymph node
involvement, Helicobacter pylori, BMI, and gender.

2. Materials and Methods
2.1. Data Preparation and Machine Learning Models

A hospital cohort of 2476 patients diagnosed with gastric cancer survivors was enrolled
in the Taiwan Cancer Registry (TCR) database from July 2008 to August 2020. Of them,
432 recurrent gastric cancers were used compared to 2044 non-recurrent survivors. All
patients underwent curative surgery for gastric cancer, following standardized procedures
for tumor resection and lymph node dissection. Therefore, there was no subgroup of
patients who underwent local excision surgery. Our database was analyzed in accordance
with the Taiwan Cancer Registry Coding Manual Long Form Revision in 2018. This manual
is published and revised by the Health Promotion Administration, Ministry of Health
and Welfare. All hospitals in Taiwan register cancer data using this manual to provide
information to the Taiwan Cancer Registry Center for integration. All clinical figures
recorded in this database were evaluated and used to establish our predictive model. These
clinical figures of gastric cancer survivors were used as the predictive features. In this study,
the proposed process flow diagram is illustrated in Figure 1.
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Figure 1. The proposed process flow diagram of this study.

In step 1, we collected a recurrent gastric cancer dataset. For a better fit to our machine
learning algorithms and TreeSHAP analysis, we encoded all our data into categorical
variables in step 2. Due to the data imbalance between the non-recurrence and recurrence
categories, we balanced the dataset with using upsampling method, SMOTE, for the minor
category as step 3. One of our essential purposes is to understand the prediction behaviors
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of our trained model; therefore, we used 10-fold cross-validation without a dataset split
in step 4. RF is the focus that is used to compare other baseline algorithms. In the final
step, step 5, we further utilized model interpretation to observe feature importance and
interactions.

RF is a kind of ensemble machine learning model based on Classification and Regres-
sion Trees (CART), Bagging, and random feature selection. This randomness design is
suitable for preventing the overfitting of other decision trees and tolerance against noise
and outliers. The tree elements make decisions based on information gained to obtain
automatic feature selection. Namely, RF has a built-in feature selection function within
the training phase, so there is no need to prefilter all features via principal component
analysis. We can also interpret that selection in the feature importance analysis section.
The importance of RF features is a permutation approach that measures the decrease in
prediction performance as we permute the value of the feature.

RF has become one of the most popular machine learning algorithms based on the
above properties. It has several advantages: (1) It is more accurate due to the ensemble
approach. (2) It works without detailed hyperparameter setting and principal components
analysis (PCA) preprocess. (3) It computes efficiently and quickly. These are the reasons
we chose RF as our backbone algorithm.

SMOTE (Synthetic Minority Oversampling Technology) is an oversampling algorithm
proposed by Chawla et al. to improve overfitting. The method creates new randomly
generated samples between samples of minority classes and their neighbors, which can
balance the number among categories.

Cost-sensitive learning [14–16] is a training approach that considers the assigned
costs of misclassification errors while training the model. This is closely related to the
imbalanced dataset. We need different biases when we need other monitoring criteria
in various risk management phases. The computing speed of RF is efficient, so we can
easily integrate different cost biases for interested scenarios to obtain an overall picture.
In this study, we refer to a machine learning approach that considers the costs associated
with different types of classification errors. In medical contexts, misclassifying specific
outcomes can have significant consequences, both in terms of patient health and healthcare
resources. Therefore, the goal of cost-sensitive learning in medical informatics is to optimize
the classification model in a way that minimizes the overall cost, which may include
considerations such as misclassification costs, treatment costs, patient preferences and risks,
and medical resource allocation. By incorporating these considerations into the learning
process, cost-sensitive learning in medical informatics aims to develop more accurate
and practical models that better align with real-world constraints and objectives. This can
ultimately lead to improved patient outcomes and more efficient use of healthcare resources.

SHAP analysis is an extension based on Shapley values, which is a game–theoretical
method used to calculate the average of all marginal contributions in all coalitional combi-
nations. Unlike the calculation of Shapley values, SHAPs address the addictive features as
a linear model. For a given feature set, SHAP values are calculated for each feature and
added to a base value to provide the final prediction.

Global interpretation in SHAPs can provide insights into the overall importance of
different features in the model. By calculating SHAP values for each feature across a large
dataset, we can determine which features contribute the most to predictions on average.
This helps us to understand which risk factors are most influential across the entire popula-
tion. The waterfall plot helps visualize the impact of each feature on the model’s output
across the dataset. These plots allow us to see the direction and magnitude of each feature’s
effect on predictions, providing a comprehensive overview of the model’s behavior.

Local interpretation in SHAPs can also provide explanations for individual predictions,
allowing us to understand why a particular prediction was made for a specific patient.
By calculating SHAP values for each feature for a single prediction, we can see how each
feature contributed to that prediction. The plot helps visualize the contribution of each
feature to the difference between the model output and the average output. It provides a
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detailed breakdown of how each feature affects the prediction for a given instance, making
it easier to understand the reasoning behind individual predictions.

Using SHAPs for both global and local interpretation in medical risk factor prediction
can help clinicians and researchers gain valuable insights into how the model works, which
features are most important, and why specific predictions are made. This transparency and
interpretability is crucial for building trust in predictive models and for making informed
decisions in clinical settings.

TreeSHAP is proposed as a variant of SHAPs for tree-based machine learning models,
such as decision trees, RF, and gradient-boosted trees.

The importance of a SHAP feature is defined as the average of absolute SHAP values
per feature for all instances. This focuses on the variance of model output, which is different
from the importance of a permutation feature based on performance error. From it, we can
know how the magnitude of model output changes, like for the likelihood or regression
values, as we manipulate feature values, and it has nothing to do with performance, like
accuracy or loss.

2.2. Dataset Sources

In the database of the Taiwan Cancer Registry, 17 variables are recorded as clinical
potential features of recurrence: (1) gender; (2) age at diagnosis; (3) grade/differentiation;
(4) tumor size; (5) number of regional lymph node involvement; (6) stage; (7) surgical
margin involvement of the primary site; (8) radiation therapy; (9) chemotherapy; (10) BMI;
(11) smoking; (12) chewing betelnut; (13) alcohol drinking; (14) value of the CEA carci-
noembryonic antigen; (15) CEA test of carcinoembryonic antigen; (16) Helicobacter pylori;
(17) lymphatic or vascular. Therefore, the analysis aimed to identify the most critical risk
features of these 17 predictors.

Our database was analyzed in accordance with the Taiwan Cancer Registry Coding
Manual Long Form Revision in 2018. This manual is published and revised by the Health
Promotion Administration, Ministry of Health and Welfare. All hospitals in Taiwan register
cancer data using this manual to provide information to the Taiwan Cancer Registry Center
for integration. Therefore, the research database is a part of the national cancer registration
database. For example, we collected detailed information on smoking (code-36) and
subcodes (00-99, 00-99, and 00-99) on current smoking status (the first subcode), smoking
history (the second subcode), and time since quitting smoking (the third code) according to
the manual. In the initial analysis, participants were categorized into smoking and non-
smoking groups regardless of their current smoking status. However, since smoking was
not found to be a significant factor in the analysis, detailed smoking data are not included in
this article. The original data contains detailed information on smoking duration, smoking
cessation, and the time of cessation according to the Taiwan Cancer Registry Coding
Manual Long Form Revision in 2018. In the preliminary analysis, participants were initially
grouped into smoking and non-smoking categories, regardless of their smoking cessation
status. However, subsequent analysis indicated that smoking was not a significant factor.
Consequently, the detailed smoking data were not included in the article. All patients
underwent curative surgery for gastric cancer, following standardized procedures for tumor
resection and lymph node dissection.

The encoding and sample size features are organized in Figure 2. The original dataset
has significantly imbalanced issues; that is, the minor category is about 20% of the majority.
As mentioned above, the RF and Decision Tree will automatically select the best feature for
each decision split. Therefore, we did not utilize PCA for dimensionality reduction.
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2.3. Data Preprocessing

To better fit our machine learning algorithms and TreeSHAP analysis, we encode all
of our data into categorical variables with an assigned integer. We also assign ordinal
variables that are positive or have higher intensity with larger integers so that TreeSHAP
can display them effectively using a trend chart or dependence plot. However, most
features have missing or unavailable values that have been encoded as middle or average
rank to minimize possible bias on feature importance trends. That is, the moderate impact
of the NA category should be between the maximum and minimum of ordinal values.

2.4. Dataset Balancing

Due to a significantly imbalanced dataset, the model would tend to overfit the major
categories and ignore the learning features of minorities. Generally, several approaches
could overcome this learning bias due to target loss function design, such as assigning
different weights for samples or categories in the loss function, assigning additional cost
weight for prediction errors, resampling data by over- or undersampling, etc.

SMOTE is the method we use for oversampling in this study. Instead of simply
duplicating samples, we generate synthetic samples for minorities up to a quantity of the
majority. It would select some nearby samples around a base sample of minority, randomly
choose one neighbor, and randomly perturb one feature at a time within the distance
between them.

2.5. 10-Fold Cross-Validation

In this study, the 10-fold cross-validation is used for performance checks. We use
10-fold cross-validation to prevent bias from a split of the whole dataset. Partition the
complete dataset randomly into ten equal-sized subgroups. Each time, a subgroup will be
chosen as a holdout set, and the rest of the night nine subgroups are for training. At the
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end of 10 training rounds, an average performance of 10 models will be output. We then
perform the aggregation of various ordered feature importance lists based on the ranks
with additional weights via the cross-entropy Monte Carlo algorithm using the Spearman
distance. For each classifier, we perform upsampling to alleviate the class imbalance
problem after inputting the training data. The classification metrics of the Random Forest
algorithm, such as TP rate, FP rate, Precision, Recall, F1 score, and Accuracy, are illustrated
in Table 1 below.

Table 1. Classification Metrics of Random Forest derived from the confusion matrix.

TP Rate FP Rate Precision Recall F1 Score Accuracy Class

Average (Values of Random Forest)

0.852 0.095 0.899 0.852 0.875
0.879

Non-Recurrence
0.905 0.148 0.860 0.905 0.882 Recurrence

Fold 1

0.859 0.093 0.903 0.859 0.880
0.883

Non-Recurrence
0.907 0.141 0.864 0.907 0.885 Recurrence

Fold 2

0.820 0.078 0.913 0.820 0.864
0.870

Non-Recurrence
0.922 0.180 0.836 0.922 0.876 Recurrence

Fold 3

0.849 0.078 0.916 0.849 0.881
0.885

Non-Recurrence
0.922 0.151 0.858 0.922 0.889 Recurrence

Fold 4

0.863 0.132 0.868 0.863 0.866
0.866

Non-Recurrence
0.868 0.137 0.863 0.868 0.866 Recurrence

Fold 5

0.868 0.073 0.922 0.868 0.894
0.897

Non-Recurrence
0.927 0.132 0.876 0.927 0.900 Recurrence

Fold 6

0.853 0.122 0.874 0.853 0.864
0.866

Non-Recurrence
0.878 0.147 0.857 0.878 0.867 Recurrence

Fold 7

0.843 0.093 0.901 0.843 0.871
0.875

Non-Recurrence
0.907 0.157 0.853 0.907 0.879 Recurrence

Fold 8

0.858 0.102 0.893 0.858 0.875
0.878

Non-Recurrence
0.898 0.142 0.864 0.898 0.880 Recurrence

Fold 9
0.858 0.103 0.893 0.858 0.875

0.877
Non-Recurrence

0.897 0.142 0.863 0.897 0.880 Recurrence

Fold 10

0.858 0.078 0.916 0.858 0.886
0.890

Non-Recurrence
0.922 0.142 0.866 0.922 0.893 Recurrence

Then, we benchmarked RF using MLP, C4.5, AdaBoost, and Bagging for the machine
learning algorithm.

1. MLP: A classifier that uses backpropagation to learn a Multilayer Perceptron to classify
instances.
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2. C4.5: This algorithm develops a decision tree by splitting the value of the feature at
each node, including categorical and numeric features. We calculated the information
gain and used the feature with the highest gain as the splitting rule.

3. AdaBoost with C4.5: It is a part of the group of ensemble methods called boosting
and adds newly trained models in a series where subsequent models focus on fixing
the prediction errors made by previous models. In this study, we selected C4.5 as the
base classifier.

4. Bagging (Bootstrap Aggregation) with C4.5: This is an ensemble skill that uses the
bootstrap sampling technique to form different sets of samples with replacement. We
used C4.5 as a base classifier to derive the forest.

The RF classification model develops parallel decision trees that vote on the category
judgment for a given instance and output the final decision as a prediction. Cost-sensitive
learning is essential in the case of risk management as we pursue better flexibility of trade-
offs among metrics. For example, we may focus more on the recall rate of the recurrence
category by loosening the performance of the precision rate. In this part, we assign different
costs of the false negative error of recurrence categories 1, 2, 3, and 5 but keep the false
positive error cost at 1.

In our study, we set the recurrence category as positive and then evaluated the metrics.
True Positive (TP): number of positive instances predicted as positive. Negative (TN):
number of negative instances predicted as negative. False Positive (FP): number of negative
instances predicted as positive. False Negative (FN): number of positive instances predicted
as negative. Accuracy: (TP + TN)/(TP + TN + FP + FN). Precision: TP/(TP + FP). Recall:
TP/(TP + FN). F1-score: 2 × (Recall × Precision)/(Recall + Precision). False Positive Rate:
FP/(FP + TN). True Positive Rate: TP/(TP + FN). The ROC curve (receiver operating
characteristic curve) uses the True Positive Rate as the y-axis and False Positive Rate as the
x-axis and plots points with corresponding thresholds.

2.6. Interpretability in Machine Learning Models

We review the importance of features using two approaches, RF and SHAP. The
former is a single-feature permutation approach to observe model performance impact,
whereas the latter is flexible in observing main features and the interaction effects regarding
model output.

Concerning SHAP, we use global interpretability plots. The feature importance plot
lists the importance of all features in ascending order and uses color bars with positive
or negative correlation coefficients. The bee swarm plot for feature importance provides
vibrant SHAP values and output impact direction information of individual points in
rich colors that can help users obtain critical insights quickly. The dependence plot help-
fully shows the correlations and interactions between the two features and the SHAP
value trends.

The local interpretability plot, the waterfall plot, is designed to demonstrate explana-
tions for individual instances.

3. Results
3.1. Traditional Predictor Algorithms

Before we established our prediction model, we analyzed these clinical features using
a traditional statistic method, which shown in the table below. Finally, we tried to establish
a cost-effective prediction model for recurrent gastric cancer.

The relevant risk factors and statistical chi-square test results (Table 2) are as follows:
F1 Gender (OR = 1.30, 95%CI: 1.05–1.62, p = 0.019), F3 Grade/Differentiation (OR = 0.38,
95%CI: 0.19–0.78, p ≤ 0.001), F4 Tumor Size (OR = 0.66, 95%CI: 0.37–1.18, p < 0.001), F5 Num-
ber of regional lymph node involvement (OR = 0.75, 95%CI: 0.44–1.26, p < 0.001), F6 Cancer
Stage (OR = 0.19, 95%CI: 0.41–0.88, p < 0.001), F7 Residual tumor on edge of primary site
(OR = 2.76, 95%CI: 0.99–7.67, p < 0.001), F8 Radiation therapy (OR = 0.49, 95%CI: 0.33–0.72,
p ≤ 0.001), F9 Chemotherapy (OR = 0.33, 95%CI: 0.26–0.41, p = 0.003), F10 BMI (OR = 1.23,
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95%CI: 0.71–2.11, p = 0.009), F11 Smoking (OR = 1.79, 95%CI: 0.41–7.77, p = 0.008), F13 Alco-
hol drinking (OR = 2.25, 95%CI: 0.68–7.40, p = 0.032), F14 SSF1 Carcinoembryonic antigen
CEA test value (OR = 1.98, 95%CI: 1.42–2.56, p < 0.001), F15 SSF2 Carcinoembryonic antigen
CEA difference value (OR = 3.89, 95%CI: 2.69–5.61, p < 0.001), F16 SSF3 Helicobacter pylori
(OR = 2.29, 95%CI: 1.69–3.10, p < 0.001), and F17 SSF5 Lymphatic or vascular (OR = 0.10,
95%CI: 0.03–0.270, p < 0.001); they are statistically significant variables. Traditional methods
could provide a preliminary evaluation of these clinical features. However, we cannot
rank these features at all. For clinicians, we expect them to know more about the ranking
and interaction among these clinical features. As a result, AI models can provide us an
alternative solution, as needed.

Table 2. Traditional analysis on clinical features of recurrent gastric cancer.

No Recurrence Recurrence Chi-Square Test Hazard Ratio

2044 (82.55%) 432 (17.44%)

F1. Gender Male 1273 (62.3%) 295 (68.3%) 5.541 1.00
Female 771 (37.7%) 137 (31.7%) (p = 0.019) * 1.30 [1.05–1.62]

F2. Age at Diagnosis <20 1 (0.02%) 0 (0.0%) 6.389 1.00
21~30 11 (0.53%) 2 (0.46%) (p = 0.604) 0.00 [0.00- ]
31~40 56 (2.73%) 14 (3.24%) 3.09 [0.24–38.31]
41~50 186 (9.09%) 51 (11.81%) 4.25 [0.52–34.71]
51~60 488 (23.9%) 95 (21.99%) 4.66 [0.60–35.86]
61~70 558 (27.3%) 111 (25.69%) 3.30 [0.43–25.16]
71~80 505 (24.7%) 106 (24.54%) 3.38 [0.44–25.67]
81~90 222 (10.9%) 52 (12.04%) 3.56 [0.47–27.10]
>90 17 (0.83%) 1 (0.23%) 3.98 [0.51–30.60]

F3. Grade/Differentiation Well differentiated 178 (8.71%) 11 (2.55%) 40.698 1.00
Moderately differentiated 557 (27.25%) 117 (27.08%) (p ≤ 0.001) ** 0.38 [0.19–0.78]
Poorly differentiated 951 (46.53%) 256 (59.26%) 1.32 [0.88–1.96]
Undifferentiated/anaplastic 119 (5.82%) 10 (2.31%) 1.69 [1.17–2.44]
NA 239 (11.69%) 38 (8.80%) 0.52 [0.25–1.09]

F4. Tumor Size 1~49 mm 1357 (66.39%) 180 (41.67%) 103.840 1.00
50~99 mm 492 (24.07%) 198 (45.83%) (p ≤ 0.001) ** 0.66 [0.37–1.18]
100~149 mm 92 (4.50%) 34 (7.87%) 2.01 [1.12–3.58]
>= 150 28 (1.37%) 5 (1.16%) 1.84 [0.93–3.64]
NA 75 (3.67%) 15 (3.47%) 0.89 [0.29–2.68]

F5. Number of regional
lymph node involvement 0 889 (43.49%) 45 (10.42%) 358.366 1.00

1~2 235 (11.50%) 57 (13.19%) (p ≤ 0.001) ** 0.75 [0.44–1.26]
3~6 254 (12.43%) 84 (19.44%) 3.59 [2.13–6.04]
7~15 209 (10.23%) 107 (24.77%) 4.90 [2.98–8.05]
>16 131 (6.41%) 117 (27.08%) 7.58 [4.64–12.39]
NA 326 (15.95%) 22 (5.09%) 13.23 [8.03–21.78]

F6. Cancer Stage 0 43 (2.10%) 0 (0.0%) 298.851 1.00
1A, 1B (Stage I) 821 (40.17%) 24 (5.56%) (p ≤ 0.001) ** 0.00 [0.00- ]
2A, 2B (Stage II) 480 (23.48%) 76 (17.60%) 0.19 [0.41–0.88]
3A, 3B, 3C (Stage III) 640 (31.31%) 307 (71.06%) 1.02 [0.22–4.65]
(Stage IV) 47 (2.30%) 23 (5.32%) 3.11 [0.69–13.90]
NA 13 (0.64%) 2 (0.46%) 3.18 [0.66–15.29]

F7. Residual tumor on
edge of primary site No residual tumor 1916 (93.73%) 392 (90.74%) 22.657 1.00

residual tumor 74 (3.62%) 36 (8.33%) (p ≤ 0.001) ** 2.76 [0.99–7.67]
NA 54 (2.64%) 4 (0.93%) 6.56 [2.20–19.55]

F8. Radiation therapy No/NA 1946 (95.21%) 392 (90.74%) 13.508 1.00
Yes 98 (4.79%) 40 (9.26%) (p ≤ 0.001) ** 0.49 [0.33–0.72]
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Table 2. Cont.

No Recurrence Recurrence Chi-Square Test Hazard Ratio

F9. Chemotherapy No/NA 1173 (57.39%) 133 (30.79%) 101.243 1.00
Yes 871 (42.61%) 299 (69.21%) (p ≤ 0.001) ** 0.33 [0.26–0.41]

F10. BMI <18.5 107 (5.23%) 32 (7.41%) 11.498 1.00
18.5~24 869 (42.51%) 206 (47.69%) (p = 0.009) * 1.23 [0.71–2.11]
>24 924 (45.21) 159 (36.80%) 0.97 [0.65–1.45]
NA 144 (7.05) 35 (8.10%) 0.70 [0.47–1.06]

F11. Smoking No 1378 (67.42%) 261 (60.42%) 9.588 1.00
Yes 647 (31.65%) 169 (39.12%) (p = 0.008) * 1.79 [0.41–7.77]
NA 19 (0.93%) 2 (0.46%) 2.48 [0.57–10.75]

F12. Betelnut Chewing No 1803 (88.21%) 391 (90.51%) 2.467 1.00
Yes 173 (8.46%) 32 (7.41%) (p = 0.291) 1.63 [0.81–3.31]
NA 68 (3.33%) 9 (2.08%) 1.39 [0.63–3.08]

F13. Alcohol drinking No 1510 (73.87%) 301 (69.68%) 6.855 1.00
Yes 500 (24.46%) 128 (29.63%) (p = 0.032) * 2.25 [0.68–7.40]
NA 34 (1.66%) 3 (0.69%) 2.90 [0.87–9.59]

F14. SSF1
Carcinoembryonic
antigen CEA test Value

001 1 (52.9%) 0 (0.0%) 51.726 1.00

002~200 1511 (73.92%) 345 (79.86%) (p ≤ 0.001) ** 0.00 [0.00- ]
201~400 21 (1.03%) 10 (2.31%) 1.98 [1.42–2.56]
401~600 5 (0.24%) 6 (1.39%) 3.97 [1.78–8.85]
601~800 2 (0.15%) 2 (0.46%) 10.02 [2.96–33.86]
801~986 1 (0.05%) 2 (0.46%) 8.35 [1.15–60.42]
987 10 (0.49%) 8 (1.85%) 16.71 [1.49–187.1]
000,988,999 493 (24.12%) 59 (13.66%) 6.68 [2.53–17.60]

F15. SSF2
Carcinoembryonic
antigen CEA difference
Value

CEA > criteria 198 (0.96%) 92 (21.30%) 59.362 1.00

CEA < criteria 1349 (67.00%) 281 (65.05%) (p ≤ 0.001) ** 3.89 [2.69–5.61]
CEA~ = criteria 3 (0.15%) 0 (0.0%) 1.74 [1.29–2.35]
NA 494 (24.17%) 59 (13.66%) 0.00 [0.00- ]

F16. SSF3 Helicobacter
pylori 000_negtive 852 (41.68%) 227 (52.55%) 30.285 1.00

001–010_positive 658 (32.19%) 143 (33.10%) (p ≤ 0.001) ** 2.29 [1.69–3.10]
988,998,999 534 (26.13%) 62 (14.35%) 1.87 [1.36–2.57]

F17. SSF5 Lymphatic or
vascular No 171 (8.36%) 4 (0.92%) 30.087 1.00

Yes 198 (9.69%) 44 (10.19%) (p ≤ 0.001) ** 0.10 [0.03–0.270]
NA 1675 (81.95%) 384 (88.89%) 0.96 [0.68–1.36]

* refers to statistically significant as p value < 0.05. ** refers to statistically highly significant as p value < 0.001. NA:
Not applicable.

3.2. Prediction Performance

The balanced dataset has original major category 2044 instances and oversampled
minor category 2044 instances. The relevant risk factors and statistical chi-square test
were performed as a preliminary survey. In total, 17 clinical features—gender, age,
grade/differentiation, tumor size, number of regional lymph node involvement, can-
cer stage, residual tumor on edge of primary site, radiation therapy, chemotherapy, BMI,
smoking, alcohol drinking, Betel nut chewing, carcinoembryonic antigen CEA test value,
carcinoembryonic antigen CEA difference value, Helicobacter pylori, and lymphatic or vas-
cular invasion—are statistically significant variables. In this study, 10-fold cross-validation
was used to prevent biases from splitting the entire dataset. It randomly divides the entire
dataset into ten subgroups of the same size. Each time, a subgroup is selected as a holdout
set, and the rest of the nine subgroups are trained. At the end of 10 training rounds, the
average performance of 10 models will be produced. Then, we perform the aggregation of
various ordered lists of important features based on the ranks with additional weights via
the Monte Carlo cross-entropy algorithm using the Spearman distance. For each classifier,
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we performed upsampling to alleviate the problem of class imbalance after inputting the
training data. Table 3 summarizes the comparison of different algorithms, including MLP,
C4.5, AdaBoost with C4.5, Bagging with C4.5, and RF. RF has a metric outperformance of
F1 of 88.2%, ROC area of 95.2%, PRC of 95.4%, and 87.9% for the recurrence category. First,
MLP shows better metric performance than C4.5 as a benchmark between the numerical-
base algorithm and the categorical-base decision tree algorithm. Second, from the evidence
that RF significantly surpasses the C4.5 and Bagging sets, we believe that the main improve-
ment is from the randomness design of bootstrap subsampling and the choice of feature for
splitting node. Third, compared with AdaBoost, the independent trees of RF show better
ensemble synergy than the boosting ensemble that arranges trees of the forest in series.

Table 3. Comparison of classification performance for different algorithms.

Algorithm TP Rate FP Rate Precision Recall F1 Score ROC Area PRC Area Accuracy Category

MLP
0.835 0.112 0.882 0.835 0.858 0.909 0.91

0.862
Non-Recurrence

0.888 0.165 0.843 0.888 0.865 0.909 0.883 Recurrence

C4.5
0.812 0.123 0.869 0.812 0.839 0.874 0.849

0.844
Non-Recurrence

0.877 0.188 0.823 0.877 0.849 0.874 0.826 Recurrence

AdaBoost C4.5
0.859 0.115 0.882 0.859 0.87 0.933 0.924

0.872
Non-Recurrence

0.885 0.141 0.863 0.885 0.873 0.933 0.937 Recurrence

Bagging C4.5 0.829 0.111 0.882 0.829 0.855 0.941 0.932
0.859

Non-Recurrence
0.889 0.171 0.839 0.889 0.863 0.941 0.945 Recurrence

Random Forest
0.853 0.095 0.899 0.853 0.875 0.952 0.945

0.879
Non-Recurrence

0.905 0.147 0.860 0.905 0.882 0.952 0.954 Recurrence

TP: True positive; FP: False positive.

From the comparison of the ROC curves in Figure 3a, RF has the largest 0.952 area,
which means that the trade-off between TPR and FPR through threshold setting is relatively
better than others, while C4.5 is the worst. As a result, we chose Random Forest to establish
our prediction model.
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In Table 4, we can see that the recall rate increases (that is, 90.5% to 96.1%) if we
increase the penalty cost on the FN (false negative) error of the recurrence category but
keep the FP error cost as one precision rate (that is, 86% to 74.2%); the overall accuracy (that
is, 87.9% to 81.4%) is compromised accordingly. In addition, the performance metrics of
the Random Forest algorithm with different costs are compared and listed in the Table 4
below. These include the TP rate, FP rate, Precision, Recall, F1 score, ROC area, PRC area,
MSE (Mean Square Error), and Accuracy. This policy scenario means that we hope that
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potential recurrence patients are labeled as much as possible, with acceptable results of FP
(false positive) patient misclassification. In Figure 3b, it also shows no noticeable difference
between different costs.

Table 4. Comparison of the performance of the Random Forest classification performance for
different costs.

Cost of FN TP Rate FP Rate Precision Recall F1 Score ROC Area PRC Area MSE Accuracy Category

1
0.853 0.095 0.899 0.853 0.875 0.952 0.945

0.176 0.879
Non-Recurrence

0.905 0.147 0.860 0.905 0.882 0.952 0.954 Recurrence

2
0.799 0.066 0.924 0.799 0.857 0.954 0.948

0.186 0.866
Non-Recurrence

0.934 0.201 0.823 0.934 0.875 0.954 0.955 Recurrence

3
0.743 0.058 0.928 0.743 0.825 0.953 0.947

0.199 0.842
Non-Recurrence

0.942 0.257 0.785 0.942 0.857 0.953 0.953 Recurrence

5
0.666 0.039 0.945 0.666 0.782 0.953 0.947

0.221 0.814
Non-Recurrence

0.961 0.334 0.742 0.961 0.838 0.953 0.954 Recurrence

TP: True positive; FP: False positive; FN: False negative.

3.3. Interpretability

Before diving into the explanation of features, we need to understand that model
interpretability is not always equal to causality. It is essential to address that SHAP values
do not provide causality but instead provide insights into how the model behaves from
data learning.

First, we used RF to observe global characteristics and it shows that F-6/F-5/F-2 are
the top three impact features in Figure 4a. However, these feature importances did not
show a positive/negative impact on recurrent gastric cancer. Therefore, the SHAP was
applied and its value shows more information in Figure 4b. Firstly, it agrees that F-6 and
F-5 have a critical and positive impact, which means that higher features bring bigger
recurrence probability; meanwhile, F-2 falls to sixth with a negative impact. Moreover, the
F-16 also moves up to the third feature with a negative impact. The red bars in Figure 4b
have a positive correlation coefficient.
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Figure 4. The clinical features were ranked by their feature importance: (a) Random Forest feature
importance; (b) SHAP value with the costs of FN = 1. (Red: positive impact; Blue: negative impact).

Next, we further investigated the SHAP distribution of all instances in Figure 5a; the
bee swarm plot, F-6, and F-5 show higher feature value instances (i.e., red points contribute
positive SHAP values), mostly with higher SHAP values. On the contrary, the feature
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values negatively correlate with the SHAP values (i.e., blue points contribute positive
SHAP values).
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Figure 5. (a) Bee swarm plot. (b) Dependence plot. Included SHAP interaction matrix between the
top 10 clinical features.

In Figure 5b, the breakdown of the dependence plot shows the SHAP value in relation
to the main effects and interaction effects if we want to investigate the interaction between
features further. The on-diagonal values are the main effect, whereas the off-diagonal
values are interactions. From the upper left corner of Figure 5b, we can see that interactions
between F-5/F-6 would bring a negative SHAP value. In other words, F-5/F-6 would have
positive main SHAP values, respectively, from the diagonal, but the off-diagonal interaction
value would somehow decrease the main values.

Global interpretation shows correlations between features and prediction in all sam-
ples, which cannot clearly explain the prediction specific to a specific sample. In our study,
we found competitive performance of this predicting model by using the top 10 clini-
cal features.

For local interpretation in SHAPs, we can provide explanations for individual predic-
tions in the recurrent case in Figure 6a and non-recurrent case in Figure 6b, allowing us to
understand why a particular prediction was made for a specific patient. In Figure 6a, it
locally indicates the breakdown of individual SHAP values of different clinical features of
the recurrent case; from that, we can clearly see how those feature forces bring the predic-
tion probability f(x) up to 1. In contrast, in Figure 6b, it shows reverse forces of different
clinical features of the non-recurrent case bringing f(x) down to 0. Most importantly, in
everyday work, we can analyze individual patients using RF and local SHAP analysis, as
shown in Figure 6, to understand the impacts of all clinical features.

As a result, we established a cost-effective prediction model for recurrent gastric cancer
using 8 of 17 clinical features and the model has competitive efficiency and performance. In
real world data, especially for malignancies, there are numerous clinical features that need
to be evaluated in relation to cancer recurrence. Using this method, it could be possible to
use several leading clinical features to establish a reliable prediction model with the same
performance instead of using all clinical features.
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4. Discussion

More than 60% of gastric cancer survivors experienced recurrence after curative
resection for gastric cancer, especially within two years after surgery. The risk factors for
the recurrence patterns of different clinical or pathological factors were supposed to lead to
recurrences of gastric cancer [17]. However, how to predict the recurrence of gastric cancer
is an ongoing issue.

Lo et al. [18] found that the most critical risk factors for recurrence in early gastric
cancer are lymph node status and the size of the mucosal tumor. Compared to advanced
gastric cancer, the prognosis for patients with early gastric cancer is excellent. In our
study, the result of F-4 (tumor size)/F-5 (number of regional lymph node involvement)/F-6
(cancer stage) with positive SHAP values is similar to their report.

In 2009, Tokunaga et al. [19] described that a 5-year survival rate after curative gas-
trectomy is better in overweight patients compared to non-overweight patients. Being
overweight was revealed to be an independent prognostic factor in patients with early
gastric cancer; however, the reason has not yet been determined. In our prediction model,
F-10 (BMI) is the fourth leading feature with a negative impact on the recurrence of gastric
cancer. The results were similar.

In 2020, Zheng et al. [20] identified that the pathological tumor (pT) stage and the
pathological nodal (pN) stage were significantly associated with prognosis of stage I gastric
cancer. The postoperative chemotherapy adjuvant might help improve the outcomes of
high-risk patients. In our study, more clinical figures were collected and divided into
subgroups for analysis. F-6 (cancer stage) is the leading risk factor, followed by F-5 (number
of regional lymph node involvement). A similar result was concluded.

Helicobacter pylori, which is not only the leading risk factor for gastric cancer but also
a high risk of recurrence, colonizes the gastric mucosa and induces persistent chronic
gastric inflammation [21,22]. Patients with a genotype of high IgG1 will have a higher
risk of recurrence than patients with other genotypes. Our study demonstrated that SSF3
(Helicobacter pylori) is the third leading feature for the recurrence of gastric cancer.

Artificial intelligence has become a workhorse for cancer diagnosis and prognosis with
unprecedented accuracy, which is more powerful than traditional statistical analysis [23].
Chang et al. used a stacked ensemble-based classification model to predict the second
primary cancer of head and neck cancer survivors by clinical features [24]. Using artificial
intelligence, it is possible to develop a prediction model to determine clinical risk features,
which will help clinicians screen cancer survivors before recurrence occurs.

In this study, we explore data mining using the machine learning algorithm RF on
an imbalanced dataset. Furthermore, we utilize SMOTE to oversample the minority to
balance and prevent the model from being biased too much on the original majority of non-
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recurrent instances. Regarding metric performance, RF shows better prediction capability
than MLP, C4.5, AdaBoost, and Bagging. The prediction performance metrics can reach an
overall accuracy of 87.9%, a recall rate of 90.5%, a precision rate of 86%, and an F1 of 88.2%
in the recurrent category using 10-fold cross-validation in the balanced dataset.

Regarding cost-sensitive learning, as we increase the cost of FN, the recall rate can
improve from 90.5% to 96.1%. Meanwhile, the precision rate is compromised from 86% to
74.2%, and the accuracy from 97.9% to 82.4%. Cost learning is a quick way of conventional
machine learning to assess risk, while we intend to switch between different policies.

From SHAP value interpretation analysis, we can obtain insights into how models
make a decision based on features and the interaction between correlated features. The
identified top-five features are F-6 (cancer stage), F-5 (number of regional lymph node
involvement), SSF3 (Helicobacter pylori), BMI, and gender. But, remember that model
interpretation is for model behavior analysis and is not equal to causal effect analysis. The
model learns from complicated correlations within the dataset, as shown in Figure 5b, and
looks for the best choice to optimize an objective function.

In this study, we aimed to establish a cost-effective predicting model by using fewer
clinical features. Although global interpretation shows correlations between features and
prediction in all samples, which cannot clearly explain the prediction specific to a specific
sample. However, in our study, we found, even by using eight clinical features, equal
performance could be achieved by using our predicting model with SHAPs. For RF, we
could figure out the importances of these clinical features. However, we could not realize
the direction of them. Through SHAP values, the model is able to understand the positive or
negative impact of these clinical features. Finally, we were able to identify the contributory
risk factors of recurrent gastric cancer.

As a result, we established a cost-effective prediction model for recurrent gastric cancer
using 17 clinical features and the model has competitive efficiency and performance. In real
world data, especially for malignancies, there are numerous clinical features that need to be
evaluated in relation to cancer recurrence. By using this method, we are able to use several
leading clinical features to establish a reliable prediction model with the same performance
instead of using all clinical features.

We have some limitations in this study. Firstly, data from the Taiwan Cancer Registry
were collected from different hospitals and time periods. Some features have a significant
number of missing values, such as lymphatic or vascular invasion. This situation may bias
real trends if this feature contributes a significant SHAP value. We need to pay attention
once we interpret this feature. Although there are 17 clinical features included, some risks
such as surgical procedures, neoadjuvant regimens, races, and duration of smoking could
not be assessed using this dataset and this could be a limitation.

5. Conclusions

In conclusion, RF is the best classifier of prediction capability in our study. We conclude
RF with SMOTE on this dataset can reach outstanding performance and SHAPs can show
good interpretation and feature importance; finally, we identify the top-five risk factors.
Cost-sensitive learning could be achieved with an improvement in the recall rate from
90.5% to 96.1%, compromised precision rate from 86% to 74.2%, and accuracy from 97.9%
to 82.4%. Mostly, F-6 (cancer stage), F-5 (number of regional lymph node involvement),
SSF3 (Helicobacter pylori), BMI, and gender were the leading impact factors for recurrent
gastric cancer. They will be helpful for physicians in detecting high-risk patients early in
gastric cancer survivors.

This study used data from the Taiwan Cancer Registry Database to estimate retro-
spective clinical figures of gastric cancer at diagnosis and to evaluate the association with
gastric cancer recurrence after the launch of targeted therapies. Despite these limitations,
this study should provide an essential basis for further research.
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